
Citation: Matijević, L.; Ðurasević, M.;

Jakobović, D. A Variable

Neighborhood Search Method with a

Tabu List and Local Search for

Optimizing Routing in Trucks in

Maritime Ports. Mathematics 2023, 11,

3740. https://doi.org/10.3390/

math11173740

Academic Editor: Ripon Kumar

Chakrabortty

Received: 27 July 2023

Revised: 18 August 2023

Accepted: 28 August 2023

Published: 30 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Variable Neighborhood Search Method with a Tabu List and
Local Search for Optimizing Routing in Trucks in
Maritime Ports
Luka Matijević, Marko Ðurasević * and Domagoj Jakobović

Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia;
luka.matijevic@fer.hr (L.M.); domagoj.jakobovic@fer.hr (D.J.)
* Correspondence: marko.durasevic@fer.hr

Abstract: Logistics problems represent an important class of real-world problems where even small
improvements in solution quality can lead to significant decreases in operational costs. However,
these problems are usually NP-hard; thus, they are mostly solved using metaheuristic methods. To
improve their performance, there is substantial research on crafting new and refined metaheuristics
to derive superior solutions. This paper considers a truck routing problem within a naval port, where
the objective is to minimize the total distance traveled by all the vehicles to distribute a given set of
containers. Due to the large volume of goods that are being transferred through ports, it is imperative
to improve the operation times at such ports to improve the throughput. To achieve this goal, a novel
variable neighborhood search method that integrates a tabu list, an iterative local search procedure,
and parallelization of neighborhood generation is proposed and evaluated. The experimental results
demonstrate that the proposed method achieves similar results to the state of the art, but in a smaller
amount of time.

Keywords: variable neighborhood search; vehicle routing problem; metaheuristics

MSC: 68W20; 90C27

1. Introduction

The vehicle routing problem is an interesting and well-studied research topic due to
its growing impact on real-world industrial processes [1]. Well-planned vehicle routes can
significantly reduce overall costs and resource requirements in the transportation sector.
Simple optimization objectives, such as minimizing transportation distances or reducing
fuel consumption by taking faster routes, can make a significant difference and result in
highly efficient systems. However, since these objectives are often not sufficient, more
advanced methods incorporate additional constraints. Some of these include balancing the
workload among vehicles [2], coordinating adjacent shifts [3], avoiding traffic congestion [4],
and dynamically updating vehicle routes [5]. The optimization objectives depend on the
specific problem and customer requirements, and there are numerous different objectives
that often need to be balanced [6]. Furthermore, in such problems, we are often faced
with different kinds of uncertainties that also need to be taken into account, and develop
approaches that can work with them need to be developed [7]. In addition to substantial
financial benefits, effective route and shift planning can improve driver safety and job
satisfaction, reducing the number of vehicles and minimizing the environmental impact.
Therefore, companies whose business operations involve the transportation of goods have
great interest in this topic to leverage the benefits of optimization.

A concrete example is the Ningbo port on the coast of the East China Sea, which
holds the status of the world’s largest port in terms of cargo throughput. In 2021, the port
handled 1.224 billion tons of cargo (https://www.nbport.com.cn/gfww/, accessed on 13

Mathematics 2023, 11, 3740. https://doi.org/10.3390/math11173740 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11173740
https://doi.org/10.3390/math11173740
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9201-2994
https://www.nbport.com.cn/gfww/
https://doi.org/10.3390/math11173740
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11173740?type=check_update&version=3

Mathematics 2023, 11, 3740 2 of 22

July 2023). This figure represents a significant logistical challenge as such a large volume
of cargo requires excellent organization and transportation planning. In addition to route
planning, it is necessary to coordinate all related processes, such as vehicle preparation and
maintenance, traffic updates, and vehicle location monitoring. At the same time, there is
a great opportunity for cost savings as even small improvements in the system can lead
to significant cost reductions overall. In such cases, it is crucial to minimize the resources
consumed in transporting goods.

All of the above calls for the development of a system aimed at optimizing vehicle
routing. The described problem is a well-known vehicle routing problem (VRP) that has
been studied for over 60 years since it was first mentioned by Dantzig and Ramser [8]. Over
the years, VRP has been successfully integrated with other technologies to develop so-called
“smart cities” and “smart ports” (https://commission.europa.eu/eu-regional-and-urban-
development/topics/cities-and-urban-development/city-initiatives/smart-cities_en, 13
July 2023). The idea behind such projects is to develop highly efficient systems that seek
to optimize, among other things, the transportation of people and goods to increase the
satisfaction and safety of citizens or employees. These systems utilize various technologies
to collect as much data as possible, including GPS, radar and sensor technology, 5G
networks, and Internet of Things (IoT)-connected technologies. Subsequently, through the
analysis of big data, these data are transformed into valuable information used to assess
transportation needs. A good vehicle routing algorithm forms the core of such a system
and is essential for a successful end product. In this regard, there are different variants
of VRP, depending on the specific constraints that the algorithm must consider, such as
time windows (VRPTWs) [9], time-dependent travel duration (TDVRP) [10], pickup and
deliveries (VRPPDs) [11], fleets with electric vehicles [12,13], and many others [14–16].

In the particular case of the Ningbo port, we are dealing with the open periodic vehicle
routing problem with time windows (OPVRPTWs). The network of each maritime port
consists of several surrounding nodes (cities) between which container transportation is
required. This transportation from the origin location to the destination is constructed as a
single task that has a start and end time within which the goods need to be transported
(thus, the problem includes time windows). Furthermore, since the transportation tasks
are specified across several periods (shifts) and in some shifts the vehicle does not need
to return to the depot, it is an open and periodic problem. These additional properties
introduce additional constraints that need to be considered when constructing a solution.

In order to deal with the previously described problem, we propose a novel variable
neighborhood search (VNS) algorithm that uses several neighborhood structures from the
literature and applies them in several layers during the execution, depending on whether
the algorithm is focused on exploitation or exploration. Additionally, we introduce a tabu
list into the algorithm to help the algorithm avoid areas of the search space that it already
visited. Furthermore, to gain additional performance improvements, the neighborhood
search is parallelized. We denote the resulting algorithm as VNTS and evaluate its perfor-
mance on a set of real-world and artificially generated instances for OPVRPTWs based on
the real-world logistics problem from the Ningbo port. Certain algorithm design choices are
evaluated and the algorithm is compared to the state-of-the-art results from the literature.
The experimental study demonstrates that the proposed algorithm achieves slightly better
results than an existing algorithm from the literature, but in a significantly smaller amount
of time.

The rest of the paper is organized as follows. The next section provides a short
overview of the literature dealing with VRS, specifically with OPVRPTWs. Section 3
provides the description of the problem under consideration. Section 4 describes the
proposed method used to solve the routing problem. The experimental setup is described
in Section 5, whereas the results of the executed experiments are summarized in Section 6.
Finally, Section 7 concludes the paper and outlines possible future research directions.

https://commission.europa.eu/eu-regional-and-urban-development/topics/cities-and-urban-development/city-initiatives/smart-cities_en
https://commission.europa.eu/eu-regional-and-urban-development/topics/cities-and-urban-development/city-initiatives/smart-cities_en

Mathematics 2023, 11, 3740 3 of 22

2. Literature Review

VRP is of great interest due to the significant advantages it offers through the im-
plementation of an effective system. The opportunity for resource savings attracts many
researchers and industry leaders to explore and improve existing methods. This leads to a
large number of research studies in this field, each taking different approaches due to the
various variants of the problem and the different optimization objectives and constraints
involved [6,17]. Since finding the optimal solution for the most challenging instances
of this problem is extremely difficult (if not impossible) within a reasonable time frame,
the challenge lies in evaluating what constitutes “good” solutions. However, the term
“good” can have subjective meanings, especially in this context. Therefore, it is important
to compare different approaches and understand the strengths and weaknesses of each.
There is no universal approach that can solve all such problems in the best possible way (as
stated in the “No Free Lunch” theorem).

The nature of the problem itself excludes an exact approach due to the large search
space. Even in small instances, existing deterministic methods cannot provide high-quality
solutions within a reasonable time [18]. Each day requires the transportation of hundreds of
containers, with their time windows spanning across several possible shifts [19]. An exact,
deterministic approach is only feasible for smaller problems or comparison purposes when
time is not a crucial factor [20,21]. The reality is that such cases are in the minority, making
it necessary to find more advanced approaches capable of solving real-world complex
problems.

Therefore, evolutionary approaches have received significant attention throughout
history as they can relatively successfully find “good enough” solutions within a reasonable
time frame. However, these approaches also have limitations, particularly for very large
instances, but their inefficiency is often highlighted as a significant drawback [22]. Poorly
implemented evolutionary algorithms can be highly inefficient if the search is not directed
effectively, resulting in suboptimal solutions, despite having ample time available. If time
is critical in problem-solving, we need an approach that can search the space of possible
solutions relatively quickly and efficiently.

It has been shown that population-based approaches are not the most efficient for
solving problems with a large search space since adding complexity (the number of solu-
tions in one generation) to the system significantly slows down the algorithm [18]. On the
other hand, if time is not a crucial factor, slower but ultimately better solutions are more
interesting. In this regard, population-based approaches can still be a good option depend-
ing on the complexity of the problem and the implementation. For example, refs [23,24]
successfully implement genetic algorithms for solving simpler problems, while the authors
of [25,26] implement ant colony algorithms for solving VRP. These algorithms are relatively
effective in this context as they address smaller-scale problems that are less common in
today’s world.

As for the initialization of the initial solution, there is a well-known technique called
“insertion” that was introduced by Clarke and Wright [27]. Over the years, other initializa-
tion techniques have been developed that are faster and simpler. It has been shown that
a good initial solution does not necessarily result in a better final solution, so researchers
often opt for the simplest and fastest initialization option to reduce the algorithm’s com-
plexity [18]. Efficiently initializing a good solution is, therefore, the foundation of a good
system that can quickly find a “good enough” solution for the given problem. In addition,
complexity is of utmost importance because there is constantly updated real-time infor-
mation about the location of vehicles, and these systems often have graphical interfaces
through which vehicles and routes are observed, requiring fast execution. Additionally,
there may be a need to gradually update routes based on various situations, such as traffic
congestion, road works, obstacles, etc. In [28], the authors discuss the impact of complex
constraints on the complexity of initialization for the general VRP case and propose an
efficient insertion heuristic with a complexity of O(n3) and, in some rare cases, O(n3logn).
This is a significant improvement compared to the usual approach with a complexity of

Mathematics 2023, 11, 3740 4 of 22

O(n4). Reducing complexity offers exactly what was described earlier: efficient initializa-
tion and the possibility of iterative improvement using an evolutionary approach and/or
local search if necessary.

Because of the previous reasons, recent research has dominantly applied various kinds
of local search and variable neighborhood methods to solve various VRPs [18,29,30]. This is
also the case with the OPVRPTW problem considered in this paper. The problem of routing
trucks in a maritime port based on the example of the Ningbo port was first considered
in [19]. The authors provide a formal definition of the newly proposed problem and also
design a two-stage algorithm in order to solve the proposed problem. In the first stage,
a simple initial solution method is used to construct the initial solution, which is then
improved with a VNS algorithm in the second phase. The results demonstrate that the
proposed algorithm achieved a performance improvement of 5–10% when compared to the
results in practice, thus demonstrating the benefit of applying such approaches.

Within the scope of [31], the neighborhood is examined, and path weights are updated
as a measure of goodness to find better solutions to the traveling salesman problem in
combination with a genetic algorithm. The neighborhood refers to solutions that can
be obtained by making certain changes to the current solution. In the context of vehicle
routing, these changes often involve destroying a certain number of routes and inserting the
corresponding tasks at different locations within the solution. Additionally, smaller changes
are possible, such as altering the order of tasks within a route or changing the location of
a task to a different route. In [32], an adaptive variable neighborhood search technique is
used, and a set of solution destruction and repair operators that have proven successful are
proposed to create the neighborhood. The obtained results demonstrate that the proposed
algorithm can further improve the best solutions obtained for the problem. A bi-objective
variant of the problem is investigated in [33], in which the total travel distance and driver
payment criteria are minimized. The authors propose the application of a hyper-heuristic
approach to solve this problem variant, in which five heuristics with different levels of
perturbations are used. The results outline that the algorithm is able to obtain Pareto
fronts of good final quality, better than other state-of-the-art algorithms when tested on this
problem. In [18], a common variable neighborhood search technique is employed along
with a more advanced search routing system. The algorithm examines neighboring states
(solutions) and updates certain parameters based on them to guide further searches. If the
neighboring states are promising, it indicates that the current solution is in a high-quality
search space and that the algorithm continues searching in the same direction. However,
if the neighboring states around the current one are of low quality, the search direction
is changed to explore a sub-space of better quality. This approach has shown promise,
although the large number of parameters requires careful tuning.

The existence of a large number of completely different algorithms that can relatively
successfully solve variants of similar problems further confirms that there is no universal
approach that efficiently solves all of these problems. However, numerous research studies
and advancements in the field have led to more robust approaches that, through data
analysis (e.g., the network for distributing goods, frequency of container transfers on
specific routes, weather forecasts, road conditions, etc.), can gain valuable insights into the
problem and adapt the approach and specific parameters to better fit the given problem.
This increases the efficiency of the algorithm and ultimately leads to better final solutions.

3. Open Periodic Vehicle Routing Problem with Time Windows
3.1. Problem Description

The problem under consideration can be classified as an open periodic vehicle routing
problem with time windows (OPVRPTWs) that is modeled based on a practical problem
from the real world encountered at the Ningbo port, one of the largest ports in China [19].

In the considered problem, a certain number of containers needs to be transported
between cities within the network. Each container i has a time window [ai, bi] associated
with it, which defines the earliest time from which the container can be picked up from the

Mathematics 2023, 11, 3740 5 of 22

source destination (ai) and the latest that the container has to be delivered to the destination
(bi). The vehicle fleet owned by Ningbo port consists of 100 identical vehicles [19] that
can transport only one container at a time. Adhering to local labor laws, shifts for task
execution are divided into two shift types, day and night shifts, each lasting 12 h. Therefore,
the first shift of the day starts at 08:00 a.m., and the second shift starts at 08:00 p.m. The
shifts are indexed in chronological order, with odd indices representing day shifts and even
indices representing night shifts. The analysis of task deadlines has shown that the majority
of these deadlines fall within day shifts. However, most tasks have a wide range of possible
shifts, so it is possible to distribute tasks equally between day and night shifts. During
these shifts, drivers carry out tasks by transporting containers from one city to another. It is
important to note that vehicles do not return to the central warehouse at the end of the day
shift; they only do so at the end of the night shift. Therefore, the idea when creating the
route for the day shift is to construct a path that takes into account the next shift and ends
at the node (city) where the next shift begins, thus making these two shift types a kind of
unity. This reduces the proportion of so-called empty trips, during which vehicles do not
carry cargo but only travel to the location that represents the source of the next task. Such
parts of the route represent a significant cost since no work is performed within them; the
driver only prepares the vehicle for the next task.

Since the total distance of cargo transportation is fixed (determined by the predefined
tasks), the main goal of the problem is to minimize the proportion of empty trips. This is
used as an indicator of solution quality and can be abbreviated as the LDR (loaded distance
rate), which is a commonly used measure in the logistics sector. If the cargo transportation
distance is expressed by the measured LD (loaded distance) and the distance of empty trips
is expressed by the measured UD (unloaded distance), LDR can be calculated as follows:

LDR =
LD

LD + UD
.

Since this metric measures the proportion of the distance traveled with the load in
the total traveled distance, it needs to be maximized. When presenting the results and
comparing different methods, the LDR metric will be used to assess the quality of the
results.

Therefore, individual tasks have time windows within which they must be completed,
and vehicles must return to the warehouse at the end of every second shift. This means
that this is an open problem of vehicle routing with time windows (OPVRPTWs). The
described problem differs from the classical VRP because goods are transported between
all nodes, not just from a central warehouse to other nodes. The problem has elements
of pickup and delivery vehicle routing (VRP with PD), but it differs in that the vehicle’s
capacity is only one container, and the vehicle can perform only one job at a time. (The
vehicle never transports goods to two different destinations at the same time.) The analysis
of specific problem instances has shown that the frequency of routes between all nodes is
equal, which means that all nodes are equally important (except for vehicle storage, where
the central warehouse is the only option). However, special attention should be paid to the
node that connects the day shift with the night shift. As mentioned, in the ideal situation,
the destination of the last task of the day shift is the same as the source of the first task
of the night shift. This outcome is desirable because the shift change does not involve
an empty trip, but it may not always be possible to achieve. In cases where such vehicle
routing is not possible, the following approach is taken. If the driver of the day shift has
time during their working hours to prepare the vehicle for the first task of the night shift,
they will drive an empty vehicle from the destination of their last task to that node. If the
driver cannot do this before the end of their working hours, they will leave the vehicle at
the destination of their last completed task. The driver of the night shift will then have to
perform an empty trip as the first part of their route to reach the source of their first task.

Figure 1 shows an example of created routes for three vehicles in two shifts. Each
color represents a route performed by one vehicle. At the beginning of the day shift, the

Mathematics 2023, 11, 3740 6 of 22

vehicle starts from the warehouse (located at the center) and performs tasks. When it is
time for the shift change, the vehicle is taken over by the driver responsible for the night
shift and continues with the tasks. At the end of their shift, the driver must return the
vehicle to the warehouse. Let us consider the quality of each route. If we know that solid
lines represent parts of routes where tasks are performed, and dashed lines represent empty
trips during which vehicles do not perform any work, it is evident that the black route is
the most efficient as it has no empty trips. On the other hand, the red route is not of good
quality as it has a significant proportion of empty trips. Furthermore, as we can see, each
node can be visited several times by vehicles, which is determined by the number of tasks
that have that node as a source or destination.

Figure 1. Example of several vehicle routes.

Because vehicles return to the warehouse at the end of every second shift, the algorithm
searches for routes rather than cycles, as in the case of the classical VRP. However, this
problem is not the same as the school bus routing problem, where the day and night routes
are identical. In fact, the two routes of a single vehicle belonging to the day shift and
the next night shift do not have to be identical and usually will not be. Furthermore, in
many VRP cases, the loading and unloading times of goods can be ignored since they are
relatively short compared to the transportation time of goods. However, here it is not the
case. The loading and unloading times of goods are significant and must be taken into
account in the time calculations. The cities are relatively close, and the transportation time
of goods is not significantly longer than the loading and unloading times.

3.2. Problem Definition

Table 1 presents the notations used to define the mathematical model, which was
defined in [18,33]. The purpose of this definition is to clearly indicate all constraints and
the optimization objective.

Mathematics 2023, 11, 3740 7 of 22

Table 1. List of symbols used for the definition of the mathematical model of the problem.

Symbol Description

K Total number of vehicles available in each shift
N Number of nodes (cities) between which the goods are transported
D Set of days sorted by date
S Set of shifts sorted by date

[Ss, Se] Time window of the shift S
Sday Set of day shifts sorted by date, indexed by odd numbers

Snight Set of night shifts sorted by date and indexed by even numbers
T The set of tasks that have to be completed

[ai, bi] The time window of task i. The task has to start executing within the given
time window.

li Time required to complete the task i
Ti The time moment of reaching the source node of the task i
Bi The time moment of starting to execute task i
tij The travel time (in minutes) from node i to node j
dij The travel distance of the trip from node i to node j
xs

ij Binary decision variable that denotes whether the task with the source in i
and destination in j was completed in the shift s

The number of vehicles K represents the size of a homogeneous fleet of vehicles
available in each shift. Each individual vehicle can transport a maximum of one container
at a time. Containers are transported between nodes N, and for each node, the loading and
unloading times for one container are known. The days within the horizon of a specific
instance are denoted as D and indexed sequentially starting from one. Each day has a
day shift (Sday) and/or a night shift (Snight), depending on the exact horizon boundary,
i.e., whether the respective shift falls within the horizon where tasks T need to be performed.
However, the boundary days may not have both shifts if they do not belong to the horizon
where tasks need to be performed. Each shift has its start and end time, which is equal
to the start and end time of the driver’s work shift assigned to that shift. Each task has
a source and destination city and the earliest possible start time ai and latest time bi for
starting the task.

It is important to note that if a vehicle arrives at the task’s source node before its
time window, it must wait until ai. Tasks that involve multiple containers are divided
into multiple smaller tasks so that each individual task only requires the transportation
of one container. This simplification facilitates the problem formulation and improves
the efficiency of the proposed algorithm by making task allocation easier. Furthermore,
the task execution time li includes loading at the source, transportation to the destination,
and unloading at the destination. The travel time and distance between two nodes are
represented by tij and dij, respectively. For the purpose of defining constraints, the start
time of task i is denoted by Bi. The travel time is expressed in minutes, which is important
for calculating the feasibility of solutions, while travel distances are expressed in kilometers.
However, the unit of distance can be ignored because the evaluation of the solution quality
is based on the proportion of the transportation distance to the total sum of vehicle routes
(transportation and empty trips). Finally, the binary decision variable xs

ij indicates whether
a specific task with origin i and destination j is performed in shift s. These notations are
also used in [18], with minor modifications.

Using the notation introduced above, we can now define the mathematical optimiza-
tion problem that needs to be solved:

minimize F(x) = ∑
s∈S

∑
i∈T

∑
j∈T

dij · xs
ij (1)

Mathematics 2023, 11, 3740 8 of 22

subject to:

∑
s∈S

∑
i∈T

xs
ij = 1, ∀j ∈ T (2)

∑
s∈S

∑
j∈T

xs
ij = 1, ∀i ∈ T (3)

ai ≤ Bi ≤ bi − li ∀i ∈ T (4)

xs
ij ∗ Ss ≤ xs

ij ∗ Ti ∀i ∈ T, ∀j ∈ T, ∀s ∈ S (5)

xs
ij ∗ (Bi + li) ≤ xs

ij ∗ Es ∀i ∈ T, ∀j ∈ T, ∀s ∈ S (6)

xs
ij ∈ {0, 1} ∀i ∈ T, ∀j ∈ T, ∀s ∈ S (7)

∑
j∈N

xs
0j = K, ∀s ∈ Sday (8)

∑
i∈N

xs
i0 = K, ∀s ∈ Snight (9)

The objective function denoted as 1 signifies that the goal is to minimize the total route
distance of all vehicles. Since the distance of cargo transportation is fixed and determined
by the specific tasks that constitute the instance, the objective is to minimize the proportion
of empty trips, in other words, to maximize the LDR while respecting all given constraints.
Constraints 2 and 3 indicate that each task is performed exactly once and that all tasks
are completed. Constraint 4 ensures that work on each task starts within its time window.
Constraints 5 and 6 specify that the work of a single vehicle is performed within the time
window of one shift. This is done by using xs

ij to filter the corresponding starting or ending
time of the shift to which the task is associated, and checking whether the starting and
completion times of the task are within them. Constraint 7 states that the decision variable
is binary, meaning it can only take values of one or zero. Again, in this OVRP, vehicles
return to the warehouse at the end of every second shift. This is ensured by defining
constraints 8 (for the day shift) and 9 (for the night shift). Additionally, these constraints
ensure compliance with the constraints on the maximum number of vehicles in a shift.

The conclusion from the analysis and formal problem definition is that this is a
nonlinear constrained problem with a vast search space. The size of the search space is
determined by the length of the horizon (|S|), the number of vehicles (K), and the number
of tasks (|T|). Since the total number of possible routes in the solution is equal to |S| ∗ K,
and the number of task permutations is |T|!, the size of the search space is |S| ∗ K ∗ |T|! [18].
Therefore, it is logical to conclude that a high-quality algorithm is necessary to find a
relatively good solution by effectively navigating the search space.

4. Variable Neighborhood Search with Tabu List and Iterated Local Search

To solve the previously outlined OPVRPTW problem, we propose a novel variable
neighborhood search (VNS) method that includes a tabu list and iterates a local search
procedure, denoted as the variable neighborhood tabu search (VNTS). The parameters
that control the behaviors of the algorithm are outlined in Table 2. Some parameters are
adaptable and change during the execution of the algorithm so that it can better adapt to
the current conditions of the search. The parameters that change during the execution of
the algorithm are the route and task multipliers, which control how much of the solution
will be destroyed to construct a new solution, as well as the number of neighborhood layers
and neighbors generated in each layer, the values of which must be within the interval
specified by the user. The remaining parameters are fixed through the entire execution of
the algorithm.

Mathematics 2023, 11, 3740 9 of 22

Table 2. Overview of the algorithm parameters.

Name Description

Fixed-value parameters

Diversification period (DP) Defines the number of iterations between two subsequent diversifica-
tion periods

Incumbent improvement (IM) Defines the number of iterations to wait for improvement before
switching to diversification

Local search iterations (LSI) The number of iterations that the local search procedure performs

Minimum number of layers (MinL) The minimum allowed number of layers that are used to create the
neighboring solutions

Maximum number of layers (MaxL) The maximum allowed number of layers that are used to create the
neighboring solutions

Minimum number of neighbors (MinN) The minimum allowed number of neighbors created in a layer
Maximum number of neighbors (MaxN) The maximum allowed number of neighbors created in a layer
Neighbor multiplier (NM) Number of neighbors that should be generated in each layer
Tabu list size (TLS) Size of the tabu list that keeps track of recently visited solutions

Adaptive parameters

Route multiplier (RM) Multiplier used to determine the number of routes that will be re-
moved in each neighborhood layer

Task multiplier (TM) Multiplier used to determine the number of tasks that will be re-
moved in each neighborhood layer

The general outline of the VNTS algorithm is given in Algorithm 1. At the start of the
algorithm, the previously outlined parameters have to be set by the user. After that, and
depending on the problem instance that is solved, an initial solution is constructed using a
certain heuristic procedure. Selected potential procedures to construct the initial solution
are described in Section 4.1. After the parameter and solution initialization process, the
main loop of the algorithm is executed until a given termination criterion is reached, which
in this case will be the amount of the elapsed time.

In the main loop of the algorithm, the first operation is the adaptation of certain
algorithm parameters, depending on the recent history of the search, in order to facilitate
either intensification or diversification. The update process of the parameters is outlined
in Section 4.2. After the algorithm parameters have been updated, a neighborhood search
is performed through several layers that control the intensity of operators that are used
to perturb the solution. Depending on the current value of respective parameters, the
algorithm will perform a broad or restricted search in the neighborhood of the current
solution. Both the number of neighbors and the extent to which the current solution will
be perturbed depend on the current neighborhood layer and the appropriate multiplier
parameters. The number of neighbors (NN) that will be constructed in a certain layer is
calculated as

NN = min(MinN + 2 ∗ i, MaxN),

where i denotes the index of the current layer. Furthermore, the route and task numbers
that are removed from the current solution when generating neighbors are

TtR = TM ∗ i,

RtR = RM ∗ i,

where TtR denotes the number of tasks that will be removed from the solution, RtR
denotes the number of routes that will be removed, and i denotes the index of the current
neighborhood layer. In this way, each subsequent layer not only generates more neighbors,
it also generates more distinct neighbors as it will introduce larger perturbations in the

Mathematics 2023, 11, 3740 10 of 22

current solution. Based on these parameters, the neighborhood of the current solution is
generated as explained in Section 4.3.

Out of the generated neighborhood, the best solution that is not in the tabu list is
selected. This solution is then set as the current solution since it was found to be better
to accept every new solution rather than accepting only better solutions. In this way, the
algorithm has more of a chance to escape the local optima and the algorithm introduces
more diversity in its search process. In the final step, an additional local search procedure,
described in Section 4.4, is applied to the current solution to further intensify the search.
The complexity of one iteration of the algorithm in the notion of generated neighbors is
equal to L× N, where L is the number of layers and N represents the number of neighbors
generated in each iteration. However, as the number of layers and neighbors is adaptable
during the algorithm execution, this can affect the amount of the computation performed
in the individual iterations and is not constant during the entire execution of the algorithm.

Algorithm 1 VNTS algorithm outline

1: P← initialise_parameters(instance) . Parameter initialization
2: S← initialise_starting_solution(instance, P) . Initialise starting solution
3: iter ← 0 . Iteration counter
4: last_improve . Iteration of last improvement
5: while !termination_criterion do
6: P← adjust_parameters(P, iter) . Adjust current parameter values
7: while i ≤ number_o f _layers do
8: i← i + 1
9: P.NN ← min(P.MinN + 2× i, P.MaxN) . Number of neighbors to generate

10: P.TtR← P.TM ∗ i . Number of tasks to remove
11: P.RtR← P.RM ∗ i . Number of routes to remove
12: neighborhood← generate_neighborhood(S, P)
13: for solution ∈ neighborhood do . Find the best neighbor not in the tabu list
14: if LDR(solution) > LDR(best) && !tabu_list.contains(N) then
15: selected_neighbour ← solution
16: end if
17: end for
18: if LDR(S) < LDR(neighbour) then . Determine if solution improved or not
19: last_improve← iter
20: end if
21: S← neighbour . Accept the neighbor and add it to the tabu list
22: tabu_list.insert(solution)
23: end while
24: S← local_search(S, P) . Perform additional local search for intensification
25: end while
26: return Best found solution

4.1. Solution Initialization

The initialization of the initial feasible solution is the first step of the algorithm. Several
initialization types are well-known in this field. However, it has been shown that this
aspect of the algorithm is not necessarily crucial because a better initial solution does not
necessarily lead to a better final solution, so the fastest or simplest method of initialization
is usually chosen. However, as mentioned, the complexity of the approach and the quality
of the quickly generated solution are important aspects of today’s systems, so numerous
initialization methods have been tested. First, the Clarke–Wright initialization method was
tested, which assigns one route to each vehicle and then attempts to reduce the number
of routes by merging existing routes in a way that maximally improves routing (greedy
approach). This approach is well-known and frequently used in the literature. This paper
will not examine it in more detail because it has been found to be slower than other methods
and the obtained solution tends to get stuck in a local optimum.

Mathematics 2023, 11, 3740 11 of 22

A new type of initialization is proposed that creates cycles instead of routes. The
method considers each daily and the following nightly shift as a whole and creates a route
for that unit. This approach still respects all daily constraints (it is trivial to divide such a
route into a daily and nightly shift), but it significantly simplifies the implementation and
the search space exploration. Additionally, this approach implicitly aims to minimize the
proportion of empty paths between the mentioned two shift types, which further enhances
the quality of the solution. Furthermore, it is required to define in which order the tasks are
selected in the initialization process. Here, we use three heuristic rules:

• Urgency-based insertion heuristic (UBIH)—The initialization that first assigns tasks
with the earliest deadlines.

• Width-based insertion heuristic (WBIH)—The initialization method that first assigns
tasks with the narrowest time windows.

• Random shuffle insertion heuristic (RSIH)—The initialization that assigns tasks in
random order.

During the insertion of each task, it deliberately does not place the task in the optimal
position to avoid becoming stuck in the local optimum. All mentioned initialization
methods result in feasible solutions. Although it is possible to generate higher-quality
initial solutions, it was not done so because it was found that good initial solutions do not
necessarily lead to better final solutions. Moreover, high-quality initial solutions can quickly
become trapped in a local optimum. Therefore, the priority is the speed of initialization
while respecting the constraints.

4.2. Parameter Update

In each iteration of the algorithm, some parameters are updated based on the state of
the search. The procedure by which the parameters are updated is outlined in Algorithm 2.
In the case that the number of iterations without improvement is larger than the threshold
specified by the incumbent improvement parameter (IM), the algorithm is likely stuck in
the local optima, i.e., stagnation is detected. Therefore, the parameters are adjusted in a
way to facilitate diversification, i.e., to explore the search for a wider region of solutions.
First of all, the number of neighborhood layers is incremented if it is still lower than the
allowed maximum value. Furthermore, the multipliers for task and route removal are also
incremented, which will mean that a larger portion of the current solution is destroyed,
thus facilitating more diversification in the newly created neighbors. However, this is done
only if a certain number of iterations has elapsed since the last diversification, which is
controlled by the diversification period (DP) parameter.

Algorithm 2 Parameter update procedure

1: Input:parameters P, current iteration iter, iteration of last improvement last_improve
2: if iter− last_improve > P.IM && iter− P.last_diversi f ication > P.DP then . If

stagnation was detect
3: P.NL← max(P.NL + 1, P.MaxL)
4: P.RM← P.RM + 1
5: P.TM← P.TM + 1
6: P.diversi f ication← true
7: P.last_diversi f ication← iter . Store when the last diversification happened
8: else if noImprov = 0 then . If improvement was detected
9: P.NL← min(P.NL− 1, P.MinL)

10: P.RM← 1
11: P.TM← 1
12: P.diversi f ication← f alse
13: end if

On the other hand, when an improvement in the solution is observed, the route and
task multipliers are reset to 1. With this, the perturbations in the solution are again smaller;

Mathematics 2023, 11, 3740 12 of 22

therefore, the goal is again to search for a closer neighborhood to the current solution.
Furthermore, the number of layers in the neighborhood search is decremented and the
tasks are once again inserted into the routes optimally. With this, it reduces the number
of neighbors that will be examined in each iteration. In this way, the algorithm balances
between the exploration and exploitation of the search space so that when good solutions
are found, only a very close neighborhood near to the current solution is examined, whereas
in cases when no improvement is observed for a longer time, the search area is expanded,
and more distant areas to that of the current solution are investigated.

4.3. Neighborhood Generation and Search

In each iteration of the algorithm, a certain number of neighbors is constructed. The
neighbors are created through several layers, where these layers control the number of
neighbors being generated and the intensity of modifications that are applied to the current
solution. As such, a smaller number of neighbors with minor modifications is introduced
in the earlier layers, whereas more neighbors with larger modifications are generated in
later layers. The motivation for this is to first start the search in the vicinity of the current
solution and gradually expand it to solutions that are further away. Each layer controls
how many routes and tasks will be removed from the solution, by increasing the values
of the corresponding parameters in each subsequent layer. For example, this means that
in the second layer, these parameters will be two times larger than in the first one, or that
in the third layer, they will be three times larger, and so on. This is done by multiplying
the route and task multiplier parameters with the index of the current layer, as outlined
in Algorithm 1. With this, it is possible to search over a wider range of the solution space,
thus facilitating diversification. During the neighborhood search in each of the layers, all
neighbors are collected in the set and at the end of the neighborhood search in this layer,
the best solution not contained in the tabu list is selected. The selected solution is used to
update the current solution and is also added to the tabu list to prevent the search from
revisiting this solution in the immediate future.

The procedure for generating neighbors from the current solution is outlined in
Algorithm 3. This procedure creates the required number of neighbors from the current
solution by using different operators that are outlined in Table 3. The first two sets of
operators outlined in the table are tasked with the destruction of a solution, i.e. with the
removal of certain parts of the solution. The first group of operators removes a selected
route from the solution, whereas the second group removes a selected task from the solution.
Since the first group of operators is more destructive, it is applied only in cases when the
algorithm is directed toward diversification, as it will make large changes to solutions. The
second group of operators is always applied as it removes only a single task and, thus,
introduces small changes to the solution.

Table 3. Overview of the operators used in the algorithm.

Operator Description

BRR Remove a randomly selected route
BER Remove the emptiest route
BFR Remove the fullest route
BSR Remove the shortest route
BLR Remove the longest route

RRT Remove a randomly selected task
RRST Remove a randomly selected task of the shortest route
RCT Remove the most expensive task

RCHT Remove the cheapest task
RDT Remove an unconnected task

ITR Insert the task in a random place
ITO Insert the task in the optimal place

Mathematics 2023, 11, 3740 13 of 22

Algorithm 3 Neighborhood generation procedure

1: Input:current solution S, parameters P
2: Iter ← 0
3: neighborhood← ∅ . Empty set of neighbors
4: while Iter < P.NN do
5: neighbour ← S
6: if P.diversi f ication = true then . Remove routes only when diversification is

performed
7: i← 0
8: while i < P.RtR do
9: remove_route(neighbour)

10: i ++
11: end while
12: end if
13: i← 0
14: while i < P.TtR do . Tasks are always removed from the solution
15: remove_task(neighbour)
16: i← i + 1
17: end while
18: insert_tasks(S) . Reinsert the removed tasks into the solution
19: neighborhood← neighborhood ∪ {neighbour} . add the generated neighbor
20: end while
21: return neighborhood

In both cases, five operators are used, depending on how the routes or tasks that
should be removed from the solution are selected. For the first group of operators, these
include selecting a random route, the longest or shortest route, and the route that is the most
full or most empty, in the sense that it contains the lowest or highest percentage of empty
travels within it. In the second group of operators, the task can be selected either randomly
from all routes or from the shortest route, the most costly or least costly task in the sense
that it leads to the largest or lowest increase in the LDR, and the most disconnected task
that is not connected with other tasks and is further away from them. Each time a route or
task needs to be removed from the solution, one of the previously outlined operators is
randomly selected to determine which task or route will be removed. The task and route
numbers that will be removed are defined by the P.TtR and P.RtR parameters, which are
controlled by the current layer and the multipliers defined for the task and route removal.

The third group of operators selects how the removed tasks are inserted back into the
solution to reconstruct a complete solution. The tasks can be inserted back into the solution
either randomly or at the optimal place. The optimal insertion strategy inserts the tasks
at the position that leads to the highest increase in the LDR metric. In any case, insertion
operators always insert tasks into a feasible position. If no such position exists, a new route
is constructed only with that task to ensure the feasibility of solutions.

The required neighbors that need to be generated are specified by the P.NN parameter,
which again depends on the current layer. When the required neighbors are generated, the
set of all neighbors created during the search is returned as the result.

4.4. Local Search

The final step in each iteration of the algorithm is the execution of an additional local
search on the current solution. Since it is possible that after the neighborhood search
the current solution is replaced by a solution with worse quality, it is useful to improve
it before searching through its neighborhood in the next iteration. The general outline
of the local search procedure is outlined in Algorithm 4. This local search procedure is
aimed exclusively at improving the current solution, so it uses a slightly different strategy
compared to the one that is used at the beginning of each iteration. In the local search,
a certain number of iterations are performed and in each iteration, a neighbor is created.

Mathematics 2023, 11, 3740 14 of 22

The neighbor is created by always applying both route and task removal operators from
Table 3. However, in this case, only the operator that removes empty routes is applied
from the first group, as well as only operators that remove disconnected or costly tasks
(collectively denoted as expensive tasks). The reason for this is to try and remove parts of
the solution that can be considered inefficient and whose modifications could potentially
lead to better solutions. Finally, the tasks are inserted using only the greedy strategy that
attempts to place them at the “optimal” place in the solution. This local search can be
considered greedy as it tries to insert the tasks in the best possible places. The procedure is
repeated until there is no improvement in the quality of the solution in several consecutive
iterations. The final solution is returned and becomes the current solution of the algorithm,
which is used in the next iteration to generate the neighborhood. Since the local search
procedure accepts only a better solution than the current one, the solution it returns will
either be better than the starting solution or the starting solution itself if no better solutions
are found.

Algorithm 4 Local search procedure

1: Input: current solution S, parameters P
2: best← S
3: current← S
4: improved_be f ore← 0 . Number of iterations that elapsed since the last improvement
5: while improved_be f ore < P.LSI do
6: tasks← remove_empty_route(current, P)
7: tasks← remove_expensive_task(current, P)
8: insert_tasks(current, P, tasks) . Insert the tasks into the optimal places
9: if LDR(best) < LDR(current) then . Count iterations without improvement for

termination
10: best← current
11: improved_be f ore← 0
12: else
13: improved_be f ore← improved_be f ore
14: end if
15: end while
16: return best

5. Experimental Setup

This section provides a brief description of the experimental setup used to validate the
proposed algorithm. First, the problem instances on which the algorithm is tested are de-
scribed, after which, the values of algorithm parameters and additional benchmark settings
are described. The algorithm was written using the C++ programming language and the
OpenMP framework to facilitate the parallelization of the generation of the neighborhood.
The experiments were executed on a system with an Intel i5-8250 processor with four cores
at 1.6 GHz and 8 GB of RAM memory. When using parallelization, the algorithm was
executed with four threads. To test whether the differences in the results obtained by the
tested methods are significant or not, the t-test was used with a critical value of 0.05.

5.1. Problem Instances

The available instances used to analyze the algorithm’s performance are divided
into “real world” and “artificially generated” instances [32]. Each of these groups has
subgroups representing 25%, 50%, 75%, and 100% of the task quantity in the given instance,
facilitating easier testing. In the analysis of the proposed approach, the focus will mainly
be on full-sized instances to obtain more representative results. Additionally, each artifi-
cially generated instance has a specific configuration that describes the tasks it contains.
Specifically, the tasks within an instance can be “loose” or “tight”, as well as “balanced”
or “unbalanced”. More precisely, a task is considered loose if its time window is relatively

Mathematics 2023, 11, 3740 15 of 22

wide (up to three days), meaning that it can be scheduled in multiple adjacent shifts. On
the other hand, accommodating a tight task is more challenging due to its narrower time
window. Such a task may only be scheduled in one shift, as the start and end times of its
execution are only a few hours apart. Balance refers to the distribution of tasks throughout
the horizon. Balanced instances consist of well-distributed tasks throughout the entire hori-
zon, while unbalanced instances are more complex as their tasks are unevenly distributed.
In unbalanced instances, there may be a high demand for vehicles in one shift, while in
another shift, there may be little to no need for a large number of vehicles.

The initial letters of the English terms describing these characteristics, along with the
number of shifts in the horizon, are used to name artificially generated instances, making it
evident from the name what type of instance it is. It should be outlined that the number
of shifts only outlines the total number of shifts that are considered in the problem, but
each shift belongs either to a daily or nightly type, thus in all problems there are only
two shift types. For example, an instance with loose and balanced tasks and a horizon of
four shifts is named ‘LB4-1’. Table 4 contains a list of all “real world” instances with their
characteristics, while Table 5 contains a list of all artificially generated instances. These
instances were obtained from a website that provides several works related to the topic
(https://sites.google.com/nottingham.ac.uk/port-management, accessed on 1 December
2022). The dataset is diverse and includes simpler instances with fewer tasks as well
as highly complex instances with a large number of unbalanced tasks and narrow time
windows. This dataset is therefore valuable as testing it can demonstrate the algorithm’s
robustness.

Table 4. The list of instances from the Ningbo port.

Instance Name Shift Count Task Count

NP4-1 4 465
NP4-2 4 405
NP4-3 4 526
NP4-4 4 565
NP4-5 4 765

NP6-1 6 1073
NP6-2 6 920
NP6-3 6 384
NP6-4 6 746
NP6-5 6 557

NP8-1 8 913
NP8-2 8 827
NP8-3 8 786
NP8-4 8 1008
NP8-5 8 798

5.2. Algorithm Parameter Values

The parameter values used in the experiments are outlined in Table 6. These values
were determined through initial preliminary experiments, where for each parameter, certain
values were tested and a few selected problem instances were solved to gain an overview
of how the algorithm performs. The number of layers and neighbor parameters start
with the minimum values and are then updated depending on whether intensification or
diversification is performed. However, the values of those parameters are always kept
within a specified range. Furthermore, the maximum execution time of the algorithm is set
to 1 h per instance and each experiment is executed 20 times to determine the stability of
the algorithm.

https://sites.google.com/nottingham.ac.uk/port-management

Mathematics 2023, 11, 3740 16 of 22

Table 5. List of artificially generated instances from the Ningbo port.

Instance Name Description Shift Count Task Count

LB4-1 Loose, balanced 4 484
LB4-2 Loose, balanced 4 396
TB4-3 Tight, balanced 4 282
TB4-4 Tight, balanced 4 368
LU4-5 Loose, unbalanced 4 448
LU4-6 Loose, unbalanced 4 479
TU4-7 Tight, unbalanced 4 217
TU4-8 Tight, unbalanced 4 354

LB8-1 Loose, balanced 8 592
LB8-2 Loose, balanced 8 657
TB8-3 Tight, balanced 8 497
TB8-4 Tight, balanced 8 621
LU8-5 Loose, unbalanced 8 551
LU8-6 Loose, unbalanced 8 559
TU8-7 Tight, unbalanced 8 607
TU8-8 Tight, unbalanced 8 525
2000 Mixed, unbalanced 8 2614

Table 6. Applied parameter values.

Name Values

Diversification period 50
Incumbent improvement 20
Local search iterations 5
Minimum number of layers 3
Maximum number of layers 10
Minimum number of neighbors 20
Maximum number of neighbors 80
Route multiplier 3
Tabu list size 150
Task multiplier 2

6. Results

This section outlines the results that were achieved by the proposed method. First, the
influence of the initial solution generation and parallelization on the performance of the
algorithm is investigated. Following that, we examine the performance of the algorithm
and compare it to the state of the art. The results are compared using the LDR metric that
needs to be maximized (since it denotes the ratio of the loaded trips in the sum of all trips).

6.1. Influence of Initial Solution Generation Procedure

In this subsection, we examine how different initial solution generation procedures
influence the quality of solutions. Tables 7 and 8 outline the average results of the three ini-
tialization procedures for real-world and artificially generated instances, respectively. The
results outline that the RSIH method consistently achieves better results than the other two
initialization methods on both dataset types. However, the differences are more prominent
on the dataset containing the real-world instances. Since RSIH achieves the best results and
is also the simplest out of the three considered initialization methods, it will be used in all
subsequent experiments. These results also confirm what was previously outlined in the
related works section, i.e., more complex and sophisticated initialization procedures do not
necessarily lead to better results and, quite often, very simple initialization procedures are
more than adequate.

Mathematics 2023, 11, 3740 17 of 22

Table 7. Average results of different types of initialization procedures on real-world instances.

Initialization Method

Instance RSIH UBIH WBIH

NP4-1 57.56% 56.22% 55.12%
NP4-2 55.35% 52.12% 52.06%
NP4-3 56.61% 52.64% 53.81%
NP4-4 54.12% 52.96% 52.61%
NP4-5 58.49% 52.93% 52.88%
NP6-1 56.11% 51.15% 52.47%
NP6-2 54.39% 51.57% 50.45%
NP6-3 56.21% 52.02% 51.42%
NP6-4 56.31% 52.95% 52.21%
NP6-5 56.67% 53.32% 54.18%
NP8-1 56.20% 54.28% 55.74%
NP8-2 56.94% 54.52% 54.81%
NP8-3 54.97% 51.42% 50.75%
NP8-4 53.64% 52.57% 52.9%
NP8-5 56.62% 54.06% 54.15%

AVG 56.01% 52.98% 53.04%

Table 8. Average results of different types of initialization procedures on artificially generated instances.

Initialization Method

Instance RSIH UBIH WBIH

LB4-1 55.63% 52.45% 53.35%
LB4-2 59.86% 59.78% 58.96%
TB4-3 55.72% 54.39% 54.55%
TB4-4 55.06% 53.01% 52.35%
LU4-5 52.98% 52.24% 51.18%
LU4-6 53.03% 50.21% 51.24%
TU4-7 49.67% 49.08% 48.44%
TU4-8 50.71% 48.73% 49.83%
LB8-1 57.28% 55.45% 55.63%
LB8-2 57.17% 53.62% 55.14%
TB8-3 56.70% 54.93% 55.74%
TB8-4 55.60% 53.90% 53.79%
LU8-5 55.30% 53.46% 55.35%
LU8-6 56.61% 55.26% 55.93%
TU8-7 48.38% 47.40% 47.33%
TU8-8 49.05% 48.57% 49.00%

AVG 54.30% 52.66% 52.99%

6.2. Influence of Algorithm Parallelization

In this section, we analyze how the parallelization of the neighborhood generation
process influences the performance of the algorithm given the same amount of time.
Tables 9 and 10 outline the comparison of the results between the parallel and sequen-
tial versions of the VNTS algorithms on a subset of real-world and artificially generated
instances, respectively. The tables outline the best result achieved by any run (column
‘Best result’), the average of the results achieved across all executions (column ‘Average’),
the standard deviation of the results (column ‘σ’), and the p-value obtained by comparing
the solutions obtained by both algorithm versions (column ‘p-value’). As expected, the
results demonstrate that with parallelization, the algorithm consistently achieves better
performance by a few percentage points across all the tested problem instances. This is

Mathematics 2023, 11, 3740 18 of 22

additionally backed up by statistical tests that show that in all cases the differences between
the results are statistically significant, which implies that parallelization helps the algorithm
to reach better solutions. This makes this kind of parallelization useful especially since it is
easy to implement as each neighbor can be constructed and then evaluated independently.

Table 9. Comparison of the parallel and sequential VNTS algorithm on the subset of real-world instances.

VNTS-Parallel VNTS-Sequential p-ValueInstance Best Result Average σ Best Result Average σ

NP4-1 84.27% 83.20% 1.03% 83.05% 81.58% 0.71% 0
NP4-2 69.61% 68.06% 0.49% 67.36% 66.73% 0.26% 0
NP6-1 77.57% 76.68% 0.96% 75.42% 74.34% 0.72% 0
NP6-2 70.88% 70.03% 0.72% 69.78% 68.70% 0.47% 0
NP8-1 71.97% 71.21% 0.50% 69.90% 68.50% 0.75% 0
NP8-2 73.34% 72.95% 0.34% 72.67% 71.78% 0.58% 0

AVG 74.61% 73.69% 0.67% 73.03% 71.98% 0.59%

Table 10. Comparison of the parallel and sequential VNTS algorithm on the subset of artificially
generated instances (size 100%).

VNTS-Parallel VNTS-Sequential p-ValueInstance Best Result Average σ Best Result Average σ

LB4-1 75.37% 74.68% 0.47% 74.13% 73.12% 0.74% 0
TB4-3 72.92% 71.87% 0.44% 72.40% 71.39% 0.61% 0.007
LU4-5 64.65% 64.19% 0.36% 63.29% 62.56% 0.41% 0
TU4-7 55.95% 55.39% 0.26% 55.07% 54.72% 0.20% 0
LB8-1 89.72% 88.02% 0.85% 85.79% 84.43% 0.93% 0
TB8-3 70.75% 69.45% 0.61% 69.05% 68.03% 0.64% 0
LU8-5 67.66% 66.29% 0.51% 65.36% 64.39% 0.40% 0
TU8-7 54.98% 54.09% 0.57% 52.81% 52.30% 0.44% 0

AVG 69.00% 68.00% 0.51% 67.24% 66.44% 0.55%

The convergence plot of the sequential and parallel algorithm version is outlined in
Figure 2 for the NP8-2 problem instance, which was selected due to being one of the larger
instances. The figure outlines how both versions of the algorithm start out from a similar
solution quality, but the parallel version exhibits a much faster convergence rate. Naturally,
this is expected as it can create and evaluate more solutions in the same amount of time
in comparison to the serial version. However, it is also visible that there are almost no
improvements in the solutions during the last 10 min, which is also the reason that 60 min
is selected as the termination criterion.

0 5 10 15 20 25 30 35 40 45 50 55 60

0.64

0.66

0.68

0.7

0.72

Time (in minutes)

L
D
R

Sequential
Parallel

Figure 2. Convergence plot of the sequential and parallel algorithm version on problem instance NP8-2.

Mathematics 2023, 11, 3740 19 of 22

6.3. Comparison with the State of the Art

In this section, we compare the proposed VNTS algorithm with a similar algorithm
from the literature denoted as VNS-RLS [18], which integrates reinforcement learning with
VNS. Table 11 outlines the results of the two algorithms achieved on the dataset consisting
of real-world problem instances. The table outlines the best result achieved by any run
(column ‘Best result’), the average of the results achieved across all the executions (column
‘Average’), the standard deviation of the results (column ‘σ’), the total execution time of
methods in seconds (column ‘Time’), and the p-value obtained by comparing the solutions
obtained by the two algorithms (column ‘p-value’). We see that for 7 out of 15 instances, the
VNTS algorithm achieved better results (both in the best and average solutions), whereas
in the remaining 8 problem instances, the VNS-RLS algorithm achieved better performance.
The statistical tests outline that, in all cases, the results obtained by the two algorithms are
significantly different. If we observe the total average results across all instances, we see
that the proposed algorithm achieves slightly better results in both the best and average
obtained solutions. This shows that the proposed algorithm is able to outperform VNS-RLS
when all the sets are considered.

Table 12 outlines the results of the algorithm on the artificially generated instances. In
this case, we see that the VNTS algorithm achieves better average values for 7 out of the 16
problem instances when average results are considered, whereas when the best results are
considered, VNTS performs better in 9 out of the 16 considered cases. This shows that, on
average, the VNS-RLS algorithm performs better, but the proposed VNTS algorithm seems
to have a slightly higher chance of finding better solutions. Since both algorithms perform
better in around 50% of instances, it is not possible to say that either one is better than the
other. The statistical tests again demonstrate that for all except one instance (LU4-5), the
results obtained by the two methods are significantly different.

However, the main difference comes from the algorithm run times. Namely, the results
for VNTS are for all experiments obtained in 3600 s since this time limit is used as the
termination criterion. On the other hand, VNS-RLS is often given more than one day
of execution time per instance, which demonstrates that it requires a significantly larger
amount of time to obtain the outlined solutions. We can conclude that, with a simple
algorithm structure that relies only on neighborhood search operators and iterated local
search, it is possible to achieve competitive results.

Table 11. Performance comparison between the VNTS and VNS-RLS algorithms for real-world
problem instances (size 100%). The best results achieved for each instance are denoted in bold.

VNTS VNS-RLS p-ValueInstance Best Result Average σ Time Best Result Average σ Time

NP4-1 84.27% 83.20% 1.03% 3600 82.99% 81.88% 0.53% 612,487 0
NP4-2 69.61% 68.06% 0.49% 3600 69.78% 69.33% 0.19% 383,815 0
NP4-3 74.84% 73.95% 0.59% 3600 73.13% 72.11% 0.53% 518,193 0
NP4-4 69.39% 68.76% 0.35% 3600 66.76% 66.06% 0.42% 811,218 0
NP4-5 78.75% 78.07% 0.41% 3600 80.82% 80.37% 0.16% 487,919 0
NP6-1 77.57% 76.68% 0.96% 3600 79.60% 78.96% 0.43% 828,469 0
NP6-2 70.88% 70.03% 0.72% 3600 74.10% 73.77% 0.23% 913,906 0
NP6-3 65.68% 65.30% 0.29% 3600 58.86% 58.39% 0.21% 412,079 0
NP6-4 79.09% 78.71% 0.33% 3600 80.19% 79.29% 0.49% 1,098,792 0.0013
NP6-5 80.79% 80.35% 0.44% 3600 80.15% 78.44% 0.69% 928,097 0
NP8-1 71.97% 71.21% 0.50% 3600 73.69% 73.10% 0.26% 1,091,477 0
NP8-2 73.34% 72.95% 0.34% 3600 75.09% 74.52% 0.32% 917,666 0
NP8-3 75.30% 74.54% 0.40% 3600 74.31% 73.77% 0.40% 857,388 0
NP8-4 61.80% 61.58% 0.12% 3600 61.94% 61.85% 0.05% 636,706 0
NP8-5 73.61% 73.21% 0.27% 3600 73.28% 72.84% 0.21% 1,031,595 0

AVG 73.79% 73.11% 0.48% 3600 73.65% 72.98% 0.34% 768,654

Mathematics 2023, 11, 3740 20 of 22

Table 12. Performance comparison between the VNTS and VNS-RLS algorithms on the artificially
generated problem instances (size 100%). The best results achieved for each instance are denoted
in bold.

VNTS VNS-RLS p-ValueInstance Best Result Average σ Time Best Result Average σ Time

LB4-1 75.37% 74.68% 0.47% 3600 73.57% 72.79% 0.51% 645,863 0
LB4-2 78.23% 76.91% 0.55% 3600 78.02% 77.52% 0.37% 612,594 0.0003
TB4-3 72.92% 71.87% 0.44% 3600 69.52% 68.78% 0.53% 666,776 0
TB4-4 71.46% 70.04% 0.53% 3600 72.91% 72.09% 0.51% 738,772 0
LU4-5 64.65% 64.19% 0.36% 3600 64.64% 64.22% 0.24% 677,499 0.7653
LU4-6 66.21% 64.63% 0.63% 3600 67.89% 67.50% 0.26% 816,750 0
TU4-7 55.95% 55.39% 0.26% 3600 53.07% 52.90% 0.19% 316,288 0
TU4-8 56.42% 56.23% 0.13% 3600 53.78% 53.58% 0.09% 234,027 0
LB8-1 89.72% 88.02% 0.85% 3600 85.86% 83.48% 1.46% 1,481,728 0
LB8-2 85.11% 83.42% 0.99% 3600 94.94% 93.21% 0.82% 1,362,552 0
TB8-3 70.75% 69.45% 0.61% 3600 69.41% 69.01% 0.29% 619,999 0.0038
TB8-4 71.25% 70.33% 0.68% 3600 66.08% 65.24% 0.81% 1,422,110 0
LU8-5 67.66% 66.29% 0.51% 3600 67.95% 67.24% 0.52% 990,621 0
LU8-6 66.91% 66.36% 0.33% 3600 68.40% 67.87% 0.29% 888,131 0
TU8-7 54.98% 54.09% 0.57% 3600 59.72% 59.31% 0.28% 586,452 0
TU8-8 54.09% 53.98% 0.13% 3600 54.36% 54.23% 0.12% 887,790 0

AVG 68.86% 67.87% 0.50% 3600 68.76% 68.06% 0.46% 809,247

The part in which the proposed VNTS algorithm is inferior is in the obtained standard
deviation of the solution. In this regard, VNTS usually achieves slightly higher values,
which outlines that the solutions it obtains are more distributed. This is especially true for
the case of real-world instances, where the difference between the standard deviations is
higher. However, it is quite likely that given more time, the algorithm would achieve better
and more stable solutions, so it is possible that this measure could be further improved
(especially given that it already takes considerably less time than the VNS-RLS method).

7. Conclusions

This study deals with the OPVRPTW that was inspired by a real-world transportation
problem found in the Ningbo port. Due to the large volume of goods being transported
through the port, it is important to design solution methods that can efficiently obtain
good quality solutions for the considered problem. For that reason, we propose the VNTS
algorithm to efficiently solve the considered problem. The algorithm searches through
several neighborhood layers using various operators and integrates a tabu list to avoid
searching over already-visited areas in the solution space. Furthermore, the algorithm uses
a simple parallelization to further improve its performance.

The performance of the proposed VNTS algorithm was examined across a set of real-
world and synthetic benchmark instances. The results show that the algorithm performs
best when the initial solution is generated with a random initialization strategy and that
using parallelization leads to a significant improvement of the results in the same amount of
time. By comparing the results of VNTS with those of the existing VNS-RLS algorithm from
the literature, which represents the current state of the art, we found that neither algorithm
consistently outperforms the other, but rather that each of the algorithms performs better
for half of the instances. This shows that no single method is superior across different
problems. However, it should be noted that the proposed method obtains such results in
one hour, which is considerably lower than the runtime of the VNS-RLS method, which
was usually an order of magnitude larger.

In future work, we plan to extend the algorithm with more complex neighborhood
operators, which could help to improve the exploitation of good solutions. Furthermore,
the algorithm will be extended with concepts from similar methods, such as simulated
annealing or path re-linking. We also intended to extend the considered problem to include
additional constraints, such as using a fleet of electric vehicles that is becoming more
prominent, and adapt the algorithm to efficiently solve such problems as well. Finally, it

Mathematics 2023, 11, 3740 21 of 22

should be noted that truck scheduling between ports is not an isolated problem, but rather
is closely connected to other problems encountered in container yard terminals [34–36]
and it is intended to consider more realistic scenarios that consider solving several of such
problems jointly [37].

Author Contributions: Conceptualization, L.M. and M.Ð.; methodology, L.M.; software, L.M.; val-
idation, L.M., M.Ð., and D.J.; formal analysis, L.M., M.Ð., and D.J.; investigation, L.M. and M.Ð.;
resources, L.M.; data curation, L.M. and M.Ð. ; writing—original draft preparation, L.M. and M.Ð.;
writing—review and editing, L.M., M.Ð., and D.J.; visualization, L.M., M.Ð., and D.J.; supervision,
M.Ð. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Braekers, K.; Ramaekers, K.; Van Nieuwenhuyse, I. The vehicle routing problem: State of the art classification and review. Comput.

Ind. Eng. 2016, 99, 300–313. [CrossRef]
2. Mancini, S.; Gansterer, M.; Hartl, R.F. The collaborative consistent vehicle routing problem with workload balance. Eur. J. Oper.

Res. 2021, 293, 955–965. [CrossRef]
3. Ren, Y.; Dessouky, M.; Ordóñez, F. The multi-shift vehicle routing problem with overtime. Comput. Oper. Res. 2010, 37, 1987–1998.

[CrossRef]
4. Erdelić, T.; Carić, T.; Erdelić, M.; Tišljarić, L.; Turković, A.; Jelušić, N. Estimating congestion zones and travel time indexes based

on the floating car data. Comput. Environ. Urban Syst. 2021, 87, 101604. [CrossRef]
5. Jakobović, D.; Ðurasević, M.; Brkić, K.; Fosin, J.; Carić, T.; Davidović, D. Evolving Dispatching Rules for Dynamic Vehicle Routing

with Genetic Programming. Algorithms 2023, 16, 285. [CrossRef]
6. Eksioglu, B.; Vural, A.V.; Reisman, A. The vehicle routing problem: A taxonomic review. Comput. Ind. Eng. 2009, 57, 1472–1483.

[CrossRef]
7. Majumder, S. Some Network Optimization Models under Diverse Uncertain Environments. arXiv 2021, arXiv:2103.08327.

https://doi.org/10.48550/arXiv.2103.08327
8. Dantzig, G.B.; Ramser, J.H. The Truck Dispatching Problem. Manag. Sci. 1959, 6, 80–91. [CrossRef]
9. Tan, K.; Lee, L.; Zhu, Q.; Ou, K. Heuristic methods for vehicle routing problem with time windows. Artif. Intell. Eng. 2001,

15, 281–295. [CrossRef]
10. Haghani, A.; Jung, S. A dynamic vehicle routing problem with time-dependent travel times. Comput. Oper. Res. 2005,

32, 2959–2986. [CrossRef]
11. Tasan, A.S.; Gen, M. A genetic algorithm based approach to vehicle routing problem with simultaneous pick-up and deliveries.

Comput. Ind. Eng. 2012, 62, 755–761. [CrossRef]
12. Erdelić, T.; Carić, T. A Survey on the Electric Vehicle Routing Problem: Variants and Solution Approaches. J. Adv. Transp. 2019,

2019, 5075671. [CrossRef]
13. Erdelić, T.; Carić, T. Goods Delivery with Electric Vehicles: Electric Vehicle Routing Optimization with Time Windows and Partial

or Full Recharge. Energies 2022, 15, 285. [CrossRef]
14. Vidal, T.; Crainic, T.G.; Gendreau, M.; Prins, C. Heuristics for multi-attribute vehicle routing problems: A survey and synthesis.

Eur. J. Oper. Res. 2013, 231, 1–21. [CrossRef]
15. Cattaruzza, D.; Absi, N.; Feillet, D.; Vidal, T. A memetic algorithm for the Multi Trip Vehicle Routing Problem. Eur. J. Oper. Res.

2014, 236, 833–848. [CrossRef]
16. Afsar, H.M.; Afsar, S.; Palacios, J.J. Vehicle routing problem with zone-based pricing. Transp. Res. Part E Logist. Transp. Rev. 2021,

152, 102383. [CrossRef]
17. Zhang, H.; Ge, H.; Yang, J.; Tong, Y. Review of Vehicle Routing Problems: Models, Classification and Solving Algorithms. Arch.

Comput. Methods Eng. 2021, 29, 195–221. [CrossRef]
18. Chen, B.; Qu, R.; Bai, R.; Laesanklang, W. A variable neighborhood search algorithm with reinforcement learning for a real-life

periodic vehicle routing problem with time windows and open routes. RAIRO-Oper. Res. 2020, 54, 1467–1494. [CrossRef]
19. Chen, J.; Bai, R.; Qu, R.; Kendall, G. A task based approach for a real-world commodity routing problem. In Proceedings of the

2013 IEEE Symposium on Computational Intelligence in Production and Logistics Systems (CIPLS), Singapore, 16–19 April 2013.
[CrossRef]

http://doi.org/10.1016/j.cie.2015.12.007
http://dx.doi.org/10.1016/j.ejor.2020.12.064
http://dx.doi.org/10.1016/j.cor.2010.01.016
http://dx.doi.org/10.1016/j.compenvurbsys.2021.101604
http://dx.doi.org/10.3390/a16060285
http://dx.doi.org/10.1016/j.cie.2009.05.009
 https://doi.org/10.48550/arXiv.2103.08327
http://dx.doi.org/10.1287/mnsc.6.1.80
http://dx.doi.org/10.1016/S0954-1810(01)00005-X
http://dx.doi.org/10.1016/j.cor.2004.04.013
http://dx.doi.org/10.1016/j.cie.2011.11.025
http://dx.doi.org/10.1155/2019/5075671
http://dx.doi.org/10.3390/en15010285
http://dx.doi.org/10.1016/j.ejor.2013.02.053
http://dx.doi.org/10.1016/j.ejor.2013.06.012
http://dx.doi.org/10.1016/j.tre.2021.102383
http://dx.doi.org/10.1007/s11831-021-09574-x
http://dx.doi.org/10.1051/ro/2019080
http://dx.doi.org/10.1109/cipls.2013.6595193

Mathematics 2023, 11, 3740 22 of 22

20. Laporte, G.; Nobert, Y. Exact Algorithms for the Vehicle Routing Problem. In Surveys in Combinatorial Optimization; Elsevier:
Amsterdam, The Netherlands, 1987; pp. 147–184. [CrossRef]

21. Ibrahim, A.; Abdulaziz, R.; Ishaya, J.; Sowole, S. Vehicle Routing Problem with Exact Methods. 2019; pp. 5–15. Available online:
https://www.researchgate.net/publication/333668637_Vehicle_Routing_Problem_with_Exact_Methods (accessed on 13 July
2023). [CrossRef]

22. Brysy, O.; Dullaert, W.; Gendreau, M. Evolutionary Algorithms for the Vehicle Routing Problem with Time Windows. J. Heuristics
2004, 10, 587–611. [CrossRef]

23. Saadatseresht, M.; Mansourian, A.; Taleai, M. Evacuation planning using multiobjective evolutionary optimization approach.
Eur. J. Oper. Res. 2009, 198, 305–314. [CrossRef]

24. Jeong, K.Y.; Hong, J.D.; Xie, Y. Design of emergency logistics networks, taking efficiency, risk and robustness into consideration.
Int. J. Logist. Res. Appl. 2013, 17, 1–22. [CrossRef]

25. Ferrer, J.M.; Ortuño, M.T.; Tirado, G. A New Ant Colony-Based Methodology for Disaster Relief. Mathematics 2020, 8, 518.
[CrossRef]

26. Yi, W.; Kumar, A. Ant colony optimization for disaster relief operations. Transp. Res. Part E Logist. Transp. Rev. 2007, 43, 660–672.
[CrossRef]

27. Pichpibul, T.; Kawtummachai, R. An improved Clarke and Wright savings algorithm for the capacitated vehicle routing problem.
ScienceAsia 2012, 38, 307. [CrossRef]

28. Campbell, A.M.; Savelsbergh, M. Efficient Insertion Heuristics for Vehicle Routing and Scheduling Problems. Transp. Sci. 2004,
38, 369–378. [CrossRef]

29. Chen, B.; Qu, R.; Bai, R.; Ishibuchi, H. A Variable Neighbourhood Search Algorithm with Compound Neighbourhoods for
VRPTW. In Proceedings of 5th the International Conference on Operations Research and Enterprise Systems, Rome, Italy, 23–25
February 2016; SCITEPRESS—Science and Technology Publications: Setubal, Portugal, 2016. [CrossRef]

30. Yilmaz, Y.; Kalayci, C.B. Variable Neighborhood Search Algorithms to Solve the Electric Vehicle Routing Problem with Simultane-
ous Pickup and Delivery. Mathematics 2022, 10, 3108. [CrossRef]

31. Kovács, L.; Agárdi, A.; Bányai, T. Fitness Landscape Analysis and Edge Weighting-Based Optimization of Vehicle Routing
Problems. Processes 2020, 8, 1363. [CrossRef]

32. Chen, B.; Qu, R.; Ishibuchi, H. Variable-Depth Adaptive Large Neighbourhood Search Algorithm for Open Periodic Vehicle Routing
Problem with Time Windows; University of Nottingham: Nottingham, UK, 2 017.

33. Chen, B.; Qu, R.; Bai, R.; Laesanklang, W. A hyper-heuristic with two guidance indicators for bi-objective mixed-shift vehicle
routing problem with time windows. Appl. Intell. 2018, 48, 4937–4959. [CrossRef]

34. Zhen, L. Modeling of yard congestion and optimization of yard template in container ports. Transp. Res. Part B Methodol. 2016,
90, 83–104. [CrossRef]

35. Iris, Ç.; Pacino, D.; Ropke, S. Improved formulations and an Adaptive Large Neighborhood Search heuristic for the integrated
berth allocation and quay crane assignment problem. Transp. Res. Part E Logist. Transp. Rev. 2017, 105, 123–147. [CrossRef]

36. Ðurasević, M.; Ðumić, M. Automated design of heuristics for the container relocation problem using genetic programming. Appl.
Soft Comput. 2022, 130, 109696. [CrossRef]

37. Iris, Ç.; Christensen, J.; Pacino, D.; Ropke, S. Flexible ship loading problem with transfer vehicle assignment and scheduling.
Transp. Res. Part B Methodol. 2018, 111, 113–134. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/s0304-0208(08)73235-3
https://www.researchgate.net/publication/333668637_Vehicle_Routing_Problem_with_Exact_Methods
http://dx.doi.org/10.9790/5728-1503030515
http://dx.doi.org/10.1007/s10732-005-5431-6
http://dx.doi.org/10.1016/j.ejor.2008.07.032
http://dx.doi.org/10.1080/13675567.2013.833598
http://dx.doi.org/10.3390/math8040518
http://dx.doi.org/10.1016/j.tre.2006.05.004
http://dx.doi.org/10.2306/scienceasia1513-1874.2012.38.307
http://dx.doi.org/10.1287/trsc.1030.0046
http://dx.doi.org/10.5220/0005661800250035
http://dx.doi.org/10.3390/math10173108
http://dx.doi.org/10.3390/pr8111363
http://dx.doi.org/10.1007/s10489-018-1250-y
http://dx.doi.org/10.1016/j.trb.2016.04.011
http://dx.doi.org/10.1016/j.tre.2017.06.013
http://dx.doi.org/10.1016/j.asoc.2022.109696
http://dx.doi.org/10.1016/j.trb.2018.03.009

	Introduction
	Literature Review
	Open Periodic Vehicle Routing Problem with Time Windows
	Problem Description
	Problem Definition

	Variable Neighborhood Search with Tabu List and Iterated Local Search
	Solution Initialization
	Parameter Update
	Neighborhood Generation and Search
	Local Search

	Experimental Setup
	Problem Instances
	Algorithm Parameter Values

	Results
	Influence of Initial Solution Generation Procedure
	Influence of Algorithm Parallelization
	Comparison with the State of the Art

	Conclusions
	References

