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Abstract

Boolean functions are mathematical objects used in diverse domains
and have been actively researched for several decades already.
One domain where Boolean functions play an important role is
cryptography. There, the plethora of settings one should con-
sider and cryptographic properties that need to be fulfilled makes
the search for new Boolean functions still a very active domain.
There are several options to construct appropriate Boolean func-
tions: algebraic constructions, random search, and metaheuristics.
In this work, we concentrate on metaheuristic approaches and examine
the related works appearing in the last 25 years. To the best of our knowl-
edge, this is the first survey work on this topic. Additionally, we provide
a new taxonomy of related works and discuss the results obtained.
Finally, we finish this survey with potential future research directions.
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1 Introduction

Boolean functions represent mathematical objects with diverse applications.
For instance, in combinatorial designs, Boolean functions are used to construct
Hadamard matrices [75] and strongly regular graphs [4]. In coding theory, every
binary unrestricted code of length 2n can be interpreted as a set of Boolean
functions. In sequences, bent sequences constructed using bent Boolean func-
tions have the lowest value of mutual correlations and autocorrelations, and
they are used in communication systems with multiple access [59]. In telecom-
munications, bent Boolean functions are used in CDMA networks [60]. In
cryptography, Boolean functions are used in stream and block ciphers as the
source of nonlinearity [21]. Furthermore, they are used in fully homomorphic
encryption [52] and in the design of hash functions [84].

Due to their widespread use, the body of works considering their various
aspects is rich and spans several decades. Many of those works consider how to
construct Boolean functions with specific properties. Considering the method-
ology, such works can be classified into algebraic constructions, random search,
and metaheuristics. While this division makes sense from an intuitive point
of view, different characteristics of those approaches make any comparison
difficult for the following reasons:
1. Algebraic constructions work for many different Boolean function sizes

but always produce the same Boolean functions when adopting the same
starting conditions. Finding new constructions can be far from trivial.

2. Random search is easy to run and will, in principle, output many differ-
ent Boolean functions. Still, as the required size of the Boolean function
increases, the resulting properties become suboptimal.

3. Metaheuristics can produce many different Boolean functions that com-
monly have better properties than those obtained with random search
(rivaling those obtained with algebraic constructions). Still, such tech-
niques will struggle to produce high-quality solutions for larger Boolean
function sizes. Next, one needs to devise an appropriate objective func-
tion to guide the metaheuristic search, which is more difficult than simply
running a random search but significantly simpler than devising a new
algebraic construction. Finally, it is necessary to run a new search for
each considered Boolean function size.

4. Potentially, one could also devise a construction technique than combines
different approaches. For instance, using algebraic constructions to find
Boolean functions with good properties and then using those functions
to optimize upon with metaheuristics. Additionally, one commonly uses
random search to construct the initial solutions for metaheuristics.

Clearly, metaheuristics have some obvious advantages over other construc-
tion techniques. As such, various metaheuristic techniques have been tested
over the years concerning the design of Boolean functions with specific proper-
ties and dimensions. While most of those works report favorable results, there
are still many challenges. One of the big challenges is the lack of a compre-
hensive overview of the contributions that have been achieved. In this work,
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we systematically survey the work done and the open challenges. Moreover,
we suggest a new division of metaheuristic approaches into 1) direct design
and 2) metaheuristic-assisted design of Boolean functions. With this division,
we argue to capture the most important differences in the applied metaheuris-
tic techniques and allow a better comparison of the obtained solutions. Next,
we propose to further divide works in the direct design of Boolean func-
tions based on the representation of Boolean functions into truth table-based
approaches and Walsh-Hadamard-based approaches. Concerning the part on
metaheuristic-assisted design, we classify relevant research into the evolution of
algebraic constructions and the optimization of combinatorial objects related
to Boolean functions, such as orthogonal arrays.

The rest of this paper is organized as follows. Section 2 recalls basic
background notions related to Boolean functions and gives an overview of
the most common metaheuristic algorithms used in the literature to opti-
mize their cryptographic properties. Section 3 surveys the works belonging to
the first main category of our proposed taxonomy, namely the direct design
of Boolean functions via metaheuristics. Section 4 gives an overview of the
field of metaheuristic-assisted design of Boolean functions. Finally, Section 5
points out several directions for future research on the subject, and Section 6
concludes the paper.

2 Background

Let F2 = {0, 1} be the finite field with two elements, with sum and multipli-
cation of a, b ∈ F2 respectively corresponding to the XOR (denoted by ⊕) and
logical AND (denoted by concatenation) of a and b. Given any positive inte-
ger n ∈ N, we denote by Fn

2 the set of all n-tuples of elements in F2, which
we endow with a vector space structure. In particular, the sum of two vectors
x, y ∈ Fn

2 amounts to their bitwise XOR, while the multiplication of x ∈ Fn
2

with a scalar a ∈ F2 is the logical AND of a with each coordinate of x. Slightly
abusing notation, we still denote vector sum and multiplication by a scalar,
respectively by ⊕ and concatenation. We also consider Fn

2 as a metric space by
defining the Hamming distance dH(x, y) of two vectors x, y ∈ Fn

2 as the num-
ber of coordinates where x and y differ. The support of a vector x ∈ Fn

2 is the
subset of positions where x is nonzero, i.e., supp(x) = {i : xi ̸= 0}, with the
Hamming weight wH(x) of x being the cardinality of its support. Finally, we
endow the vector space Fn

2 with the inner product · : Fn
2 × Fn

2 → F2, defined
for all x, y ∈ Fn

2 as x · y =
⊕n

i=1 xiyi. Thus, the inner product between x and
y is the sum (over F2) of the pointwise multiplications of xi and yi.

2.1 Boolean Functions and their Representations

An n-variable Boolean function is any mapping of the form f : Fn
2 → F2, and

it can be uniquely represented by the truth table (lookup table), which is the
list of pairs of function inputs x ∈ Fn

2 and corresponding function values f(x).
The value vector is the binary vector Ωf composed of all f(x), with x ∈ Fn

2 ,
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Table 1: Exact (#Bn) and approximate (≈ Bn) numbers of n-variable Boolean
functions.

n 3 4 5 6 7

#Bn 256 65536 232 264 2128

≈ Bn 256 65536 4.29 · 109 1.84 · 1019 3.40 · 1038

n 8 9 10 11 12

#Bn 2256 2512 21024 22048 24096

≈ Bn 1.16 · 1077 1.34 · 10154 1.80 · 10308 3.23 · 10617 1.04 · 101234

where some total order has been fixed on Fn
2 (most commonly, the lexicographic

order). The size of the value vector equals 2n, thus we have that Ωf ∈ F2n

2 . If
we denote the set of all n-variables Boolean functions by Bn = {f : Fn

2 → F2},
it follows that the size of Bn is #Bn = 22

n

, i.e., it grows super-exponentially in
n (see Table 1 for exact and approximate values of #Bn). The support and the
Hamming weight of a Boolean function f : Fn

2 → F2 correspond respectively
to the support and Hamming weight of its value vector Ωf . While the truth
table representation is “human-friendly”, not much can be directly deduced
from it, except for the Hamming weight.

A second unique representation of a Boolean function f on Fn
2 is the

Algebraic Normal Form (ANF). Remarking that x2 = x for all x ∈ F2, the
ANF of f : Fn

2 → F2 is the multivariate polynomial in the quotient ring
F2 [x0, ..., xn−1] /(x

2
0 ⊕ x0, ..., x

2
n−1 ⊕ xn−1), defined as:

f(x) =
⊕
a∈Fn

2

h(a) · xa, (1)

where xa = (xa0
0 , · · · , xan−1

n−1 ), and h(a) ∈ F2 is given by the Möbius transform:

h(a) =
⊕
x⪯a

f(x), for any a ∈ Fn
2 . (2)

Here, x ⪯ a means that a covers x (alternatively, x precedes a), which means
that xi ≤ ai, for all i ∈ {0, . . . , n− 1}. The Möbius transform is an involution:
one can retrieve the value of the truth table of f by swapping h(a) with f(x)
and a with x in Eq. (1). The algebraic degree of f is the size of the largest
nonzero monomial in the ANF of f , formally defined as:

deg(f) = max
a:h(a) ̸=0

{wH(a)} . (3)

Functions of degree at most 1 are also called affine. An affine function f is
called linear if h(0) = 0, i.e., if its ANF does not have a constant term. It is
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easy to see that the ANF of a linear function corresponds to the inner product
a · x between a vector a ∈ Fn

2 and the input vector x ∈ Fn
2 .

Another way to uniquely represent a Boolean function f : Fn
2 → F2 is the

Walsh-Hadamard Transform (WHT) Wf : Fn
2 → Z, defined for all a ∈ Fn

2 as:

Wf (a) =
∑
x∈Fn

2

(−1)f(x)⊕a·x. (4)

In particular, the coefficient Wf (a) measures the correlation between f and
the linear function a ·x. The multiset of all coefficients Wf (a) for a ∈ Fn

2 is also
called the Walsh-Hadamard Spectrum (WHS) of f . The WHT is very useful
in cryptography as many cryptographic properties of Boolean functions can be
characterized through it. Contrarily to the ANF, the WHT is not an involution
since it maps the set F2n

2 to Z2n . The mapping Wf is however injective, from
which it follows that the spectrum of a Boolean function f uniquely identifies
f . In particular, one can retrieve the truth table of f from its WHS by using the
Inverse Walsh-Hadamard Transform, which has the same structure of Eq. (4),
except that x and (−1)f(x) are replaced respectively by a, and Wf (a), and the
sum is normalized by a 2−n factor.

From a computational complexity point of view, a naive algorithm to com-
pute the ANF or the WHT of a n-variable Boolean function requires O(22n)
steps since one needs to loop over all possible values a ∈ Fn

2 , and for each of
them, the sum ranges again in Fn

2 . However, there exist more efficient divide-
and-conquer butterfly algorithms, namely the Fast Möbius Transform and the
Fast Walsh-Hadamard Transform that requires only O(n2n) steps. Details of
such algorithms can be found in [7].

2.2 Cryptographic Properties and Bounds

Boolean functions used in the stream and block ciphers model must fulfill
several cryptographic criteria. Each criterion is geared towards a particular
cryptanalytic attack: the rationale is that if a Boolean function satisfies it,
then mounting the corresponding attack becomes computationally unfeasible
for the attacker.

Here, we only discuss the most often considered properties in the works
addressing the construction of Boolean functions with metaheuristics. For
more information on the attacks they protect from and other cryptographic
properties not covered here that have been less frequently considered with
metaheuristics (such as propagation criteria and algebraic immunity), we refer
the reader to [7].

Balancedness

The Hamming weight of a Boolean function f : Fn
2 → F2 is a basic crypto-

graphic property, which indicates the output bias of the function. In particular,
the Boolean function should be balanced, namely wH(f) = 2n−1. This means
that the truth table of f is composed of an equal number of zeros and ones.
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This property can also be expressed in terms of the WHT as follows: f is
balanced if and only if Wf (0) = 0.

Algebraic Degree

We defined the algebraic degree of f in Section 2.1 as the size of the largest
occurring monomial in the ANF of f . As a cryptographic criterion, the
algebraic degree of f should be as high as possible.

Nonlinearity

The minimum Hamming distance between a Boolean function f and all affine
functions is called the nonlinearity of f , denoted by nlf . This property can be
characterized in terms of the Walsh-Hadamard coefficients as follows:

nlf = 2n−1 − 1

2
max
a∈Fn

2

|Wf (a)|. (5)

As a cryptographic property, the nonlinearity of f should be as high as possible.
According to Eq. (5), this happens if the largest Walsh-Hadamard coefficient
in absolute value is as low as possible. Parseval’s identity states that the sum of
the squared Walsh-Hadamard coefficients is constant for all n-variable Boolean
functions, and it equals 22n. This result allows for deriving the following
inequality, known as the covering radius bound:

nlf ≤ 2n−1 − 2n/2−1. (6)

A Boolean function can be considered highly nonlinear if its nonlinearity is
close to the covering radius bound in its class. In particular, the functions
whose nonlinearity equals the maximal value 2n−1 − 2n/2−1 are called bent.
Bent functions exist only for even values of n, as each WHT coefficient must be
equal to ±2

n
2 . Consequently, bent functions are not balanced since Wf (0) ̸= 0.

When n is odd, the bound in Eq. (6) cannot be tight. In this case the maximum

nonlinearity is between 2n−1−2
n−1
2 and 2n−2−2n/2−2 [7]. The former value is

also called the quadratic bound since it is the maximum nonlinearity reachable
by Boolean functions with algebraic degree 2.

Correlation Immunity and Resiliency

A Boolean function f : Fn
2 → F2 is t-th order correlation immune, with

1 ≤ t ≤ n, if its output distribution does not change by fixing at most t input
variables. This property is characterized using the Walsh-Hadamard Trans-
form as follows: f is t-th order correlation immune if and only if Wf (a) = 0
for all a ∈ Fn

2 such that 1 ≤ wH(a) ≤ t. As a cryptographic criterion, a
Boolean function should be correlation immune of a high order. Further, a
function is t-resilient if it is balanced and t-th order correlation immune. This
means that any restriction of the function obtained by fixing at most t coordi-
nates is a balanced function. The order t of correlation immunity (respectively,
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resiliency) induces a trade-off with the algebraic degree and nonlinearity of a
function. More precisely, Siegenthaler’s bound states that d ≤ n − t (respec-
tively, d ≤ n− t−1), where d is the algebraic degree of the function; moreover,
a consequence of Sarkar-Maitra’s divisibility bound is that nlf ≤ 2n−1 − 2t

(respectively, nlf ≤ 2n−1 − 2t+1).

2.3 Metaheuristics

Heuristics are algorithms that find good solutions to large-size problem
instances. In general, they do not have an approximation guarantee on the
obtained solutions [80]. Alternatively, heuristics can be defined as parts of an
optimization algorithm. In that role, heuristics use the information currently
gathered by the algorithm to help decide which solution candidate should be
tested next or how the next solution can be produced.

Heuristic algorithms can be further divided into problem-specific heuris-
tics and metaheuristics. Problem-specific heuristics are methods that are
tailor-made to solve a specific problem. Metaheuristics, in the original defini-
tion, represent solution methods that orchestrate an interaction between local
improvement procedures and higher-level strategies to create a process capa-
ble of escaping from local optima and performing a robust search of a solution
space [20]. Alternatively, metaheuristics can be defined as general-purpose
algorithms that can be applied to solve almost any optimization problem [80].
One can follow many criteria to classify metaheuristics, but we divide them
into single-solution-based metaheuristics and population-based heuristics [80].
Single-solution-based metaheuristics manipulate and transform a single solu-
tion during the search, as in the case of algorithms like Local Search (LS) or
Simulated Annealing (SA). Population-based metaheuristics work on a pop-
ulation of solutions, e.g., Evolutionary Algorithms (EAs), Particle Swarm
Optimization (PSO), and Artificial Immune Systems (AIS).

2.3.1 Local Search

Local Search (LS) is possibly the simplest metaheuristic method that, in each
iteration, replaces the current solution with a neighbor that improves the
objective function [80]. In each iteration, the algorithm searches a neighbor-
hood N(t) of the current solution and selects a better solution, if one can be
found, for the next iteration. To generate neighboring solutions of the current
solution, LS can use various operators, which differ in how they generate the
neighborhood. Although many strategies can be used to select which neigh-
bor should be selected from N(t) to replace the current solution, such as first
improvement, best improvement, or random, all of them lead to the same prob-
lem. LS is inherently a greedy hill-climbing method that will get trapped in
the first local optimum it reaches since it only accepts solutions that are better
than the current one. Therefore, the basic LS method was extended in different
ways, which allowed it to escape local optima and achieve better performance
on multimodal problems.
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2.3.2 Simulated Annealing

Simulated Annealing (SA) operates on a single potential solution, which is
locally changed in each iteration, and its new fitness value is recorded [33]. The
algorithm is inspired by the annealing process of metals, in which a certain
material is heated and then gradually cooled to alter its physical properties.
Similar to LS, SA uses neighborhood operators to search for better solutions
in the vicinity of the current solution. However, in addition to accepting a bet-
ter neighboring solution, SA can also accept a worse neighbor with a certain
probability. The idea is that the probability of accepting worse solutions grad-
ually decreases, allowing the algorithm to thoroughly explore the search space
in earlier iterations and converge to an optimal solution in later iterations. The
acceptance probability of worse solutions is controlled by a parameter denoted
as the temperature, with different cooling schedules being used to decrease the
temperature during the execution of the algorithm, which also decreases the
probability of accepting worse solutions.

2.3.3 Evolutionary Algorithms

Evolutionary algorithms (EAs) are population-based metaheuristic optimiza-
tion methods that use biology-inspired mechanisms like selection, crossover,
and survival of the fittest [18]. The biggest milestone in the development of
this area can be traced to the 19th century and Charles Darwin. In 1859, he
published a book, “On the Origin of Species” where he identified the principles
of natural evolution [15]. There are many different evolutionary algorithms,
but they all share the same general traits. The usual variation operators are
mutation and crossover. Crossover operates over multiple solutions (parents)
and combines them into a new solution (child). Mutation works on a sin-
gle individual and changes parts of it. The goal of crossover is to facilitate
the exploitation of good properties of existing solutions, whereas mutation
increases the diversity and thus stimulates the exploration of new solutions.
The selection operator also represents an important operator used to select
solutions that should participate in the crossover or be eliminated from the
population. Although various selection operators were proposed, their logic
is the same in the sense that they foster the choice of better individuals for
recombination while giving a larger chance of eliminating worse solutions from
the population.

Genetic Algorithm

Genetic algorithms (GAs) are probabilistic algorithms where search meth-
ods model some natural phenomena: genetic inheritance and survival of the
fittest.GAs are a subclass of EAs where the elements of the search space are
arrays of elementary types like strings of bits, integers, floating-point values,
and permutations [18].
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Genetic Programming

Genetic Programming (GP) belongs to EAs and commonly uses tree data
structures that undergo an evolutionary process [35]. Although GP has a his-
tory of more than 50 years, its full acceptance is due to the work of Koza at the
beginning of the 1990s, when he formalized the idea of employing chromosomes
based on tree data structures. Since the aim of GP is to generate new programs
automatically, each individual in a population represents a computer program.
The most common form is a symbolic expression representing a parse tree. A
parse tree is an ordered, rooted tree that represents the syntactic structure of
a string according to some context-free grammar. A tree can represent, e.g., a
mathematical expression, a rule set, or a decision tree. The building elements
in a tree-based GP are functions (inner nodes) and terminals (leaves, problem
variables). Both functions and terminals are known as primitives.

2.3.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is one of the most well-known and success-
ful representatives of swarm intelligence methods [80], which model an indirect
communication between the individuals in the population as they traverse the
search space. Concretely, PSO is inspired by the social behavior of birds, in
which a coordinated behavior can be observed as they migrate in flocks [32].
Each solution in PSO, denoted a particle, consists of its current position and
velocity, which are updated in each iteration of the algorithm. The position
specifies the current position of the particle in the search space, whereas the
velocity represents the direction in which the particle will move in search of
the global optimum. The velocity is updated as a linear combination of the
previous velocity and the relative position of the particle representing the best
solution obtained by this particle and the best overall solution obtained by
any particle in the swarm. After updating the velocity, it is used to update the
position of each particle by adding it to the current position of the particle.

2.3.5 Artificial Immune Systems

Artificial Immune Systems (AIS) is a group of metaheuristics inspired by con-
cepts observed in the immune systems of living beings [80]. Although various
algorithms inspired by immune systems were proposed, one of the most popular
and commonly used algorithms is the Clonal Selection Algorithm (CLON-
ALG) [16]. In this algorithm, each solution called an antibody, undergoes a
cloning process in which a number of clones of each solution are created. The
number of clones created for each solution is proportional to the affinity (qual-
ity) of each antibody, meaning more clones of better solutions will be created.
After cloning, the hypermutation operator is applied to modify the clones with
a certain probability, again based on their affinity. In this case, the mutation
probability is larger for antibodies with a lower affinity, meaning that smaller
changes are performed on good solutions. The new population is created by
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selecting a certain number of the best-created clones. However, to foster diver-
sity, a certain number of the worst solutions in the new population are replaced
with randomly generated solutions.

3 Direct Design of Cryptographic Boolean
Functions with Metaheuristics

Constructing a Boolean function can be regarded as a combinatorial optimiza-
tion problem where, given the number of variables n and the set of properties
to optimize, the goal is to find an n-variable Boolean function that satisfies
the desired properties. The first choice one needs to make when optimizing a
Boolean function is the representation of candidate solutions. In most applica-
tions, this has also proven to be the most influential factor, while the choice of
the actual search algorithm had a smaller impact. It is important to note that
the majority of metaheuristics, both the ones presented in the previous chap-
ter, as well as in general, allow the use of an arbitrary solution representation.
However, a set of appropriate operators required by the selected algorithm
must be defined for each encoding.

3.1 Truth Table-based Representations

In this section, we present the applications that rely on the optimization of
the underlying truth table of a Boolean function, as opposed to optimizing the
Walsh-Hadamard function representation. Since most related works consider
the truth table representation, we do not describe each paper in detail but
concentrate on unifying perspectives.

3.1.1 Solution Encodings

Bitstring.

In the context of Boolean functions, the bitstring representation is the most
trivial approach to encoding a solution. In this case, the algorithm operates
directly on the truth table since a potential solution is encoded as a string of
bits with a length of 2n for a Boolean function with n inputs. This encoding
is the most natural for many metaheuristics, such as the genetic algorithm, as
the algorithm is based on the genetic code paradigm. However, the application
of this encoding will ultimately depend on the type of the search algorithm.

Single-solution-based search methods need to define at least one neighbor-
hood for the solution encoding, and in this case, there are many possibilities.
The usual neighborhood operators include inverting a single bit, setting or
resetting a bit, exchanging two randomly selected bits (swap), inverting a
sequence between two-bit positions, mixing the bits between two positions,
inserting a bit at a randomly selected position, etc. These local operators are
also commonly used as mutation operators in evolutionary algorithms.

When only balanced Boolean functions are considered, the set of operators
is usually constrained to the ones that preserve that property (such as swap,
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inversion, or insertion). Additionally, new operators may be defined for a cer-
tain property, such as inverting two random bit positions instead of a single
one in the case of balanced functions.

In addition to mutation, evolutionary algorithms also need to define
crossover operators, which combine genetic material from (at least) two parent
solutions to construct a single-child solution. Here, the most common choice
is the one-point crossover, which randomly selects a breakpoint in the string;
the child solution is a concatenation of the bits from the first parent up to the
breakpoint and from the second parent onward. In the case of larger solutions,
more breakpoints can be used to promote diversity. The extreme case is a uni-
form crossover that randomly selects the source parent after each bit position,
which is the most disruptive method. As for mutation, special crossover oper-
ators can be considered when the goal is to constrain the search space only
to balanced functions. Examples of this approach include uniform crossover
augmented with counters that keep track of the multiplicities of 0s and 1s in
the child chromosome. When one of the two counters reaches half of the bit-
string length, the remaining positions are filled with the complementary value
to maintain the balance [56, 39].

Most papers on Boolean functions include the bitstring representation for
optimization of Boolean functions, but it is rarely used as a single standalone
encoding (see Table 2).

Integer.

A more compact way of representing the truth table is by way of grouping sub-
strings of bits into separate integer values. Indeed, in many implementations,
this is the actual way of storing a sequence of bits in memory. In this case, the
truth table is divided into a number of substrings k of the same length l, and
each substring is represented with an integer value. For this to be feasible, the
truth table size 2n must be divisible by k, and the substring length l must be
a power of 2; each integer value is then restricted to [0, 2l − 1].

Using a different encoding allows the search algorithm to operate on a
different data structure, which is usually (and in the context of evolutionary
computation) called the genotype. When a candidate individual is evaluated,
its genotype is translated into the phenotype, which is the actual representation
of the solution of the problem being solved. In this case, the genotype the
algorithm operates on is the sequence of integers, while the phenotype is still
in the form of a truth table of the Boolean function.

Several options are available when decoding the genotype to the pheno-
type: the integer value can be translated to a binary string using natural binary
encoding, Gray coding, or some other scheme. Further, binary strings repre-
senting each integer can be concatenated to form a complete truth table. On
the other hand, the individual bits can be distributed so that bits encoding one
integer value are placed k positions apart from each other in the truth table.

Under an integer encoding, the local search (or mutation) and crossover
operators will behave differently from the bitstring case, thus forming different
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neighborhood structures. The common mutation operators include randomly
modifying a single gene (integer value), either in the whole range [0, 2l − 1] or
by a smaller value, gene swapping, substring inversion, etc. Crossover opera-
tors are usually based on one-point or multiple-point crossover; however, some
operators combine each pair of genes from two parents independently, with
the resulting child gene assuming an average of two-parent genes or a random
value between the parent genes.

Integer encodings have also been used when restricting the search space
to balanced Boolean functions. The main approaches are the map-of-ones and
the zero-length encodings [39]. In the former, the genotype of a balanced n-
variable function is defined by a sequence of 2n−1 integer numbers between 0
and 2n − 1, which represent the positions of the 1s in the truth table vector of
the function. In the latter, the function is instead represented by a sequence of
2n−1+1 integer numbers. Each number specifies how many consecutive 0s are
between two 1s, and balancedness is ensured by requiring that the sum of all
numbers in the sequence is 2n−1. Clearly, in both approaches, special crossover
and mutation operators are required to generate offspring chromosomes that
preserve the corresponding encodings.

Floating-point.

The previous encodings are well suited for genotype-agnostic search algo-
rithms, such as GA or local search methods. Metaheuristics that are defined
over the real-valued domain, such as PSO and AIS, can, in principle, be mod-
ified to operate on bit strings or integer values as well but are rarely used in
optimizing Boolean functions in this form.

To accommodate algorithms operating on the continuous domains, we can
take one step further and encode a single integer value as a floating-point (FP)
number. A common practice is to define the genotype as a sequence of floating-
point numbers assuming values in [0, 1] or [−1, 1]. Real values are first decoded
into corresponding integer values in [0, 2l − 1] and then to the resulting truth
table, as in the previous integer encoding.

Since the resolution of the floating point is the highest around 0, a single
FP value can represent a relatively large number of truth table bits. In theory,
this could be scaled up to around 48 bits since 2−48 ≃ 10−16, which is the
approximate rounding error at magnitude 1 for 64-bit FP values. However,
usually, a much smaller number of bits has actually been used in practice, with
the boundary case being one FP value used to encode just a single bit [73].

Using floating-point representation allows the application of many opti-
mization algorithms designed for continuous optimization. Algorithms of this
type may employ highly specific modification operators in the real value
domain, resulting in neighborhood structures that may differ substantially
from those used in the discrete binary domain. However, not many papers
present examples of this approach, as only one instance of continuous opti-
mization algorithm has been applied to Boolean optimization (Table 2). As a
matter of fact, the only two works we are aware of that use PSO to evolve the
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cryptographic properties of Boolean functions [76, 61] actually use a discrete
variant of this metaheuristic, rather than the basic version tailored for contin-
uous search spaces. Furthermore, while the objective (fitness) landscape has
been an object of active research in bitstring encoding (e.g., [71, 25]), we are
not aware of such an analysis for the floating-point encoding.

Symbolic.

Regardless of the application, all optimization methods using direct mapping
to truth table-based representation suffer from the same problem: the curse
of dimensionality. Although good results may be obtained for small Boolean
function sizes, the efficiency inevitably deteriorates with the increase in the
number of variables. A different approach partially circumvents this problem
by relying on a symbolic representation of a Boolean function as a genotype.

Evolutionary algorithms that use symbolic solution representation, such as
Genetic Programming (GP), are usually applied to this goal. As recalled in
Section 2.3.3, GP maintains a population of candidate programs for solving a
given problem. The programs may take any form, but the most common repre-
sentation in GP uses a syntax tree encoding, where inner tree nodes represent
functional elements, and the terminal nodes represent variables or functions
without arguments. If the execution of the program does not produce any side
effects, then the program is equivalent to a function, and in this case, the GP
solves a symbolic regression problem.

Symbolic regression may be regarded as equivalent to the problem of
evolving (finding) a suitable Boolean function satisfying one or more given
properties. Here, the n Boolean variables present terminal nodes (leaves) that
can appear as arguments in a syntax tree. Commonly used functional elements
in this scenario include a number of elementary binary Boolean functions, such
as OR, XOR, AND, XNOR, etc. Apart from these, unary functions such as
NOT are also used, as well as non-standard functional elements: AND with
one input inverted, IF with three arguments (that evaluates the first argument,
returns the second one if the first evaluates to ’true’, and the third otherwise),
etc. Figure 1 shows an example of a symbolic tree used by GP, which represents
the Boolean expression (V0 XOR V1) AND (V1 OR V0).

A GP tree thus represents an executable expression that is evaluated as a
Boolean function. Regardless of the tree elements and shape, a candidate tree
is evaluated by “executing” the expression for every possible combination of
input Boolean variables and recording its output, thus generating the function
truth table as its phenotype. The conversion process from genotype to pheno-
type may be time-demanding for a larger number of variables since the same
expression needs to be interpreted 2n times.

In GP, various mutation and crossover operators are used; for instance,
subtree mutation randomly selects a node within the tree and replaces the
selected subtree with a new randomly created one. Crossover operators may
include simple tree crossover, uniform crossover, size fair, one-point, context
preserving crossover, etc. [74].
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AND

XOR

V0 V1

OR

V1 V0

Fig. 1: Symbolic representation used by tree-based GP

A related evolutionary algorithm, Cartesian Genetic Programming (CGP),
represents the function as a directed graph. The graph is commonly represented
as a two-dimensional grid with given dimensions (number of rows and columns)
chosen by the user. What makes CGP different from tree-based GP is that
in CGP, the genotype is a list of integers representing the graph primitives
and their connectivity. The genotype is mapped to the directed graph that
is evaluated as a Boolean function, as in the case of a GP syntax tree. CGP
genotypes are of fixed length, while the phenotypes have a variable length
following the number of unconnected (unexpressed) genes. Figure 2 shows how
the same expression from Figure 1 could be represented in CGP. The list of
integers in the genotype denotes the inputs to each of the nodes (first two
numbers in each group) and the function index used by the node (third number
in each group). The function used in each node is determined by mapping the
index to one of the available functions, which in this example would be 0 for
AND, 1 for OR, and 2 for XOR. Finally, the last number in the genotype
determines which node represents the output of the expression. This genotype
can be decoded into the illustrated phenotype, in which the nodes are arranged
in a graph with two rows and three columns. It is interesting to note that not
all nodes need to be used when constructing the expression (such is the case
with nodes with outputs 5, 6, 7), which enables CGP to evolve expressions of
various lengths and complexity.

It is important to note that symbolic Boolean representations (such as GP
and CGP) have been shown to achieve superior results compared to previous
encodings in almost all applications. Symbolic representations have been suc-
cessfully used to evolve Boolean functions of up to 16 variables [22], which
would have been impractical for representations directly encoding a truth table
of size 216. Only in the case of specific criteria and smaller Boolean sizes, such
as the evolution of hyperbent functions of up to 8 variables [43], may the simple
bitstring encoding obtain better results.
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Fig. 2: Symbolic representation used by CGP

Discussion.

Table 2 provides the division of works that use the truth table encoding
(phenotype) considering the genotypes. Certain observations can be made:
1. The majority of the works use bitstring encoding, which is not surprising

as it represents a natural choice. In fact, all the papers between 1997
and 2013 use bitstring encoding. A smaller number of works consider the
bitstring encoding restricted to balanced functions to reduce the size of
the search space.

2. Symbolic encoding is the second most used one. Interestingly, while stated
in related works to be the most successful one, we cannot notice it has
been used more than the bitstring encoding in the last few years.

3. Integer encoding is rarely used, and we know only two papers using it: the
first one [69] considers quaternary Boolean functions, so integer encoding
is a natural choice. The second one [39] explores two different integer
representations for balanced Boolean functions, namely the map-of-ones
and the zero-length encodings.

4. Floating-point is, similarly to the integer encoding, rarely used. In fact,
there is only one paper using it [73]. Since that paper is also the only one
exploring immunological algorithms for the design of Boolean functions,
we can state it represents a not sufficiently investigated approach.

3.1.2 Criteria

A natural direction to consider is the number of criteria used in the objective
function, which is the function being optimized, while the fitness function is
what is used to guide the optimization algorithm. For example, when evolving
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Table 2: The division of papers using different genotypes and the truth table
phenotype.

Encoding Papers

Bitstring (unconstrained) [72, 70, 25, 5, 64, 62, 67, 43, 73, 45, 66, 71, 63, 68, 54,
10, 13, 57, 1, 31, 37, 26, 27, 85, 28, 29, 55, 24, 36, 12,
19, 58, 83, 3]

Bitstring (balanced) [56, 61, 39, 40, 41, 46, 38]

Integer [69, 39]

Floating-point [73]

Symbolic [70, 46, 64, 62, 67, 43, 69, 23, 66, 22, 63, 68, 61]

Boolean functions with high nonlinearity, the common criterion in the objec-
tive function is the nonlinearity property. At the same time, to evolve such
Boolean functions with high nonlinearity, the fitness function can be of differ-
ent forms, e.g., using only the nonlinearity property or nonlinearity and the
Walsh-Hadamard spectrum.

We divide the works into those that consider only one criterion and those
that consider more than one criterion. In the latter case, we will differentiate
between the works using two criteria or more than two criteria.

One criterion

In cases where only one criterion is considered in the optimization process,
most of the related works consider nonlinearity. As such, those works usually
consider evolving bent Boolean functions, e.g., [26, 19, 22]. Additionally, there
is a number of works that aim at balanced Boolean functions with high non-
linearity. In this case, the algorithms usually constrain the search to use only
balanced Boolean functions (common examples are local search algorithms
that make pairwise bit flips in the truth table) and still maximize nonlinearity
as a single criterion in the objective function [39, 40, 41]. From the perfor-
mance perspective, the employed techniques generally perform well and find
bent Boolean functions up to a reasonable number of inputs, e.g., 16. For larger
Boolean function sizes, the bottleneck is the evaluation part, as metaheuris-
tics commonly work by assessing a large number of candidate solutions. We
also mention some previously unattainable results achieved in this category,
see, e.g., [31]. Still, we note that the objective function considered nonlinearity
only, while success with a specific combination of cryptographic properties can-
not be attributed to metaheuristics (since other properties were not optimized
but only evaluated afterward). One example of the unsuccessful use of meta-
heuristics is the evolution of hyperbent Boolean functions where the criterion
is nonlinearity [43].
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Two criteria

With two criteria in the optimization process, there are several variants that
need to be discussed. The simplest option (and the one considered in most of
the representative works) uses the nonlinearity 1 and balancedness criteria 2.
Other common options for two criteria include considering 1) nonlinearity and
algebraic degree, e.g., [70], 2) support and correlation immunity, e.g., [64],
and 3) nonlinearity and autocorrelation, e.g., [45]. Finally, we note that there
are different ways how the objective function is built for two criteria: some
works consider optimizing both criteria at the same time. In contrast, other
works employ a two-stage approach where the second criterion is optimized
only after the first one is fulfilled. Moreover, the related works could also be
divided based on whether they consider maximizing (minimizing) both criteria
or minimizing one criterion and maximizing the other. As is the case for one
criterion, optimizing for two criteria seems to be a relatively easy problem
where the bottleneck becomes the Boolean function size. One example of a
successful result would be finding balanced Boolean functions with 8 inputs
and nonlinearity equal to 116 [67], which is also the best-known result in the
literature.

More than two criteria

There are multiple options for the objective function when considering more
than two criteria. In fact, our analysis shows most works in this category con-
sider three or four criteria, but there are works going up to six criteria. Some
common combinations include 1) nonlinearity, algebraic degree, and balanced-
ness [62], and 2) nonlinearity, autocorrelation, and balancedness [57]. On the
other hand, unusual combinations include 1) nonlinearity, algebraic immu-
nity, and fast algebraic resistance [51], 2) nonlinearity, correlation immunity,
and strict avalanche criterion (SAC) [56, 45], and 3) balancedness, nonlin-
earity, and transparency order [61]. Besides the approaches discussed in the
previous paragraph (optimizing multiple criteria at the same time and multi-
stage approach), here, we also notice several works using the multiobjective
paradigm [85, 1]. From the performance perspective, the results achieved in
this category are mostly good, where, as previously, the bottleneck becomes
the Boolean function size. Additionally, in this category, we can also recognize
the bottleneck due to the slow computation of specific cryptographic properties
(e.g., algebraic immunity) [85].

3.1.3 Boolean Function Size

From the perspective of optimizing Boolean functions of different sizes, we can
observe several trends. First, the smallest considered size is Boolean functions

1The nonlinearity property could be evaluated with only the extreme value in the Walsh-
Hadamard transform [66] or as a more elaborate function evaluating the whole Walsh-Hadamard
spectrum [12].

2Balancedness appears either as a constraint for a function to have or as an imbalancedness
penalty.
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with four inputs, see, e.g., [71, 1].3 Next, most of the works consider smaller
sizes, e.g., up to eight inputs, with eight inputs being the most investigated
dimension in general [70, 5, 73, 55]. The works that consider larger sizes com-
monly go up to 16 inputs [62, 73, 22, 54, 19, 51]. We are aware of only one
paper that considers larger than 16 inputs Boolean functions where the authors
evaluate their approach up to 26 inputs [27].

3.2 Walsh-Hadamard-based Representation

We have seen in Section 2.2 that the Walsh-Hadamard spectrum can be used
to characterize several cryptographic criteria of a Boolean function, including
its balancedness, nonlinearity, and correlation immunity order. Thus, an inter-
esting idea is to encode a candidate solution as a Walsh-Hadamard spectrum
that already satisfies certain properties. At this point, one might think it is
possible to manipulate this spectrum using a metaheuristic and optimize for
other properties not captured by the Walsh-Hadamard transform (for exam-
ple, the algebraic degree). However, the situation is more complicated: as we
mentioned in Section 2.1, the WHT is an injective mapping from F2n

2 to Z2n ,
but clearly not a surjective one. Hence, if one starts from a random spectrum
and then applies the inverse transform, the result likely is a pseudo-Boolean
function f : Fn

2 → Z, rather than a Boolean function. This suggests the follow-
ing strategy to use the Walsh-Hadamard spectrum as a representation method
for metaheuristics:
1. Encode the genotype of the candidate solution as a WHS satisfying the

desired set of properties, e.g., low maximum absolute value for high non-
linearity and coefficients up to Hamming weight t set to 0 for correlation
immunity of order t.

2. Evaluate the fitness of this candidate solution by applying the inverse
Walsh-Hadamard transform and then measuring how far the obtained
pseudo-Boolean function is from being a true Boolean function.

3. Apply the variation operators of the metaheuristic to modify the WHS
of the candidate solution, steering the corresponding pseudo-Boolean
function closer to a true Boolean function.

The approach above, called spectral inversion, was pioneered by Clark et
al. in [11]. There, the authors focused on the search for plateaued Boolean
functions. In particular, a Boolean function f : Fn

2 → F2 is called plateaued
if its Walsh-Hadamard coefficients are at most three-valued, and namely, they
range in the set {−2r, 0,+2r}, with r ≤ n

2 . The case r = n
2 actually corre-

sponds to bent functions, which can be seen as a subset of plateaued functions
characterized by spectra that only take two values in {−2

n
2 ,+2

n
2 }. When r is

strictly larger than n
2 , the spectrum of a plateaued function must have some

coefficients set to 0 due to Parseval identity. Therefore, proper plateaued func-
tions are interesting because they can be balanced and correlation immune. Is
possible to prove (see, e.g., [7]) that a plateaued function f : Fn

2 → F2 with

3Actually, for the quaternary Boolean functions, the authors [69] start with dimension two, but
once mapped to binary Boolean functions, it is naturally larger.
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r > n
2 has resiliency order r−2 (thus it is balanced and correlation immune of

order r− 2), nonlinearity 2n−1 − 2r−1, and algebraic degree n− r− 3. Conse-
quently, it is optimal both concerning Siegenthaler’s and Sarkar and Maitra’s
bounds.

The idea behind the representation of Clark et al.’s spectral inversion
method is the following. Once the target n and r are chosen, a candidate solu-
tion is encoded as a three-valued Walsh-Hadamard spectrum. The coefficients
corresponding to positions with Hamming weight up to r − 2 are always set
to 0 to ensure resiliency order r − 2. Then, theoretical results, including Par-
seval’s identity and Sarkar-Maitra’s divisibility bound, are used to determine
the number of remaining coefficients that need to be set respectively to −2r, 0,
and +2r. These remaining coefficients can be freely permuted in the positions
of the spectrum with Hamming weight higher than r − 2.

To evaluate the fitness of a three-valued spectrum, Clark et al. exper-
imented with two fitness functions, both measuring the distance of the
pseudo-Boolean function obtained by applying the inverse WHT to the spec-
trum from being a true Boolean function. In particular, a global optimum for
this problem (i.e., reaching distance zero) corresponds to a plateaued Boolean
function with the desired profile of properties encoded by its spectrum. As a
metaheuristic to drive the search, the authors used a simulated annealing algo-
rithm. The simulated annealing algorithm’s basic move consisted of swapping
two distinct values in the spectrum (excluding the coefficients set to zero for
resiliency). The authors applied this method to evolve plateaued functions of
size 7, 8, and 9, but with a very low success rate only for 7 variables, while no
functions were produced for 8 and 9 inputs.

The principle of spectral inversion has been investigated in several more
works, using other metaheuristics or focusing on subclasses of plateaued func-
tions. For example, Stanica et al. used again simulated annealing to evolve
Rotation-Symmetric Boolean Functions (RSBF), where the input vectors that
are equivalent under cyclic rotations have the same output values [78]. Reduc-
ing the search space in this way, the authors were able to construct 9-variable
plateaued functions with nonlinearity 240, resiliency order 2, and degree 6.

Saber et al. used Particle Swarm Optimization to obtain a 9-variable
plateaued function with nonlinearity 240, resiliency order 3, and algebraic
degree 5 [76]. The PSO version used in that work 4 is quite different from the
traditional one used to solve continuous optimization problems. In particular,
this is a discrete version of PSO suitable for permutation or combinatorial
search spaces. Updating a particle’s position amounts to swapping two distinct
values in the Walsh-Hadamard spectrum, much like in the simulated annealing
approach of [11]. Velocity vectors are instead replaced by probability vectors:

4The details of the PSO algorithm are available in the master thesis [81] of the second author
of [76].
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the higher the velocity of a particle along a specific coordinate, the more likely
the corresponding spectral value is swapped with another one. 5

Kavut et al. devised a steepest-descent algorithm to search for 9-variable
plateaued functions with the same properties of those considered in [76]
through spectral inversion [30]. This metaheuristic basically corresponds to a
greedy local search where the move giving the best improvement is always cho-
sen at each iteration until a local optimum is reached. The success rate of this
technique turned out to be quite low (6 functions obtained out of 150 runs),
but this was sufficient for the authors’ purposes since they used these functions
as a basis to construct larger ones via concatenation.

More recently, Mariot and Leporati proposed a genetic algorithm to evolve
plateaued functions of 6 and 7 variables using spectral inversion [44]. The
genotype representation was the same, i.e., a three-valued Walsh-Hadamard
spectrum with coefficients set to zero up to Hamming weight r − 2. To cre-
ate valid offspring chromosomes, the authors designed ad-hoc crossover and
mutation operators that would preserve the properties of the spectra. In par-
ticular, the crossover was based on the idea of counters to keep track of the
multiplicities of −2r, 0, and +2r, similar to what is done in the works that
evolve balanced Boolean functions with GA [39]. The authors of [44] obtained
good success rates for plateaued functions of 6 variables, outperforming the
simulated annealing algorithm of [11], but they were not able to produce any
plateaued function of 7 variables.

4 Metaheuristic-assisted Construction of
Boolean Functions

4.1 Evolving Constructions

It is common to divide algebraic constructions into primary and secondary
ones [7]. In primary constructions, new functions are obtained without using
known ones. In secondary constructions, existing functions are used to con-
struct new ones. Today, we know several constructions that can be used to
obtain Boolean functions with specific cryptographic properties. For exam-
ple, [7] lists ten primary and ten secondary constructions to obtain bent
Boolean functions. While this can be considered as numerous, there is no
reason why there could not be many more possible ones. Additionally, bent
Boolean functions can also be considered a well-explored topic [53] compared
to some other Boolean functions. Indeed, we could easily envision a specific
set of properties that a Boolean function needs to fulfill and for which there is
no available algebraic construction.

In such settings, it makes sense to ask whether metaheuristics could find
algebraic constructions. Since most algebraic constructions are given in the
symbolic form, they can be optimized using a suitable encoding. Here, the

5The PSO algorithm of [45] surveyed in Section 3.1 uses the same principle to optimize balanced
Boolean functions with a truth table-based encoding, with the swap-based position update used
to maintain the balancedness.
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GP methods offer a natural mapping using either a tree-based or graph-based
representation. Several papers have addressed the topic of evolving, rather
than inventing, secondary Boolean constructions; these papers differ regarding
the method and the objective criteria.

In [65], the authors aim at obtaining bent Boolean functions for a larger
number of variables. Rather than directly evolving for bent functions as in,
e.g., [22], the authors used GP to evolve a secondary construction to transform
several input bent functions of n − 2 variables into an output bent function
of n variables (inspired by the Rothaus construction). Using as seeds bent
functions of only 4 variables, the authors have obtained secondary construc-
tions that generate bent functions in higher dimensions. Apart from that, the
evolved constructions seem to be quite general because the same constructions
have succeeded in generating bent functions from 6 up to 24 variables from dif-
ferent seed functions (in two fewer variables). What remains unclear from the
obtained results is whether any of the evolved constructions would be a new
one. Indeed, since metaheuristics find numerous solutions, one would need to
check all of them to see if there are new constructions. Moreover, as it is not
possible to know the size of the construction to be generated, they commonly
have a significant amount of bloat that must be analyzed and removed.

Mariot et al. used the approach from the previous paragraph and tried
to evolve constructions of hyperbent Boolean functions [43]. Unfortunately,
the approach did not work, and the authors did not manage to evolve any
constructions resulting in hyperbent Boolean functions.

A similar approach is used in [8], but this time to find balanced func-
tions with high nonlinearity. The approach is again based on finding secondary
constructions, which are, in turn, evolved with GP. This approach may be inter-
esting since only a few known such constructions exist. Their results show that
GP can find constructions that tend to generalize well, i.e., result in balanced
highly-nonlinear functions for various tested sizes and different input function
groups. While the obtained levels of nonlinearity rarely reach the best-known
values, the simplest solution found by GP turns out to be a particular case of
the well-known indirect sum construction.

Carlet et al. discuss how evolutionary algorithms can be used to help in
finding a good Boolean function construction [9]. The authors start from a
recent work by C. Carlet, where he proposed a generalization of the Hidden
Weight Boolean Function allowing a construction of n-variable balanced func-
tions f from (n−1)-variable Boolean functions g fulfilling some criteria. There
are multiple choices for the function g, and the authors used evolutionary algo-
rithms to find functions that still satisfy the necessary criteria while improving
nonlinearity. The approach resulted in Boolean functions with significantly
improved nonlinearity.

Mariot et al. investigated how to design a secondary semi-bent and bent
construction of Boolean functions based on cellular automata [50]. More pre-
cisely, the authors started with Boolean functions with good cryptographic
properties and used them as local rules of cellular automata to obtain larger
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Boolean functions with similar cryptographic properties. The choice of the
local rule was performed using an evolutionary algorithm, which evolved an
affine transformation that preserved the main cryptographic properties of the
starting function (e.g., nonlinearity).

4.2 Construction of Related Objects

In this last section, we survey a few works focused on using metaheuristics to
construct combinatorial objects related to Boolean functions. Although most of
these works are not directly motivated by the search for Boolean functions with
good cryptographic properties, we show how some of them can be interpreted
as metaheuristic constructions of particular classes of Boolean functions.

The field of combinatorial designs concerns the study of families of sub-
sets of a finite set, such that they satisfy certain balancedness properties [79].
Besides being a source of interesting open problems in discrete mathematics,
the interest in combinatorial designs also spawns from the multiple applications
they have in diverse domains, including statistics, the design of experiments,
error-correcting codes, and cryptography.

Similarly to the case of Boolean functions, most of the constructions of
combinatorial designs proposed in the literature leverage the use of alge-
braic methods [14]. An interesting research thread that emerged in the last
few years also considers the metaheuristic construction of specific combina-
torial designs. These include the use of various optimization algorithms such
as simulated annealing and evolutionary algorithms to construct orthogonal
arrays [77, 82, 49, 39], Steiner systems [2], orthogonal Latin squares [48],
disjunct matrices [34], and permutation codes [47].

Some classes of Boolean functions with good cryptographic properties can
be characterized in terms of combinatorial designs. For example, bent func-
tions are equivalent to Hadamard matrices and difference sets of a specific
form [75, 17]. More relevant to our discussion is the fact that correlation
immune functions can be characterized in terms of orthogonal arrays. An
orthogonal array of N runs, k levels, s entries, and strength t, denoted as an
OA(N, k, s, t), is a N × k array with entries from a set of s symbols, such
that in every N × t subarray, each t-uple of symbols occurs exactly λ = N/st

times. Binary orthogonal arrays are OAs with s = 2. The connection between
Boolean functions and binary orthogonal arrays stems from a result by Camion
et al. [6], where they proved that a Boolean function f : Fn

2 → F2 is t-
th order correlation immune if and only if its support is an OA(N, k, 2, t),
where N = #supp(f) and k = n. Therefore, works using optimization algo-
rithms for constructing binary orthogonal arrays can be equally interpreted as
a metaheuristic construction of t-th order correlation immune functions.

To the best of our knowledge, only two works explicitly address the con-
struction of binary orthogonal arrays, namely [49] and [39]. In the former,
the authors use genetic algorithms and genetic programming to evolve N × k
binary matrices. Given the target parameter t, the fitness function measures
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the deviation of each N × t submatrix from satisfying the balancedness con-
straint required for an OA of strength t. For the GA variation operators,
the counter-based balanced crossover of [56] and swap mutation are applied
column-wise on the binary matrices in the population. This is based on the
observation that any OA(N, k, s, t) is also an OA(N, k, s, i) for all strength i
up to t− 1. Thus, any binary OA must also have balanced columns. This idea
has been further explored in [39] with the map-of-ones and zero-length bal-
anced crossover operators. The GP algorithm used in [49] is based instead on
a representation similar to the symbolic encoding surveyed in Section 3.1. A
N × k matrix is encoded by a set of k syntactic trees that are used to syn-
thesize the columns of the matrix. In particular, a column is the truth table
vector obtained by evaluating the corresponding tree over all possible inputs.
Consequently, the number of runs N of the array is forced to be a power of 2
since it is basically the truth table of a Boolean function.

The results of [49] showed that GP generally outperforms GA on this par-
ticular problem, although GA effectively searches a smaller search space due
to the representation with balanced columns. In particular, GP can construct
orthogonal arrays up to OA(32, 16, 2, 3) and OA(32, 31, 2, 2), while GA arrives
at most at N = 16 runs. The number of runs of the OA is particularly inter-
esting when considering correlation immune functions as a countermeasure for
side-channel attacks. In this scenario, it is desirable that the support of such
functions is as low as possible for efficiency reasons. In the OA interpretation
of correlation immune functions, the support size corresponds to the number
of runs N of the arrays.

The shortcoming of [49] is that the number of runs must be set before
the evolutionary search begins. However, one could envision a two-stage opti-
mization process where in the first step, one constructs an OA with specified
parameters set as done in [49]. Then, one can consider the reduction of the
number of runs as a combinatorial optimization problem itself. The idea is to
select a subset of 2t rows so that the reduced matrix is still an OA with a λ
parameter decreased by 1. The choice of this subset of rows can be made again
using a metaheuristic algorithm. This method has been investigated in [42],
where the author devised a GA to perform this reduction step. However, the
results reported there are only for very small OAs, and this approach should
be investigated more in the future.

5 Potential Research Directions

While the existing works consider different metaheuristic techniques and objec-
tives when constructing Boolean functions with good cryptographic properties,
we can still identify several future research directions.
1. Using truth table solution encoding, especially in combination with bit-

string representation, represents a standard and well-explored option. We
do not see significant opportunities there besides considering previously
not investigated combinations of cryptographic properties.
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2. Floating-point representation deserves further investigation to assess what
advantages it can bring (if any).

3. Truth table encoding is a natural option but will always suffer from the
computational bottleneck and cannot be used to construct large Boolean
functions.

4. We found no works using ANF solution encoding. Since many bounds
and properties can be expressed through it, it would be interesting to use
ANF to encode solutions.

5. WHS encoding is interesting, but it suffers from solutions that do not
map to Boolean functions. This problem is especially pronounced in the
context of operators (like mutation and crossover) as they easily disrupt a
correct solution into a wrong one. It remains an open question of how to
construct metaheuristic operators that can work on WHS encoding and
maintain the correctness of solutions.

6. In the same way that researchers constructed metaheuristic operators that
preserve balancedness for the truth table encoding, it would be relevant
to explore how to construct analogous operators for symbolic encoding.

7. We consider metaheuristic-assisted approaches to be the option of choice
for designing Boolean functions of arbitrary sizes. Since only a few
works are exploring it, more work is needed. For instance, metaheuristic
approaches to obtaining algebraic constructions are relevant, but we are
missing identifying what constructions are needed. One option would be
to find new constructions to serve as an alternative to already-known ones
(e.g., bent Boolean functions constructions). Another option would be to
identify relevant properties of Boolean functions that cannot be achieved
with the known constructions and try to design such constructions.

8. Finally, constructing related objects that can be later transformed into
Boolean functions with desired properties is an interesting but unex-
plored domain. The first step is identifying potentially interesting related
objects and assessing if constructing such objects with metaheuristics is
easier than directly constructing Boolean functions. Ideas of possible com-
binatorial designs to evolve with metaheuristics are partial spreads and
Hadamard matrices, which are related to bent functions.

6 Conclusions

In this survey, we provide an analysis of works that use metaheuristics to
construct Boolean functions with good cryptographic properties. We provide a
new taxonomy based on the solution encoding rather than the search technique
used since many of the related works actually use combinations of construction
techniques, making them difficult to be classified. On the other hand, when
considering the solution representation, we can see that works naturally map
into different categories, allowing easier analysis of the results. Finally, we
identified and discussed potentially interesting directions for future research.
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