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Abstract Dispatching rules are often a method of choice for solving various schedul-
ing problems. Most often, they are designed by human experts in order to optimise
a certain criterion. However, it is seldom the case that a schedule should optimise
a single criterion all alone. More common is the case where several criteria need
to be optimised at the same time. This paper deals with the problem of automatic
design of dispatching rules by the use of genetic programming, for many-objective
scheduling problems. Four multi-objective and many-objective algorithms, includ-
ing nondominated sorting genetic algorithm II (NSGA-II), nondominated sorting
genetic algorithm III (NSGA-III), harmonic distance based multi-objective evolu-
tionary algorithm (HaD-MOEA) and multi-objective evolutionary algorithm based
on decomposition (MOEA/D), have been used in order to obtain sets of Pareto opti-
mal solutions for various many-objective scheduling problems. Through experiments
it was shown that automatically generated multi-objective DRs not only achieve
good performance when compared to standard DRs, but can also outperform auto-
matically generated single objective DRs for certain criteria combinations.

Keywords Dispatching rules · genetic programming · many-objective optimisation ·
scheduling · unrelated machines environment

1 Introduction

Scheduling can be defined as a decision-making process concerned with the allocation
of scarce resources to tasks over a given time period, in order to optimise one or
more objectives [64]. Scheduling problems appear in many real life domains, such as
airplane scheduling in air traffic control [12], [23]; semiconductor manufacturing [63];
and therapy scheduling in hospitals [61]. Unfortunately, most scheduling problems
belong to the category of NP-hard problems. This means that an algorithm which
could find optimal solutions for such problems, in a reasonable amount of time, does
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not exist. Because of that, scheduling problems are usually solved by using different
heuristic algorithms. In this context, heuristic algorithms are mostly divided into
two categories: the first group consists of metaheuristics which search the entire
space of solutions (schedules) in order to find the best one, while the second group
consists of problem specific heuristics (mostly in the form of dispatching rules) that
incrementally construct the schedule.

Since most scheduling problems are combinatorial by nature, search-based meta-
heuristic methods (such as genetic algorithms, particle swarm optimisation, etc.)
can be used to search the solution space [61], [24], [3], [13]. These methods have
the advantage that they are able to find high quality solutions for many different
scheduling problems. On the downside, they require a substantial amount of time
in order to find solutions of acceptable quality. As a consequence, these approaches
are mostly not applicable in dynamic scheduling problems, where there is a need for
constant adaptation to the changing conditions of the scheduling environment (e.g.
unplanned arrival of new jobs, machine breakdowns).

On the other hand, dispatching rules (DRs) do not search the entire space of
solutions, but instead incrementally build the entire solution (schedule) [47], [7],
[40]. The advantage of such heuristics is that they are able to construct schedules in
time which is almost negligible when compared to the search-based approaches [68].
Because of their fast execution time and their ability to quickly react to changing
conditions, DRs are applicable in dynamic scheduling environments. However, DRs
also cope with a certain number of problems. First of all, the quality of schedules
constructed by DRs is in most cases not as good as of those found by the search-based
approaches. This is to be expected considered that these heuristics do not search the
entire solution space. A second problem is that DRs are very hard to design, and that
they are mostly designed for optimizing a few common objectives from the literature.
Since it is complicated to design new DRs, they are mostly designed to optimise only
one or two objectives, although there is often a need to optimise several objectives at
the same time. As a consequence, DRs which optimise a user specified set of several
criteria might not even exist, and would have to be designed by domain experts,
which would be a lengthy and costly process. Lastly, since many DRs exist, it is
not always obvious which of the existing DRs is the most appropriate for the given
scheduling problem instance. This has been demonstrated by Branke and Pickardt
in [6], where they use a genetic algorithm in order to generate job-shop problem
instances, for which some standard DRs make sub-optimal decisions.

In order to deal with some of the aforementioned disadvantages, genetic pro-
gramming (GP) [65], [44] is commonly used in order to automatically generate DRs.
The DRs which are generated by GP are shown, in most cases, to be able to create
schedules of better or similar quality, when compared to standard DRs. Additionally,
by using GP for generating DRs, it is possible to create rules for arbitrary scheduling
criteria relatively fast and for a wide variety of scheduling problems. An additional
benefit of GP comes from the fact that there is a wide variety of evolutionary algo-
rithms which deal with multi-objective and many-objective optimisation, and they
have shown to achieve good performances on a large number of problems [74]. There-
fore, by coupling GP with such procedures, it is possible to automatically design DRs
which are able to simultaneously optimise several scheduling objectives. This demon-
strates that there is a great amount of flexibility available when producing DRs by
the use of GP.
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Unfortunately, multi-objective GP algorithms were used only in few occasions in
order to create DRs which optimise several scheduling criteria simultaneously. They
were applied for optimising one multi-objective problem consisting of five scheduling
criteria [53], [57], and recently also a problem consisting of four scheduling criteria
in which one objective was removed from the original five objectives [48]. Because
of that, the aim of this paper is to further examine the effectiveness of GP for cre-
ating DRs for many-objective scheduling problems consisting of different scheduling
criteria. For that purpose several popular algorithms from the literature have been
selected and used in order to create DRs for many-objective criteria. The algorithms
will be applied on several criteria combinations consisting of three, five, seven and
nine criteria. Although optimising seven objective problems is rarely found in the
scheduling literature, there are a few instances in which six objective scheduling
problems were considered [70] [11], and because of that several seven objective prob-
lems were also considered in this paper. The nine objective problem was included in
order analyse the correlation of all nine criteria at the same time. were included in
In order to analyse the performance of the automatically developed DRs evolved by
many-objective algorithms, several automatically designed DRs will be selected and
compared to four standard DRs and also the best results achieved by a single objec-
tive GP. Finally, since the optimised criteria set has shown to significantly influence
the performances of many-objective algorithms, an analysis on how different criteria
correlate with each other is also given in the end. The objectives of this paper are
the following:

1. Automatic generation of multi-objective DRs and comparison with automatically
generated single objective DRs and standard DRs.

2. Analysis of the mutual correlation of different scheduling criteria.
3. Comparison of MOGP algorithms for evolving DRS for the unrelated machines

scheduling problem.

The remainder of the paper is organised as follows: Section 2 gives an overview of
the current research in the field of automatic design of DRs. The unrelated schedul-
ing environment is described in Section 3, while the genetic programming method
for generating DRs is described in Section 4. Section 5 gives a description of the
experimental design and the parameter optimisation process which was performed,
while presents the achieved results and the discussion about the results is given in
section 6. Finally, section 7 gives a short conclusion and outlines some future work
directions.

2 Literature Overview

Since its discovery GP has often been used in the field of hyper-heuristics, because it
is able to represent and evolve complex expressions and rules [10], [9]. Consequently,
GP has also been extensively used to evolve new DRs for various scheduling problems.
Dimopoulos and Zalzala used GP to evolve DRs for the one machine environment
and showed that the evolved DRs achieved better results than some traditional rules
[17]. Miyashita used GP to evolve rules for the job-shop scheduling environment
[49]. He considered the scheduling problem as a multi-agent problem (where an
agent denoted a machine), and based on that he proposed three different models.
The first model was a homogeneous model which evolved the same DR for all agents.
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The distinct agent model, on the other hand, evolved DRs for each agent separately.
The mixed agent model tried to combine the previous two models in a way that
it develops two different DRs. Which of these two DRs would be assigned to a
resource would depend on whether the machine is a bottleneck or not. Although the
mixed agent model achieved the best results, it requires prior knowledge about the
scheduling environment in order to detect the bottleneck machines. Jakobović et al.,
apart from evolving dispatching rules for the single machine and job-shop scheduling
environments, have also proposed a GP method (GP-3) which extends the mixed
agent model of Miyashita [35]. Their approach generates three expressions, first of
which represents the DR used for bottleneck machines, the second represents the DR
used non bottleneck machines, and the third a decision function used to determine
whether a machine represents a bottleneck or not. Therefore this approach does not
need any prior knowledge about the scheduling environment, since it uses the decision
function in order to adapt to the changing conditions during the execution of the
system. Although the GP-3 method does not guarantee that the expression it evolved
will truly be able to identify which machines are bottlenecks, it was nevertheless able
to achieve better results when compared to the approach which evolved only one DR
for all machines. Apart from the already mentioned machine environments, GP was
also used to design DR for the parallel machines environment [36]. Hildebrandt et
al. have performed an extensive analysis of creating DRs for the dynamic job-shop
environment [27].

Gene expression programming (GEP) [20], a methodology similar to GP, was
used by Nie et al. for evolving DRs in the single-machine [59] and job-shop [58]
environments. Jakobović and Marasović further investigated the single-machine and
job-shop environments, especially concerning the influence of algorithm parameters
on the quality of the evolved DRs [37]. Additionally, in the same paper, the authors
evolve DRs for the single-machine environment with set-up times and precedence
constraints, and show that they achieve better results than several standard rules,
thus demonstrating that GP is applicable for creating good DRs even for more com-
plicated environments. Different solution representations of DRs have been analysed
by Nguyen et al. in [52], showing that different GP representations can have a signif-
icant influence on the quality of DRs. Nguyen et al. also proposed a new type of GP
for static scheduling problems, which constructs iterative dispatching rules (IDRs)
and shows superior performance when compared to the simple GP approach [54].
The problem of global perspective of DRs has been analysed in [28]. In [29] it was
shown that GP was able to evolve optimal dispatching rules for the static two ma-
chine job-shop environment, demonstrating the ability of GP to discover high quality
solutions. Ðurasević et al. have used several GP approaches (standard GP, GEP [20],
IDRs, dimensionally aware GP [41]) in order to evolve DRs for the unrelated ma-
chines environment, and compare the effectiveness of the generated DRs [19]. GP has
also been used for developing DRs for the order acceptance and scheduling (OAS)
problem, where it was also able to evolve DRs better than some standard rules [60],
[50], [56]. This only shows that GP is not only applicable for evolving standard DRs,
but also for similar scheduling problems.

Creating DRs for multi-objective and many-objective optimisation criteria has
rarely been touched upon. Tay and Ho [67] were the first to use GP for evolv-
ing DRs for multi-objective criteria. In their case, the multi-objective problem was
transformed into a single objective problem by linearly combining all three individ-
ual objectives. Therefore, standard single objective GP approaches could be used in
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order to evolve DRs for this problem. More recently, Nguyen et al. used several multi-
objective GP approaches in order to evolve scheduling rules consisting of a DR and
due-date assignment rule [51], [55]. Those approaches evolved two expression trees,
one of which would be used for due-date assignment to jobs, while the other would
be used as a standard dispatching rule. The results showed that the evolved rules
outperformed various combinations of existing scheduling rules from the literature.
Evolving dispatching rules for multi-objective criteria was also analysed by Nguyen
et al. in [53] and [57]. In their studies, Nguyen et al. evolved DRs for optimizing
five scheduling criteria simultaneously by using the HaD-MOEA algorithm. They
showed that very efficient dispatching rules could be evolved even for such many-
objective problems. GP has also shown to achieve good results for task assignment
in assembly line balancing, where it achieved better results than many standard and
metaheuristic approaches [4]. In [48] authors have also used several multi-objective
algorithms in order to evolve DRs for four and five objectives.

A recent survey by Branke et al. gives a more detailed overview of all the appli-
cations of GP for evolving new dispatching rules [5].

Regarding multi-objective and many-objective optimisation in the unrelated ma-
chines environment, not much research has been done in this area. Fowler et. al.
considered the problem of scheduling a printed wiring board manufacturer’s drilling
operation subject to five optimisation criteria, and they have used several approaches
in order to solve the given problem [21]. In [70] the authors have optimised a schedul-
ing problem of a printed wiring board manufacturing line, where six scheduling cri-
teria were optimised simultaneously. The simulated annealing approach was used by
Kolahan and Kayvanfar, in order to solve a scheduling problem consisting of the
makespan, earliness and tardiness cost, and matching cost objectives [43]. In [46] a
scheduling problem consisting of two and three scheduling criteria was optimised by
the use of two proposed heuristics and a genetic algorithm. A short overview of some
other multi-objective problems in the unrelated machines environment can be found
in [62]. Although the research on this topic is quite sparse, the references show that
multi-objective and many-objective optimisation problems in the unrelated machines
environment appear in many real world situations, therefore outlining the need for
development of DRs which are suited to optimise several criteria simultaneously.

3 The Unrelated Machines Environment

The unrelated machines environment consists of n jobs which compete in order to be
scheduled on one of the m available machines [64]. Each job consists of several prop-
erties, including: processing time pij , which determines the processing time needed
to execute the job with the index j on the machine with the index i; release time rj ,
which determines when job j becomes available for scheduling; due date dj , which
determines the point in time until when the job with index j should finish with the
execution to not invoke any loss; and weight wj which determines the weight (or
importance) of the job with index j. In this paper different weights will be used for
the tardiness (denoted as wT j), earliness (denoted as wEj) and completion times
(denoted as wCj) criteria. The application of the unrelated machines environment
can be found in different multiprocessor systems or production environments.
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3.1 Scheduling Criteria

Many different evaluation criteria have been defined for scheduling problems in the
literature. In this study, the eight most prominent criteria from the literature have
been selected and were optimised in different combinations by the multi-objective
algorithms.

When a job is scheduled, it is possible to calculate several metrics of that job,
which will then in turn be used for defining metrics of the entire schedule:

– Cj - completion time of job j
– Fj - flowtime of job j:

Fj = Cj − rj . (1)

– Tj - tardiness of job j:
Tj = max{Cj − dj , 0}. (2)

– Ej - earliness of job j:

Ej = max{−(Cj − dj), 0}. (3)

– Uj - flag if a job is tardy or not:

Uj =
{

1 : Tj > 0
0 : Tj = 0 . (4)

By using the aforementioned job metrics, criteria for the complete schedule can
be defined [1], [2]:

– Cmax - maximum completion time of all jobs:

Cmax = max
j
{Cj}. (5)

– Fmax - maximum flowtime:

Fmax = max
j
{Fj}. (6)

– Tmax - maximum tardiness:

Tmax = max
j
{Tj}. (7)

– Cw - total weighted completion time:

Cw =
∑

j

wCjCj , (8)

– Twt - total weighted tardiness:

Twt =
∑

j

wT jTj , (9)

– Ft - total flowtime:
Ft =

∑
j

Fj , (10)
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– Nwt - weighted number of tardy jobs:

Nwt =
∑

j

wT jUj . (11)

– Etwt - weighted earliness and weighted tardiness:

Etwt =
∑

j

(wEjEj + wT jTj), (12)

– Mut - machine utilisation:

Mut = max
i
{ Pi

Cmax
} −min

i
{ Pi

Cmax
}, (13)

where Pi is defined as the sum of processing times of all jobs which were executed
on machine with index i.

The last criterion, denoted as machine utilisation, is an additional criterion which
we defined for this study. The idea behind this criterion is that by optimizing it
the load is evenly distributed to all machines, in order to avoid the case in which
some machines do little processing, while others are overloaded. Although machine
utilisation is rarely used as the main scheduling criterion, in scenarios where load
balancing is important it represents an essential secondary optimisation criteria.

3.2 Scheduling Conditions

Based on the availability of job parameters, scheduling can be performed in different
conditions. In the case that all parameters are known in advance, the schedule can
be built before the system starts with its execution. This type of scheduling is called
static scheduling. Search-based methods are most commonly used to create schedules
for this type of scheduling.

On the other hand, if the information about the jobs is not available until they
arrive into the system, then such scheduling is called dynamic scheduling. DRs are
most commonly used in this kind of scheduling conditions, since they quickly react
to the sudden changes that can happen in the scheduling environment. In this paper,
dynamic scheduling conditions are presumed, in which job parameters are not known
before the jobs are released into the system and the schedule is constructed together
with the execution of the system.

4 Evolving Dispatching Rules for Many-objective Optimisation Using
Genetic Programming

This section will shortly describe the GP approach for generating new DRs. In
order to generate DRs for several objectives simultaneously, four different multi-
objective and many-objective algorithms will be used: NSGA-II [16], HaD-MOEA
[69], MOEA/D [73] and NSGA-III [15]. NAGA-II was selected since it represents
one of the most popular multi-objective algorithms, NSGA-III and MOEA/D since
they represent two popular many-objective algorithms, while HaD-MOEA was se-
lected since it was previously used for creating DRs for multi-objective scheduling
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problems. All algorithms use the same set of crossover and mutation operators. The
following crossover operators are used: simple crossover, context-preserving crossover,
size fair crossover, one point crossover and uniform crossover [65]. The operators are
combined in a way that each time a crossover is performed, a randomly selected
operator is applied. The set of mutation operators contains only one operator, the
sub-tree mutation [65]. The maximum tree depth was set to 5 for all algorithms. In
order to make the comparison between all algorithms as fair as possible, the maxi-
mum number of fitness evaluations was used as the termination condition for all the
algorithms. The aforementioned algorithms were developed using the Evolutionary
Computation Framework (ECF) [33].

4.1 The Scheduling Procedure

The DR applied in this work consists of two parts: a meta-algorithm and a prior-
ity function. The role of the meta-algorithm is to determine which job should be
processed on which machine. In order to make that decision, the meta-algorithm
uses a certain priority function to determine the priorities of all the available jobs.
Algorithm 1 represents the outline of the manually defined meta-algorithm, which
assumes that an appropriate priority function has previously been evolved. The out-
lined algorithm finds the best appropriate mapping between a job and a machine.
If the machine which was chosen for the job is available, then the job is scheduled
on that machine. Otherwise, the scheduling of this job is postponed until a machine
becomes available, or a new job enters the system. It should be emphasized that this
meta-algorithm and the priority function are loosely coupled, meaning that the same
meta-algorithm can be used with different priority functions, and vice versa.

Algorithm 1 Meta-algorithm used for GP scheduling

1: while unscheduled jobs are available do
2: wait until a job becomes ready or a job finishes;
3: for all available jobs and all machines do
4: obtain the priority πij of job j on machine i;
5: end for
6: for all available jobs do
7: determine the best machine (the one for which
8: the best value of priority πij is achieved);
9: end for
10: while jobs whose best machine is available exist
11: do
12: determine the best priority of all such jobs;
13: schedule the job with the best priority;
14: end while
15: end while

Unlike the meta-algorithm, priority functions are not manually defined, but
rather generated by using GP. In order for GP to be able to evolve an appropri-
ate priority function, it must be able to use relevant information about jobs and
machines, which describe the current state of the system. As a consequence, one of
the most important preparatory steps is to carefully select the set of terminal nodes
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that may appear in the tree representation of the priority function. Table 1 repre-
sents the list of all terminal nodes used by the GP. The time variable, which is used
for defining some of the terminal nodes, represents the current time of the system.

Table 1: Terminal nodes

Node name Description

pt processing time of job j on the machine i
(pij)

pmin the minimal job processing time on all
machines: min{pij}∀i

pavg the average processing time on all machines

PAT
patience - the amount of time until the

machine with the minimal processing time for
the current job will be available

MR machine ready - the amount of time until the
current machine becomes available

age the time that the job spent in the system:
time− rj

dd due date (dj)
SL positive slack: max{dj − pij − time, 0}
wt tardiness weight (wT j)
wc completion time weight (wCj)
we earliness weight (wEj)

In addition to the set of terminal nodes, GP also uses a set of functional nodes
which combine the terminal nodes into a complete expression. For the experiments
five operators were used in the set of functional nodes: +, −, ∗, / and POS. The /

represents the protected division operator defined as /(a, b) =
{

1, if |b| < 0.000001
a
b , else ,

while POS is defined as POS(a) = max{a, 0}. This operator set was chosen since
in a previous study it was shown that GP was able to achieve the best results by
using such an operator set [19].

GP uses both terminal and functional nodes in order to design an expression
tree which will denote the priority function which should be used by the scheduling
meta-algorithm. Figure 1 represents an example of a possible expression tree which
can be evolved by using GP. This specific expression tree would be decoded into a
priority function which would look like: w ∗ pt + pt

dd ∗ SL.

Fig. 1: Example of an expression tree generated by GP
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4.2 Multi-objective Performance Measures

In order to be able to evaluate the quality of the obtained Pareto fronts, appropriate
performance measures were used [38]. In this paper the following two measures will
be used: inverted generational distance and hypervolume.

Inverted generational distance (IGD) [38] represents a diversity-convergence met-
ric which measures the distance between the the approximated Pareto front P . and
Pareto front S obtained by some algorithm. Since it measures the distance between
those two Pareto fronts, its value should be minimised. This metric is defined as:

IGD(P, S) =
(
∑|P |

i=i dq
i )1/q

|P |
, (14)

where di = mins∈S ‖F (pi)− F (si)‖ , pi ∈ P , q = 2 and ‖·‖ is defined as the Eu-
clidean distance measure. From the definition it is obvious that di represents the
distance from a solution in the approximated Pareto front to the closest solution in
the obtained Pareto front S.

Hypervolume (HV) [76], a diversity-convergence metric, measures the amount of
volume in the objective-space, which is covered by a given Pareto front. This metric
is defined as:

HV (S, R) = volume(
|S|⋃
i=1

vi) (15)

where vi represents the hypercube constructed between the point with index i and
the reference point R. Since this metric measures the space covered by the obtained
Pareto front, its value should be maximised.

5 Experiment design

5.1 Benchmark Setup and Evaluation

In order to gain insights into the performance of the tested algorithms, a set of
120 problem instances was generated based on the methods described in related
references for various scheduling environments [45], [18], [35]. The detailed procedure
of how the problem instances are generated is available on the project web site at
[34].

The set of 120 problem instances was divided into the training and test sets, each
containing half of the problem instances. Depending on the problem instance, the
number of jobs can be 12, 25, 50 or 100, while the number of machines can be 3,
6 or 10. Problem instances of different properties were used in order to evolve DRs
which would be applicable on scheduling problems with different characteristics. The
training set was used by the GP in order to evolve DRs for some given criteria, after
which the effectiveness of these evolved DRs was then measured using the test set.
The total fitness of an individual for a specific criterion was calculated as a sum of
values of that criterion for each problem instance. Since problem instances have sig-
nificantly different characteristics, this can also cause that smaller problem instances
have little influence in the total objective value. In order to prevent this from hap-
pening, all the objectives have been normalised so that different problem instances
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have similar influence in the total objective value. For example each problem instance

for the Twt criterion is normalised with the following expression: fi =
∑n

j=1
wTj

Tj

nw̄Tj
p̄

where n denotes the number of jobs in the problem instance, w̄ the average weight
of the jobs, p̄ the average job processing duration and i the index of the current
problem instance. The normalisation of other objectives will be skipped for sakes of
brevity, but the expressions are similar to the one denoted for the Twt criterion.

As mentioned beforehand, the dynamic scheduling environment is considered in
this paper. This means that in the simulation environment jobs and their character-
istics are not available from the start of the system execution, but rather become
available when the job is released into the system. Therefore, jobs can only be sched-
uled after they are released into the system. Because of that the scheduling procedure
is being executed concurrently with the system execution and as soon as a job or
machine becomes available it is used in order to determine which of the available
jobs will be scheduled next on one of the available machines.

In order to obtain statistically significant results, each experiment was executed
30 times. All the reported results are based on the performance on the test set of
scheduling problems, in the following way: for each run, the Pareto front of non-
dominated solutions was recorded. These results are then evaluated on the test set,
and the Pareto front of solutions on the test set is recorded as the final solution set
for that run (since not all solutions which were non-dominated on the training set are
also non-dominated on the test set). For that obtained Pareto front three metrics
were calculated: HV (using an arbitrary reference point), IGD (where the Pareto
fronts of all experiments with the same many-objective criteria were combined into a
single Pareto front of non-dominated solutions) and the percentage of nondominated
solutions (ND) in the population, which is defined as the quotient of the number of
nondominated solutions in the population and the size of the population. The values
of the HV metric have additionally been scaled to the interval [0, 10] for each criteria
individually, since the HV values usually end up being quite large.

5.2 Parameter Optimisation

Since the performance of GP may significantly depend on the parameter values, pa-
rameter optimisation plays an important role in GP. Therefore a significant amount
of time was invested to optimise the parameters of the algorithms. For determining
the optimal parameter values it was chosen to minimise the many-objective criterion
(Twt, Ft, Nwt, Cmax, Tmax, Fmax). In order to decide which parameter value is bet-
ter, the average value of the HV metric on all 30 runs will be used, since this metric
measures the quality of solutions both in terms of diversity and convergence [38].
For the stopping criterion 100 000 function evaluations were chosen since a larger
number of evaluations did not lead to any improvements in the results.

Table 2 represents the average HV value of the 30 independent runs results
achieved for different population sizes for all the algorithms. The NSGA-III algorithm
uses different population sizes since it is suggested that the population size is more
or less equal to the number of reference points [15]. An additional problem is that the
number of reference points in NSGA-III will not always be the same since it depends
on the number of optimised criteria. Nevertheless, the number of reference points
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Table 2: Results for various population sizes

Algorithm Metric Population size
50 100 200 500 1000

MOEA/D HV 5.692 5.393 5.681 5.536 5.576
HaD-MOEA HV 4.956 5.55 5.999 7.0377 7.272
NSGA-II HV 7.107 5.665 8.217 8.474 8.839

NSGA-III population size
56 100 252 462 1287

NSGA-III HV 6.386 5.703 7.634 8.308 8.381

Table 3: Results for various mutation probabilities

Algorithm Metric Mutation probability
0.1 0.3 0.5 0.7 0.9

MOEA/D HV 5.564 5.553 5.692 5.679 5.687
HaD-MOEA HV 7.396 7.492 7.272 7.579 7.486
NSGA-II HV 8.945 8.929 8.839 8.536 8.833
NSGA-III HV 8.287 8.367 8.381 8.718 8.915

Table 4: Results for various neighbourhood sizes

Algorithm Metric Neighbourhood size
2 3 5 10 20

MOEA/D HV 5.86 5.848 5.708 5.692 5.617
HaD-MOEA HV 7.534 7.477 7.579 7.447 7.404

(and consequently the population size) is kept as close as possible to the obtained
optimal value.

Table 3 displays the average HV values based on the 30 independent runs,
achieved for different mutation rates. For this parameter it can be seen that dif-
ferent algorithms prefer different values, unlike for the population size.

Since HaD-MOEA and MOEA/D use the neighbourhood size, an additional pa-
rameter which is not used by the other two algorithms, this parameter is optimised as
well. Table 4 represents the average HV values obtained for different neighbourhood
sizes. From the results it can be seen that both algorithms achieve better results for
smaller neighbourhood sizes, MOEA/D for the size two and HaD-MOEA for the size
of five.

The MOEA/D algorithm has an additional parameter, which determines how
the decomposition of multi-objective optimisation is done. Three different decompo-
sition methods are compared: the Tchebycheff approach, the normalized Tchebycheff
approach and the boundary intersection (BI) approach. Based on the average HV
values presented in Table 5, the normalized Tchebycheff decomposition method was
chosen.

Table 5: Results for various decomposition methods

Algorithm Metric Mutation probability
Tchebycheff norm. Tchebycheff BI

MOEA/D HV 5.86 6.449 4.318
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5.3 Many-objective criteria combinations

In order to properly analyse the performance of DRs generated for optimising mul-
tiple objectives, several different objective combinations will be considered. The cri-
teria combinations were chosen in order to analyse if specific criteria combinations
can have an influence on the quality of generated DRs.

The criteria combinations will first be chosen in order to analyse how the different
objective types will influence the quality of generated DRs. The (Nwt, Tmax, Twt)
combination will be used in order to analyse if by grouping only one type of criteria,
namely due date related criteria, can lead to good performance of the generated
DRs. Other criteria combinations will group two criteria types, like completion time
and flowtime and completion time for combination (such as in criteria combinations
(Cmax, Fmax, Ft) and (Cmax, Cw, Mut, Fmax, Ft)), due date and flowtime(like
in combinations (Fmax, Ft, Nwt, Tmax, Twt)), or due date and completion time
(like in combinations (Cmax, Cw, Twt)). However, some combinations like (Cmax,
Cw, Fmax, Ft, Nwt, Tmax, Twt), are also considered in order to also analyse how
grouping of different combination types influences the results.

Additionally, it is also interesting to test whether grouping criteria of the same
definitions can also lead to good results. For that purpose, criteria which are defined
as maximum values will be grouped together in the criteria combination (Cmax,
Fmax, Tmax), as well as criteria which are defined as weighted sums in combinations
(Cw, Ft, Twt) and (Cw, Etwt, Ft, Nwt, Twt)

Finally, several criteria combinations will also be tested in order to analyse how
the inclusion and exclusion of the Etwt and Mut criteria influence the quality of
the evolved DRs. The reason why the influence of these two criteria are especially
analysed is because optimising them leads to extremely bad performance on most of
the other scheduling criteria. Therefore it is interesting to analyse how the inclusion
of such criteria, which are quite negatively correlated with the other scheduling
criteria, can influence the quality of the generated DRs. For the analysis several
criteria combinations of sizes five and seven which include those criteria (such as
combinations (Cmax, Etwt, Fmax, Ft, Mut, Nwt, Tmax), (Cmax, Etwt, Fmax, Ft,
Mut, Nwt, Tmax) and (Cmax, Etwt, Ft,Mut, Twt)), and those which do not include
them (like (Fmax, Ft, Nwt, Tmax, Twt) and (Cmax, Cw, Fmax, Ft, Nwt, Tmax,
Twt)) will be used for evolving DRs.

6 Results and discussion

6.1 Automatic generation of DRs for optimising multiple objectives

This section will present the results of automatically designed DRs for many-objective
optimisation, and the obtained results will be compared to those achieved by stan-
dard manually designed DRs and automatically designed DRs. The purpose of this
section is to determine if it is possible to design DRs that can outperform standard
DRs for several criteria simultaneously.
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6.1.1 Comparison of results achieved by MOGP and SGP

The goal of this subsection is to analyse if by optimising several criteria simultane-
ously by using multi-objective GP (MOGP) algorithms, the automatically generated
DRs will still be able to match the performance of DRs generated by the single
objective GP (SGP). In addition to that, it will also be analysed how the different
criteria combinations influence the results of MOGP algorithms, when compared to
SGP. The is comparison will be performed in a way that, from each of the 30 runs of
MO algorithms, the best value for each criterion is extracted and the average, min-
imum and standard deviation metrics are calculated. In the tables, the best value
for each result will be denoted in bold. Additionally, it will also be analysed how
the different criteria combinations which are optimised also influence the ability of
MOGP to outperform SGP.

Table 6 represents the results of MOGP and SGP algorithms for various crite-
ria combinations when optimising three criteria simultaneously. From the results it
can deduced that in most cases the many-objective algorithms are able to achieve
the same performance as the single objective GP. For some criteria combinations
it can even be seen that MOGP can generate DRs which significantly outperform
DRs designed by SGP. The most evident example of this is when optimising the
(Nwt, Tmax, Twt) criteria combination, where NSGA-III was able to evolve DRs
that outperform the best results of SGP by 3.5%, 5.6% and 5.5% for the Nwt, Tmax

and Twt criterion respectively. For the other criteria combinations the differences are
not as prominent, but nevertheless the DRs evolved by MOGP algorithms were able
to perform better or equally well as SGP, in most of the experiments. From the four
tested algorithms, the NSGA-III algorithm has shown to outperform the results of
SGP for all criteria combinations, while NSGA-II and HaD-MOEA have also shown
to outperform SGP for most objectives. On the other hand, MOEA/D has shown to
struggle a bit more than the other algorithms, but still managed to outperform SGP
for several objectives.

Table 7 represents the results of MOGP and SGP algorithms for various criteria
combinations when optimising five criteria simultaneously. Again, it can be seen
that the MOGP algorithms can achieve equally good results as the SGP algorithm,
in most of the cases. For the Cw, Etwt, Ft, Nwt, Twt criteria combination the
MOGP algorithms once again achieved quite good performance, even outperforming
SGP by 13% for the Etwt criterion. For the Fmax, Ft, Nwt, Tmax, Twt criteria
combination the algorithms have also shown to perform quite well, outperforming
the best results of SGP by 2.4% for the Twt criterion, 3.4% for the Nwt criterion, and
performing equally well as SGP for the other three criteria. However, for this number
of criteria it is also evident that the MOGP algorithms start to have problems in
order to outperform results from SGP. For example, for the Cmax, Etwt, Ft,Mut,
Twt criterion combination, the MOGP algorithms were unable to outperform SGP
for certain objectives. Additionally, it can also be seen that the HaD-MOEA and
MOEA/D algorithms have difficulties in performing as well as the SGP algorithm.

Table 8 represents the results of MOGP and SGP algorithms for various criteria
combinations when optimising five criteria simultaneously. For the Cmax, Cw, Fmax,
Ft, Nwt, Tmax, Twt criteria combination, all algorithms have shown to generally
outperform SGP, for most of the criteria. However, for the other two criteria combi-
nations, the MOGP algorithms are not able to outperform SGP for all of the criteria.
For those criteria combinations, DRs evolved by NSGA-II are shown to outperform
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Table 6: Results for optimising three criteria

Metrics Algorithm
MOEA/D HaD-MOEA NSGA-II NSGA-II SGP

Cmax, Fmax, Tmax

avg 38.25 38.23 38.09 38.08 38.29
stdev 0.11 0.142 0.095 0.1 0.15Cmax

min 37.99 37.93 37.83 37.87 38.02

avg 14.15 14.1 13.88 13.81 13.95
stdev 0.228 0.164 0.131 0.11 0.194Fmax

min 13.72 13.81 13.63 13.59 13.6

avg 2.594 2.519 2.5 2.447 2.7
stdev 0.118 0.096 0.088 0.046 0.291Tmax

min 2.372 2.383 2.371 2.371 2.376

Nwt, Tmax, Twt
avg 6.677 6.572 6.468 6.453 7.005
stdev 0.159 0.17 0.135 0.146 0.326Nwt
min 6.422 6.235 6.275 6.164 6.384

avg 2.56 2.525 2.491 2.419 2.7
stdev 0.093 0.09 0.082 0.075 0.291Tmax

min 2.391 2.359 2.327 2.25 2.376

avg 13.83 13.6 13.3 13.18 13.66
stdev 0.393 0.53 0.365 0.327 0.426Twt
min 13.21 12.94 12.72 12.28 12.96

Cw, Ft, Twt
avg 871.1 869.8 869.3 869.1 875.2
stdev 1.509 0.824 0.545 0.325 0.872Cw
min 869.3 869 867.9 867.9 873.8

avg 154.8 154.4 154.2 154 155.3
min 0.828 0.667 0.529 0.577 0.879Ft
stdev 153.4 153.3 153.4 153.1 153.9

avg 14.42 14.08 13.89 13.63 13.66
stdev 0.629 0.53 0.534 0.462 0.426Twt
min 13.19 13.02 13.03 12.79 12.96

Cmax, Fmax, Ft
avg 38.24 38.17 38.13 38.05 38.29
stdev 0.124 0.1 0.66 0.087 0.15Cmax

min 37.88 37.95 37.98 37.89 38.02

avg 14.08 14.05 13.88 13.79 13.95
min 0.159 0.242 0.133 0.11 0.194Fmax

stdev 13.82 13.67 13.63 13.59 13.6

avg 155.2 154.3 154.2 154.1 155.3
min 1.157 0.334 0.543 0.341 0.879Ft
stdev 153.9 153.5 153.1 153.5 153.9

Cmax, Cw, Twt
avg 38.3 38.26 38.21 38.14 38.29
stdev 0.12 0.143 0.116 0.137 0.15Cmax

min 38.1 37.87 37.91 37.88 38.02

avg 871.2 869.7 869.1 869.2 875.2
min 1.793 0.629 0.5 0.289 0.872Cw
stdev 868.6 868.9 868 868.6 873.8

avg 14.5 13.9 13.7 13.37 13.66
stdev 0.443 0.373 0.325 0.374 0.426Twt
min 13.38 13.15 12.96 12.7 12.96
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Table 7: Results for optimising five criteria

Metrics Algorithm
MOEA/D HaD-MOEA NSGA-II NSGA-III SGP

Cw, Etwt, Ft, Nwt, Twt

avg 875 872.2 871.4 871.6 875.2
stdev 3.808 1.953 1.162 1.543 0.872Cw
min 869.3 869.2 869.3 868.9 873.8

avg 307 323.5 259.7 273.12 274.2
stdev 28.76 29.04 14.66 13.83 18.17Etwt
min 261 279.8 209.4 242.7 236.9

avg 158.6 156.2 154.8 155.3 155.3
stdev 4.506 1.723 0.878 0.96 0.879Ft
min 153.5 153.7 153.4 153.9 153.9

avg 6.91 6.615 6.549 6.461 7.005
stdev 0.188 0.135 0.125 0.108 0.321Nwt
min 6.454 6.457 6.329 6.27 6.384

avg 14.27 13.7 13.39 13.26 13.66
stdev 0.682 0.367 0.314 0.288 0.426Twt
min 13.12 13.19 12.86 12.66 12.96

Cmax, Cw, Mut, Fmax, Ft

avg 38.3 38.15 38.06 38.04 38.29
stdev 0.103 0.118 0.108 0.079 0.15Cmax

min 38.06 37.9 37.83 37.85 38.02

avg 872.9 870.5 869.8 869.2 875.2
stdev 2.839 1.207 1.022 0.443 0.872Cmax

min 868.3 869.4 868.5 867.9 873.8

avg 0.058 0.057 0.053 0.053 0.053
stdev 0.006 0.004 0.002 0.002 0.003Mut

min 0.048 0.049 0.047 0.046 0.046

avg 14.22 14.07 13.94 13.9 13.95
stdev 0.228 0.174 0.16 0.118 0.194Fmax

min 13.9 13.76 13.74 13.64 13.6

avg 156.8 154.6 154.1 153.8 155.3
stdev 3.132 0.911 0.312 0.299 0.879Ft
min 153.8 153.4 153.7 153.2 153.9

Fmax, Ft, Nwt, Tmax, Twt

avg 14.55 14.2 13.89 13.84 13.9
stdev 0.437 0.359 0.161 0.109 0.194Fmax

min 13.9 13.7 13.6 13.66 13.6

avg 155.3 154.2 153.8 153.8 155.3
stdev 0.888 0.638 0.341 0.331 0.879Ft
min 153.9 153.4 153.3 153.2 153.9

avg 6.737 6.646 6.408 6.394 7.005
stdev 0.478 0.151 0.131 0.119 0.326Nwt
min 6.342 6.365 6.174 6.121 6.384

avg 2.605 2.478 2.425 2.41 2.7
stdev 0.12 0.064 0.06 0.041 0.291Tmax

min 2.36 2.385 2.33 2.35 2.376

avg 14.06 13.74 13.18 13.09 13.66
stdev 0.478 0.44 0.293 0.224 0.426Twt
min 13.32 12.8 12.68 12.72 12.96

Cmax, Etwt, Ft,Mut, Twt

avg 38.52 38.16 38.15 38.27 38.29
stdev 0.274 0.106 0.126 0.151 0.15Cmax

min 38.09 37.9 37.87 38.01 38.02

avg 311.9 316.2 261.4 273.2 274.2
stdev 32.78 26.14 21.35 13.13 18.17Etwt
min 267.7 269 200 239.9 236.9

avg 158.1 155.7 154.8 163.8 155.3
stdev 1.094 1.229 0.986 6.2 0.879Ft
min 153.4 153.3 153.3 155.7 153.9

avg 0.062 0.61 0.051 0.052 0.053
stdev 0.007 0.004 0.002 0.002 0.003Mut

min 0.051 0.052 0.046 0.048 0.046

avg 15.42 13.8 13.72 14.09 13.66
stdev 1.094 0.32 0.313 0.45 0.426Twt
min 13.67 13.01 13.16 13.42 12.96
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those of SGP in most cases, however, the other three MOGP algorithms were unable
to perform as well.

Table 9 represents the results of MOGP and SGP algorithms for various criteria
combinations when optimising nine criteria simultaneously. For this criteria combi-
nation it is even more evident that the MOGP algorithms exhibit problems in order
to achieve better results than SGP. The NSGA-II algorithm has shown to achieve the
best performance here, while the other three algorithms achieved better performance
than SGP only for a few criteria.

The results have demonstrated that MOGP algorithms are able to outperform
or at least perform equally well as SGP, for most of the tested criteria combinations.
Although MOGP demonstrated better performance on smaller criteria combinations
than on larger ones, it nevertheless seems that the combination of criteria which are
optimised has a larger influence on the possibility of MOGP outperforming SGP.
For example, grouping similar criteria like in (Nwt, Tmax, Twt) has shown to lead
to enable MOGP to significantly outperform SGP for each of the criteria. It seems
that by grouping similar criteria together the MOGP algorithms have a "wider" look
on the problem, which allows them to achieve much better performance on each
of optimised criteria. However, when different criteria types are mixed with each
other, it can be seen that the performance of MOGP algorithms depends on which
types of criteria are combined. For example, combining flowtime and completion
time criteria did not influence the effectiveness of MOGP, but when combining the
due date related criteria with the completion time criteria as in (Cmax, Cw, Twt),
or when combining different types of criteria as in (Cw, Ft, Twt), it can be seen
that the performance of MOGP algorithms decreases, and that some are unable to
outperform SGP for certain criteria. However, it is interesting to note that as the
number of criteria increases, but they still contain different criteria as in the (Fmax,
Ft, Nwt, Tmax, Twt) and (Cmax, Cw, Fmax, Ft, Nwt, Tmax, Twt) combinations,
the MOGP algorithms are able to outperform SGP in most of the cases. It is also
interesting to note that the performance of some can even increase than when op-
timising combinations of three different criteria types. Therefore it is beneficial to
include several criteria of the same type in the combination, since this can lead to
better performance than when only using a single criteria of each type. Combining
criteria of the same definitions did not show any significant influence on the results,
therefore it can be concluded that grouping criteria in this way is not beneficial.

It is interesting to analyse further how the inclusion of the Etwt and Mut criteria
influences the performance of MOGP algorithms. When optimising five criteria, it can
be seen that by including only one of those two criteria the MOGP algorithm are still
able to outperform SGP. However, it can be seen that the MOEA/D and HaD-MOEA
algorithms have more problems when these criteria are included. When both of the
criteria are included, then even the performance of NSGA-III drops, and only NSGA-
II is able to outperform the results of SGP almost consistently. When optimising
seven criteria a similar thing can be observed. NSGA-II is usually the algorithm
which is able to outperform results of SGP almost for all objectives. On the other
hand, the other three algorithms struggle much more in order to outperform SGP,
especially if both the Etwt and Mut are included. When optimising nine criteria,
even NSGA-II starts to struggle in order to outperform SGP. Based on the previous
observations, it is evident that for a smaller number of criteria including either Etwt
or Mut will not cause to big problems, and that most algorithms will still be able
to outperform SGP. However, by increasing the number of criteria or including both
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Table 8: Results for optimising seven criteria

Metrics Algorithm
MOEA/D HaD-MOEA NSGA-II NSGA-III SGP

Cmax, Cw, Ft, Fmax, Mut, Tmax, Twt

avg 38.35 38.16 38.14 38.2 38.29
stdev 0.152 0.112 0.121 0.126 0.15Cmax

min 38.07 37.84 37.86 37.89 38.02

avg 874.4 872.1 870.5 873.3 875.2
stdev 2.703 2.274 0.99 2.481 0.872Cw
min 868.8 869.2 869.2 869.2 873.8

avg 157.2 154.6 154.2 155.4 155.3
stdev 3.363 0.86 0.555 1.85 0.879Ft
min 153.5 153.3 153.5 153.6 153.9

avg 14.62 14.08 14.04 14.13 13.95
stdev 0.523 0.148 0.165 0.23 0.194Fmax

min 13.91 13.85 13.65 13.76 13.6

avg 0.066 0.6 0.052 0.053 0.53
stdev 0.007 0.005 0.002 0.002 0.002Mut

min 0.054 0.047 0.046 0.047 0.046

avg 2.647 2.48 2.43 2.505 2.7
stdev 0.164 0.083 0.042 0.075 0.291Tmax

min 2.446 2.377 2.359 2.412 2.376

avg 14.51 13.83 13.54 14.255 13.66
stdev 0.8 0.388 0.45 0.389 0.426Twt
min 13.24 13.01 12.85 13.75 12.96

Cmax, Etwt, Fmax, Ft, Mut, Nwt, Tmax

avg 38.37 38.18 38.2 38.36 38.29
stdev 0.209 0.074 0.086 0.112 0.15Cmax

min 38 38.04 37.97 38.18 38.02

avg 308.5 321.8 264.5 303.8 274.2
stdev 38.14 29.14 17.74 27.15 18.17Etwt
min 217.6 270.4 213 224.8 236.9

avg 14.44 14.2 14.05 14.56 13.95
stdev 0.479 0.254 0.13 0.42 0.194Fmax

min 13.88 13.83 13.78 13.97 13.6

avg 159.6 156.8 155.2 160.433 155.3
stdev 5.648 2.041 1.072 5.171 0.879Ft
min 154.1 153.8 153.8 153.5 153.9

avg 0.064 0.061 0.051 0.052 0.053
stdev 0.007 0.004 0.002 0.003 0.003Mut

min 0.052 0.049 0.047 0.046 0.046

avg 7.04 6.703 6.704 6.856 7.005
stdev 0.212 0.133 0.139 0.151 0.321Nwt
min 6.545 6.357 6.407 6.492 6.384

avg 2.717 2.417 2.417 2.475 2.7
stdev 0.173 0.038 0.068 0.064 0.291Tmax

min 2.427 2.362 2.188 2.344 2.376

Cmax, Cw, Fmax, Ft, Nwt, Tmax, Twt

avg 38.29 38.25 38.11 38.13 38.29
stdev 0.084 0.103 0.103 0.112 0.15Cmax

min 38.07 38.02 37.88 37.96 38.02

avg 871.4 870.6 869.1 869.6 875.2
stdev 1.533 1.622 0.264 0.409 0.872Cw
min 869.3 868.2 868.4 868.7 873.8

avg 14.25 14.21 13.92 13.88 13.95
stdev 0.289 0.251 0.195 0.112 0.194Fmax

min 13.75 13.7 13.5 13.64 13.6

avg 154.3 154.1 153.6 153.9 155.3
stdev 0.136 0.512 0.265 0.367 0.879Ft
min 153.5 153.5 153 153.2 154.4

avg 6.837 6.582 6.439 6.419 7.005
stdev 0.136 0.178 0.141 0.112 0.321Nwt
min 6.557 6.163 6.112 6.164 6.384

avg 2.613 2.473 2.424 2.416 2.7
stdev 0.097 0.073 0.066 0.043 0.291Tmax

min 2.44 2.376 2.352 2.357 2.376

avg 14.37 13.56 13.21 13.16 13.66
stdev 0.417 0.381 0.371 0.338 0.426Twt
min 13.44 12.83 12.58 12.77 12.96
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Table 9: Results for optimising nine criteria

Metrics Algorithm
MOEA/D HaD-MOEA NSGA-II NSGA-III SGP

avg 38.35 38.2 38.18 38.3 38.29
stdev 0.172 0.077 0.112 0.111 0.15Cmax

min 37.89 38 37.98 38.09 38.02

avg 875 874.5 872.7 879.1 875.2
stdev 3.9 3.02 2.072 3.251 0.872Cw
min 870.5 870.4 869.8 874.2 873.8

avg 321 327.3 279.4 289.7 274.2
stdev 26.11 29.69 17.32 14.04 18.17Etwt
min 275.9 282.5 253.7 270.3 236.9

avg 14.69 14.27 14.05 14.48 13.95
stdev 0.748 0.27 0.142 0.421 0.194Fmax

min 14.03 13.89 13.76 13.9 13.6

avg 159.5 157.1 155.6 161 155.3
stdev 4.475 2.638 1.252 4.231 0.879Ft
min 154.3 154.1 153.7 154.4 153.9

avg 0.065 0.061 0.051 0.053 0.053
stdev 0.008 0.006 0.002 0.003 0.003Mut

min 0.052 0.048 0.046 0.0482 0.046

avg 6.924 6.684 6.677 6.804 7.005
stdev 0.198 0.148 0.134 0.152 0.321Nwt
min 6.536 6.414 6.434 6.531 6.384

avg 2.637 2.4 2.428 2.444 2.7
stdev 0.156 0.051 0.059 0.048 0.291Tmax

min 2.389 2.28 2.269 2.325 2.376

avg 14.73 13.67 13.71 14.15 13.66
stdev 0.915 0.388 0.359 0.37 0.426Twt
min 13.39 12.97 13.08 13.48 12.96

criteria in the combination, the results of all algorithms start to deteriorate, while
the algorithms are more and more unable to outperform results of SGP.

Based on the results shown in this section, it can be concluded that MOGP
algorithms are for most criteria combinations able to perform better, or equally well
as SGP. If criteria of equal type are grouped together and optimised, the MOGP
algorithms are even able to achieve significantly better performance than SGP. As
for the dependence on the criteria combinations, it was shown that the performance of
MOGP algorithms depends more on the combination of criteria which are optimised,
than on the size. MOGP algorithms performed well on for optimising all criteria
combinations which did not include the Etwt and Mut criteria, since optimising
those two criteria leads to a bed performance on all other criteria, and therefore the
size of the Pareto front largely increases.

6.2 Analysis of the influence of the generated DRs

The results in the previous section give a good overview of the performance of dif-
ferent many-objective algorithms, and how good solutions they can achieve for the
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different criteria when compared to SGP. However, with these results alone it is
impossible to determine the quality of the actual many-objective DRs which were
developed. Therefore, the goal of this section is to compare several automatically
generated DRs for optimising multiple objectives, with certain standard manually
designed DRs.

In this section the performances of several generated many-objective DRs will be
compared to the results achieved by four popular DRs for the unrelated machines
environment (min-min [14], max-min [8], sufferage [25], min-max [32]). The criterion
for selecting the generated DRs was that they achieve better results for as many
optimisation criteria as possible, when compared to manually defined DRs. Table
10 represents the results achieved by the various DRs. The row denoted with GA
represents results which were achieved by using a genetic algorithm (GA), while the
row denoted by SGP shows the very best results achieved by the single objective
GP when it was applied to each of the criteria independently. This means that the
results denoted in this row were not achieved by a single DR, but rather nine DRs,
each evolved for a different criterion. Naturally, DRs are not expected to generate
schedules of equal quality as the GA (since GA performs scheduling in the static
conditions, while DRs solve it in dynamic conditions). However, these results give
a good estimate of the lower bounds for this problem. For the many-objective DRs
only the results for the criteria for which they were evolved are denoted in the table,
while the rest of them will be marked with "-". In addition, for the generated DRs
each objective for which the DR achieved better results than all of the manually
defined DRs will be shown in bold.

First the DRs for the three objectives will be analysed. Here it can be seen
that rules R1, R2 and R3 achieve better values for each of the criteria for which
they were optimised, than any of the manually defined DRs. For rule R1 it is also
interesting to note that it achieved even better results than the best DRs which
were evolved by SGP for the three optimised criteria. This demonstrates that many-
objective algorithms can outperform single objective algorithms, if the criteria which
should be optimised are wisely chosen, such as in this case where all the optimised
criteria were due date related. On the other hand, rules R4 and R5 were not able to
outperform the best results of all standard DRs. The problems in this case seem to
have occurred because the Cmax criterion was included in the optimisation set. This
just demonstrates that even for a smaller number of objectives the algorithms can
struggle depending on the criteria combination being optimised. However, although
rule R6 also contains the Cmax criterion it achieved a worse result only for Cmax,
and to such an extent which could be considered almost negligible (0.1% worse than
the sufferage DR). Therefore, it seems that the Cmax, Fmax and Tmax criteria are
much more suitable to be optimised together than the previous two combinations.
One interesting fact that should also be noted about this criteria combination is
that all three criteria have the same definition (as the maximum value), therefore it
is possible that these three criteria are more easily optimised with each other since
they have a similar definition.

By analysing DRs generated for five criteria it can be seen that the generated
DRs are usually able to outperform the standard DRs in four criteria, which can
be seen from rules R7, R9 and R10. Rules R9 and R10 optimise the same criteria
combination, however here it can be seen how DRs were unable to optimise both
the Fmax and Ft criteria, and therefore had to make a compromise between two of
them. For the other two criteria combinations the many-objective algorithms were
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Table 10: Comparison of different DRs

method Criteria
Cmax Cw Etwt Fmax Ft Mut Nwt Tmax Twt

GA 36.79 844.4 80.55 12.74 140.8 0.006 5.340 1.897 9.533
SGP 38.02 873.8 236.9 13.60 154.0 0.046 6.384 2.376 12.96

Manually defined DRs
min-min 38.31 877.7 997.8 15.66 157.2 0.129 7.144 3.161 16.72
max-min 38.84 916.9 968.6 14.27 195.9 0.127 8.138 3.107 22.07
sufferage 37.93 881.7 992.9 14.68 161.0 0.123 7.195 3.054 16.65
min-max 38.07 887.8 988.2 14.25 167.3 0.129 7.793 3.019 17.49

Evolved DRs - three objectives
R1 - - - - - - 6.326 2.310 12.86
R2 - - - - - - 6.566 2.249 12.28
R3 - 871.8 - - 153.9 - - - 15.01
R4 38.49 876.3 - - - - - - 13.62
R5 37.89 - - 13.61 175.5 - - - -
R6 37.97 - - 13.62 - - - 2.754 -

Evolved DRs - five objectives
R7 - 877.5 992.5 - 157.1 - 6.734 - 14.46
R8 38.36 872.7 - 15.80 155.9 0.126 - - -
R9 - - - 15.80 157.2 - 6.620 2.545 13.78
R10 - - - 13.95 165.7 - 6.941 2.436 14.73
R11 38.49 - 961.1 - 189.2 0.123 - - 14.29

Evolved DRs - seven objectives
R12 38.39 876.4 - 15.88 156.8 0.123 - 2.683 14.64
R13 38.47 - 961.1 15.78 189.5 0.123 6.975 2.429 -
R14 38.57 - 965.5 14.25 200.5 0.122 8.276 2.965 -
R15 38.36 877.0 - 15.42 156.5 - 6.699 2.692 14.28

Evolved DRs - nine objectives
R16 38.71 909.7 961.7 16.49 187.7 0.123 6.991 2.517 14.21
R17 38.60 876.6 995.4 15.72 155.4 0.137 7.097 2.831 14.82

unable to generate DRs which could optimise them all equally well. This can be seen
from rules R8 and R11 which outperform the best results from standard DRs for
only two and three objectives respectively. Both of these criteria combinations had
the Cmax criterion included, which again leads to the conclusion that it is hard to
simultaneously optimise this criterion within the given criteria combinations, and
that the algorithms simply can not generate a DR which could handle such a criteria
combination.

When optimising seven criteria it can be seen that the algorithms usually manage
to generate DRs which outperform the standard DRs in four or five objectives,
depending on the combination of criteria which is optimised. From the results of
the generated DRs it can be seen that the rules mostly focused on optimising due
date and flowtime related criteria. It is interesting to note that none of the presented
DRs were able to outperform the standard DRs in the Cmax criterion, however the
algorithms did evolve DRs which were able to do so but at the expense of greatly
deteriorating the other criteria.

Finally, rules R16 and R17 represent two examples of DRs which were evolved
for the many-objective problem consisting of all nine criteria. In most cases the algo-
rithms generated DRs which focused on optimising the due date related objectives
(Twt, Nwt and Tmax) and either on the Etwt and Mut criteria (as rule R16), or
on Cw and Ft criteria (as rule R17). Unfortunately the algorithms were unable to
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evolve a rule which could achieve better results than the standard DRs in more than
five criteria. It is interesting to note that the expression of rule R17 is of similar
size as that of rule R1, which demonstrates that the number of objectives does not
directly influence the size of the evolved DR.

Although automatically generated DRs have shown to achieve better results than
standard DRs in most cases, this does nevertheless mean that automatically designed
DRs are superior to standard DRs in all cases. This certainly depends on the criteria
set which needs to be optimised, and can be seen from rule R8. For this criteria
combination it was shown that no DR could perform better than the standard DRs
for more than two criteria. Therefore, in such a case it does not make sense to develop
new DRs, since they can not outperform the standard DRs in an extent that would
justify the effort and time for their development. Additionally, it can also be seen
that for most of the DRs denoted in table 10, especially for DRs developed for larger
objective sets, the DRs were unable to outperform the standard DRs for the Cmax

criterion. Therefore, if this criterion is one of the more important ones, it would also
probably prove to be more worthwhile to use a standard DR than to develop a new
one, since the results again are not in the favour of automatically designed DRs.

An additional thing which can be seen from the results in table 10 is that GP is
able to evolve DRs which can outperform standard DRs in at most five criteria.
Therefore, even if more than five criteria are optimised simultaneously, GP will
probably be unable to evolve a DR which could outperform the standard DRs for
all of them. Nevertheless, optimising more than five criteria can also prove useful in
order to find out which for which criteria the many-objective GP can evolve good
DRs, and for which it will struggle.

In order to demonstrate how the evolved DRs look like, we give examples of rules
R1:

pmin+PAT + pmin

wT
−(pt+MR+pavg∗wT )+ SL

MR ∗ w2
T

+dd+wT +pmin− w

age
−wT ,

and R17:

((PAT + wC) ∗ (wT − pavg)− (wE + pavg + w + dd))∗

((PAT + pmin) ∗ (wC − dd)− (wC − dd− (pt + MR))− (dd

pt
− pt).

After a short analysis of DR R1, several important building blocks of the rule can be
outlined. Since the DR is optimised for due date criteria, one of the most important
parts of the rule is SL

MR∗w2
T

+dd. The dd part of the expression denotes that jobs which
have a larger due date will have a larger priority value. On the other hand, the SL

MR∗w2
T

expression will have a larger value for jobs which have larger slack values (amount of
time until they would be late), and have a smaller priority. From the rest of the DR
it was shown that the expression PAT + pmin

wT
− PT −MR is also important. The

sub-expression pmin
wT

will prioritise jobs which have a smaller minimum execution
time and larger priority, while the PAT terminal gives more importance to jobs
whose best machine will be free soon. The other part of the expression, −pt −MR
prefers jobs which have a larger processing time and machines which will be free in
a much latter time, however it seems that this part of the DR is important since it
will allow for the rule to schedule jobs on machines other than their best machine.
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The other expressions have shown to be useless in the rule and seem to represent
noise which was accumulated during the evolution process, since with their removal,
the fitness of the rule can even slightly improve. Therefore, rule R1 can be reduced
to the following rule, without any deterioration in performance:

PAT + pmin

wT
− pt−MR + SL

MR ∗ w2
T

+ dd.

The second rule is extremely hard to analyse in the given form, however, after manual
simplification, rule R17 can be written as:

PAT∗pavg∗dd∗(PAT +pmin)−pavg∗PAT∗(pt+MR)+dd∗dd∗pmin−dd∗(pt+MR),

without big influence in its overall quality. Although the rule is still quite compli-
cated, parts of it can now be analysed. For example the PAT∗pavg∗dd∗(PAT +pmin)
will have a larger value for jobs with a later due date, but also that have longer pro-
cessing times and whose machine on which they achieve their minimum processing
time is taken the longest. The expression dd∗dd∗ (PAT +pmin) functions similarly.
The other two expressions prefer jobs with longer processing times and machines
which become ready later in time. This is a bit surprising, but probably these two
expressions serve to distribute the jobs more evenly on all the machines, since their
value is usually smaller than of the other two previously denoted expressions. There-
fore, generally this rule will prefer jobs which have a close due date, and which can
quickly be executed. An additional interesting thing which can be noted from the
expression is that no weight nodes are used in the end (although a lot of them were
present in the original rule representation), which can lead to the conclusion that
for rules which need to perform well on several criteria, weight nodes are not that
important.

Based on the previous analysis it can be seen that the two rules are quite hard
to interpret in their original form, however, when simplified it can be seen that
the rules are much easier to interpret and that some general conclusions can be
drawn from them. The interpretability of rules could probably be improved by using
dimensionally aware GP [41] which should generate more interpretable expressions.
Many tree simplification techniques have also shown to not only effectively decrease
the sizes of generated expressions, but also evaluation time of expressions and their
interpretability. These methods are can be based on algebraic simplification rules [72],
numerical simplification [42], or numerical relaxation of algebraic rules [39]. Similarly,
weights which constitute the degree of contribution could also be introduced for
each node and a gradient descent method could be used in order to determine the
weights of each node, and therefore also the importance of each node and subtree
[71]. Another way of controlling the size could be to include the size of the DRs as
an additional objective in the optimisation process, however it is questionable how
this would reflect on the overall algorithm performances. It is interesting to note
that although rule R1 was evolved for a smaller criteria set, that this is not reflected
in the sizes of the expressions, which can be seen to be the same for both rules.
Therefore, even if the optimised criteria set is easier for the many-objective to be
solved, this will unfortunately not be reflected in the complexity of the evolved DRs.

The results presented in this section have shown that automatically generated
multi-objective DRs can perform quite well when compared to standard manually
designed DRs. However, there is a limit to the number of criteria in which the multi-
objective DRs can outperform standard DRs, since it was shown that automatically
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generated multi-objective DRs can not outperform standard DRs in more than five
criteria. Nevertheless, automatically designed multi-objective DRs offer greater flex-
ibility since they allow for the choice of objectives for which the DR should perform
best, thus allowing generation of DRs tailored for specific situations and problems.

6.3 Correlation of scheduling criteria

In the previous section it was shown that the performance of algorithms and the
quality of DRs depends highly on the criteria set which was optimised. Since the
performance of the algorithms has shown to drastically depend on the combination of
the criteria which are optimised, this section will analyse how the different scheduling
criteria are correlated with each other.

In order to visualise the interdependencies between different criteria, all DRs of
individual algorithms were aggregated into a single Pareto front of nondominated
solutions, for the case of optimising all nine criteria. Figure 2 represents the visuali-
sation of Pareto fronts for all pairs of two different objectives. Based on the results
in the previous section it is possible to observe that certain objectives are noncon-
flicting, and therefore the many-objective algorithms were able to find DRs which
perform well on all of them. This is most evident for the due date related criteria
(Nwt, Tmax, Twt), for which the algorithms achieved very good performance and
evolved high quality DRs. The Pareto fronts of the Twt − Tmax and Tmax − Nwt
criteria combinations show that the solutions form almost a straight line for those
combinations, meaning that by optimising one criterion, the other criterion will also
be indirectly optimised. In addition to those three criteria, the Ft and Cw criteria
have also shown a positive correlation between each other, which can be seen not
only from Figure 2, but also from the fact that many DRs denoted in the last section
usually achieved good results simultaneously for both of the criteria. Many-objective
DRs have also shown to perform well when the (Cmax, Fmax, Tmax) objective is op-
timised. In addition to those relations, it was also shown that by optimising due date
related criteria it was also possible to optimise the Ft and Cw criteria to a certain
degree. This demonstrates that even different kind of criteria can be, to a certain
extent, positively correlated and that it is possible to mutually optimise them. A
reason for this is possibly due to the fact that all those criteria try to schedule the
jobs as soon as possible, the difference is just depending on whether the jobs will be
scheduled as to finish as fast as possible, to remain as less as possible in the system,
or to finish before their due date.

On the other hand, several criteria have proven to be quite hard for many-
objective GP to optimise simultaneously with others. One such example is the Cmax

criterion, which could usually be optimised well together with the Fmax criterion,
but only at the expense of decreasing the performance of the DRs on other criteria.
A more interesting relation can be observed between the Cw and Cmax, Ft and Fmax

criteria. Although the first two are completion time related, while the second two
are flowtime related, it was shown that the algorithms were unable to evolve good
DRs which could optimise both. This is demonstrated by optimising the (Cmax, Cw,
Fmax, Ft, Mut) combination, where the algorithms were able to evolve DRs which
can outperform the standard DRs in only two out of the five criteria. One such rule
was R8 which was denoted in table 10, and which was shown to be able to optimise
only the Cw and Ft criteria, while for the others it achieved inferior results. Other
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rules evolved for this criteria set would optimise Cmax and Fmax criteria, but never
any combination of those with either the Cw of Ft criteria. Rules R9 and R10 also
demonstrate such behaviour. Therefore, unlike for the due date related criteria, where
the different criteria have shown to be positively correlated, this was not shown to
be the case for the flowtime or completion time related ones.

There is no apparent reason why for the due date related criteria it is possible
to simultaneously optimise the Twt and Tmax, and why for Cmax and Cw, or Ft
and Fmax this is not the case. One possible explanation could be that the due date
related criteria are more flexible, meaning that not all jobs will in the end contribute
to the criteria value, rather only the jobs which are late will do so, and such jobs
represent only a fraction of jobs in the environment. On the other hand, there is
no such flexibility for the other two criteria types, since every job will in the end
directly contribute to the value of the criteria. Therefore it is much harder to make
compromises since, for example, trying to minimise the maximum flowtime could
have a negative effect on several other jobs and thus increase the total flowtime of
the entire system.

Although many of the previously considered criteria are negatively correlated,
optimising one such criterion will not lead to extremely bad results on the other
criteria. Unfortunately, this can not be said for the Etwt and Mut criteria, by whose
optimisation the results for the other criteria deteriorate drastically. This is also
backed up by the results of different algorithms, where it can be seen that if the
two criteria are included in the optimisation set, the performance of the algorithms
deteriorates. This is a consequence of the way they are defined, since for example the
Etwt criterion will try to complete all the jobs as close to their due date as possible.
This will naturally have a negative effect on the flowtime criteria, since jobs will stay
longer in the system, or the tardiness criteria, since it will be needed to compromise
between the earliness and tardiness of jobs, and also on completion time, since jobs
will not be finished as soon as possible, but rather as close to their due date which
can be in a much later time. Therefore, in many objective optimisation these two
criteria could be seen as some additional secondary objective, rather than the main
criteria which need to be optimised as best as possible, since this would lead to
inferior results on all the other criteria in the optimisation set.

From the observations in this section it can be concluded that MOGP algorithms
have shown to perform better if positively correlated criteria are optimised together.
However, even by optimising negatively correlated criteria is not extensively prob-
lematic, if by optimising one criteria, the values of the other are not extremely
deteriorated, like for Twt when optimising Cmax. More problematic are criteria like
Etwt and Mut where by optimising those criteria, the values for the other criteria
become extremely bad. Therefore, great care needs to be taken when choosing the
set of criteria which needs to be optimised, especially when choosing criteria which
are negatively correlated, since the combination of criteria will heavily influence the
quality of the results of MOGP algorithms.

6.4 Performance analysis of many-objective algorithms

This section will analyse the performances of all algorithms for different criteria
number and combinations, with regards to the convergence and diversity of the
obtained Pareto fronts. The goal of this section is to compare the different MOGP
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Fig. 2: Pareto fronts for pairwise objective combinations when optimising nine
criteria

algorithms with each other, and provide an analysis on why each of them performs
well on the given situation.

For each criteria combination the average values of the HV, IGD and ND metrics
are calculated. The Wilcoxon rank-sum test is also used in order to determine if
there are significant differences for the HV and IGD metrics between the individ-
ual algorithms. The differences are considered significant if the obtained value for
p is smaller than 0.05. The distributions of the aggregated Pareto fronts for each
algorithm and each criteria they optimised will also be compared, and order to vi-



Title Suppressed Due to Excessive Length 27

Table 11: HV and IGD values for optimising three criteria

Metrics Algorithm
MOEA/D HaD-MOEA NSGA-II NSGA-III

Cmax, Fmax, Tmax

HV 3.036 4.006 6.649 7.309
IGD 0.05221 0.05015 0.04009 0.03682
ND 0.4 0.2 0.3 0.23

Nwt, Tmax, T wt
HV 4.698 5.706 6.872 7.25
IGD 0.70834 0.58894 0.44280 0.38160
ND 5 0.35 0.45 0.31

Cw, F t, T wt
HV 3.523 5.539 7.4 7.578
IGD 0.02965 0.02525 0.02184 0.01891
ND 15 1.5 3.25 2.1

Cmax, Fmax, F t
HV 3.84 5.031 6.661 7.341
IGD 0.03363 0.02798 0.02145 0.019514
ND 15 1.7 3.1 2.2

Cmax, Cw, T wt
HV 3.312 5.04 6.651 7.201
IGD 0.02522 0.02100 0.01906 0.01751
ND 15.4 2.1 3.8 2.7

sualise these distributions the box-plot representations will be used. Through these
distributions of the final Pareto front it is possible to determine some properties of
different algorithms.

Table 11 presents the results achieved for optimising various combinations of
three criteria, while Figure 3 represents the box-plot figures of the HV and IGD
metrics. For the HV metric NSGA-II and NSGA-III achieved significantly better
results for all criteria combinations when compared to the other two algorithms.
Between those two algorithms, NSGA-III was significantly better when optimising
(Cmax, Fmax, Tmax) and (Cmax, Fmax, Ft), while for the other three criteria com-
binations, there was no significant difference. As for the IGD criteria, NSGA-III and
NSGA-II have again proven to be significantly better than the other two algorithms,
with NSGA-III achieving significantly better results than NSGA-II for all criteria
combinations except the (Nwt, Tmax, Twt) criteria combination.

The solution distributions for three criteria are shown in Figure 4. The red dots
in the box-plots denote the maximum outlier, while the purple dots denote minimum
outliers. In most cases the solution distributions are quite similar between the algo-
rithms (like for optimising the (Cmax, Cw, Twt) criteria combination), or algorithms
tend to have a good distribution on one or two criteria, while on the others it is not
as good (for example NSGA-III for the (Cmax, Fmax, Tmax) criteria combination).
The only situation where a considerable gap between the results exists is for opti-
mising the (Nwt, Tmax, Twt) criteria combination, where the NSGA-III algorithm
achieved the best solution distributions for all three criteria.

Table 12 presents the results for optimising several combinations of five criteria.
The box-plot representations for the HV and IGD values can be seen in figure 5.
For the HV metric, NSGA-II achieves significantly better results than all other al-
gorithms for all criteria combinations, except for the (Cmax, Cw, Mut, Fmax, Ft)
and (Fmax, Ft, Nwt, Tmax, Twt) where there is no significant difference between
it and NSGA-III. On the other hand, for the IGD criteria, the NSGA-III algorithm
achieved significantly better results for all criteria combinations, except for (Cmax,
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(a) Cmax, Cw, Twt (b) Cmax, Fmax, Ft

(c) Cmax, Fmax, Tmax (d) Cw, Ft, Twt

(e) Nwt, Tmax, Twt

Fig. 3: HV and IGD values for optimising three criteria

Table 12: HV and IGD values for optimising five criteria

Metrics Algorithm
MOEA/D HaD-MOEA NSGA-II NSGA-III

Cw, Etwt, F t, Nwt, T wt
HV 1.871 3.558 8.453 7.61
IGD 0.00210 0.00156 0.00080 0.00087
ND 65.6 24 52.3 52.2

Cmax, Cw, Mut, Fmax, F t
HV 2.926 6.274 8.787 8.958
IGD 0.00244 0.00157 0.00124 0.00112
ND 36.7 8.1 18.8 20.2

Fmax, F t, Nwt, Tmax, T wt
HV 2.54 4.599 7.582 7.735
IGD 0.01018 0.00790 0.00524 0.00495
ND 27.9 4.4 17.5 11.7

Cmax, Etwt, F t,Mut, T wt
HV 2.733 5.276 8.078 7.478
IGD 0.00191 0.00120 0.00077 0.00075
ND 72.6 35.7 40.9 47.5

Etwt, Ft, Mut, Twt) and (Fmax, Ft, Nwt, Tmax, Twt), where there was no signifi-
cant difference between it and NSGA-II, and for (Cw, Etwt, Ft, Nwt, Twt) where
NSGA-II achieved better results.

Figure 6 represents the solution distributions of the aggregated Pareto fronts
for each algorithm separately. It can be seen that for three criteria combinations,
namely (Cw, Etwt, Ft, Nwt Twt), (Cmax, Cw, Mut, Fmax, Ft) and (Cmax, Etwt,
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(a) Cmax, Cw, Twt

(b) Cmax, Fmax, Ft

(c) Cmax, Fmax, Tmax

(d) Cw, Ft, Twt

(e) Nwt, Tmax, Twt

Fig. 4: Solution distributions for three criteria
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(a) Cmax, Cw, Mut, Fmax, Ft (b) Cmax, Etwt, Ft, Mut, Twt

(c) Cw, Etwt, Ft, Nwt Twt (d) Fmax, Ft, Nwt, Tmax, Twt

Fig. 5: HV and IGD values for optimising five criteria

Ft, Mut, Twt), a single algorithm cannot provide good distributions over all criteria.
For example, for the (Cmax, Etwt, Ft, Mut, Twt) criteria combination, it can be seen
that the HaD-MOEA algorithm was unable to achieve good solution distributions
for the Etwt and Mut criteria, but on the other hand it was able to achieve better
distributions for the remaining criteria when compared to the other algorithms. For
the (Fmax, Ft, Nwt, Tmax, Twt) criteria combination it can be seen that for the
due date related criteria all algorithms deliver quite similar solution distributions,
while for the other two criteria the NSGA-II algorithm performs worse than the
other algorithms (which is due to the quite large outlier values for the Ft and Fmax

criteria).
Table 13 represents the results achieved for three combinations of seven criteria,

while the box-plot representation of these results are shown in Figure 7. For the HV
metric the NSGA-II algorithm achieved significantly better results than any other
algorithm for the criteria combinations in figures 7a and 7c, while for the combination
in figure 7b there was no significant difference between it and NSGA-III. For the IGD
metric, the NSGA-II algorithm has shown to achieve significantly better results than
any other algorithm on all criteria combinations, except for the criteria combination
in figure 7c, where it did not achieve significantly better results than NSGA-III.

The distribution of solutions found by the algorithms is presented in figure 8. Here
it can again be seen how neither of the algorithms achieves the best distributions for
all criteria. Once again the Etwt and Mut criteria have proven to be problematic.
The HaD-MOEA algorithm achieved the worst distributions for those two criteria,
while achieving good distributions for remaining criteria. Regarding the solution
distributions of the other three algorithms, it is hard to proclaim any algorithm as
the best, since the distributions are quite similar and depend heavily on the given
criteria, but overall the NSGA-II algorithm seems to have been able to achieve the
best distributions overall.

Table 14 represents the results achieved for all nine criteria, while Figure 9 rep-
resents the distributions of HV and IGD in box-plot presentation. For this criteria
combination, the NSGA-III algorithm achieves significantly better results than other
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(a) Cmax, Cw, Mut, Fmax, Ft

(b) Cmax, Etwt, Ft, Mut, Twt

(c) Cw, Etwt, Ft, Nwt Twt

(d) Fmax, Ft, Nwt, Tmax, Twt

Fig. 6: Solution distributions for five criteria

algorithms, for both the HV and IGD metrics. Therefore, even if it was unable to
find the best minimum values for the scheduling criteria, it was able to obtain the
most diverse Pareto front out of all the algorithms.

Figure 10 represents the solution distributions achieved by all algorithms. Again
it can be seen that no algorithm is able to dominate in distributions for all criteria.
For example, the HaD-MOEA algorithm obtained good distributions for all criteria
except for Etwt and Mut. The distributions of the other three algorithms are mostly
similar, with NSGA-III being able to find the less scattered solution set.

In the experiments it was shown that no single algorithm was able to achieve
the best results over all of the tested criteria subsets. For the smallest criteria sizes
of three, the best results were usually achieved by the NSGA-III algorithm, which
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Table 13: HV and IGD values for optimising seven criteria

Metrics Algorithm
MOEA/D HaD-MOEA NSGA-II NSGA-III

Cmax, Cw, F t, Fmax, Mut, Tmax, T wt
HV 3.541 7.196 9.1 8.1
IGD 0.00406 0.00257 0.00149 0.001543
ND 39.5 13.2 24.9 24.8

Cmax, Etwt, Fmax, F t, Mut, Nwt, Tmax

HV 2.949 6.674 8.756 7.773
IGD 0.00174 0.00116 0.00081 0.00085
ND 77.9 44.2 59.5 66.8

Cmax, Cw, Fmax, F t, Nwt, Tmax, T wt
HV 1.55 4.449 7.561 7.592
IGD 0.00767 0.00613 0.00432 0.00450
ND 43.1 7.7 23.7 24.3

(a) Cmax, Cw, Ft, Fmax, Mut, Tmax, Twt (b) Cmax, Cw, Ft, Fmax, Nwt, Tmax, Twt

(c) Cmax, Etwt, Fmax, Ft, Mut, Nwt, Tmax

Fig. 7: HV and IGD values for optimising seven criteria

Table 14: HV and IGD values for optimising nine criteria

Metrics Algorithm
MOEA/D HaD-MOEA NSGA-II NSGA-III

HV 2.565 6.497 7.872 8.179
IGD 0.00157 0.00104 0.00077 0.00068
ND 81.3 44.9 58.2 63.3

can be seen not only from the HV and IGD values, but also through the fact that it
achieved the best values for most of the optimised criteria. However, as the number
of criteria grew it was possible to observe that the NSGA-III algorithm started to
encounter difficulties, as it was sometimes outperformed by NSGA-II. For optimising
five criteria, NSGA-III still achieves better results than NSGA-II for most of the
criteria (except for the combination (Cmax, Etwt, Ft,Mut, Twt), where both the
Etwt and Mut criteria are included). However, based on the HV and IGD metrics,
there was mostly no difference between the two algorithms. Similar behaviour is also
evident with seven criteria, where NSGA-III started achieving worse results than
NSGA-II for most of the objectives. For the HV and IGD metrics the NSGA-II
algorithm has even outperformed NSGA-III for two out of the three tested criteria



Title Suppressed Due to Excessive Length 33

(a) Cmax, Cw, Ft, Fmax, Mut, Tmax, Twt

(b) Cmax, Cw, Ft, Fmax, Nwt, Tmax, Twt

(c) Cmax, Etwt, Fmax, Ft, Mut, Nwt, Tmax

Fig. 8: Solution distributions for seven criteria

Fig. 9: HV and IGD values for optimising nine criteria

combination. In the case of nine criteria, NSGA-III was once again able to outperform
NSGA-II.

Such behaviour is quite surprising, since it would be expected that the NSGA-III
algorithm performs better than NSGA-II for larger criteria combinations. The rea-
son for this seems to originate from the way in which the solutions are selected into
the next generation by the two algorithms. The reference point selection mechanism
present in NSGA-III seems to favour convergence more than it does diversification.
The reason for this seems to originate from the fact that more reference points will
be present at the center of the Pareto front, and therefore the algorithm will simply
select more solutions which are close to the center. On the other hand, NSGA-II will
select those solutions which are in areas that are less populated, which will most
likely be on the edges of the Pareto fronts. As a consequence, NSGA-III will per-
form well on smaller criteria combinations, where the Pareto front is not large, and
therefore the algorithm will be able easily converge to good solutions. Additionally,
NSGA-III also seems to handle larger criteria combinations well, as long as the cri-
teria which are included in those combinations are not negatively correlated, where
optimising one criterion would lead to bad values for other criteria (such as the inclu-
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Fig. 10: Solution distributions for nine criteria

sion of Etwt and Mut), since in such a situation the Pareto front becomes large, and
there is more need for diversification. The solution distributions also back-up these
observations, since for several criteria NSGA-III has shown to obtain less distributed
solutions than NSGA-II, like for example (Cmax, Cw, Mut, Fmax, Ft), (Cw, Etwt,
Ft, Nwt, Twt), (Cmax, Etwt, Fmax, Ft, Mut, Nwt, Tmax) and when optimising all
nine criteria simultaneously. However, this is not the first time that it was shown
that NSGA-II outperforms NSGA-III for a large number of criteria. Similar obser-
vations were also notices in papers which dealt with comparison of many-objective
algorithms on different types of problems [31] [30]. In those papers it was shown
that NSGA-III performed quite poor for several different types of problems, and
that NSGA-II was able to outperform it when optimising larger sets of criteria. The
papers also suggest that the newly suggested many-optimisation algorithms (such
as MOEA/D and NSGA-III) use selection mechanisms which are well suited for
standard problems which are used to test the performance of many-objective algo-
rithms, however when tested on different problems these many-objective algorithms
can exhibit performance which is inferior to that of NSGA-II.

HaD-MOEA has mostly achieved results which are inferior to the results of
NSGA-II and NSGA-III. This algorithm works in a similar fashion as NSGA-II,
with the only difference being the calculation of the crowding distance, where it is
calculated as the harmonic distance of n closest neighbours of the current point. How-
ever, by using such a crowding distance measure, HaD-MOEA has not only achieved
a very small percentage of nondominated solutions in each run. Additionally, when
optimising criteria combinations which included the Etwt and Mut criteria in it,
from the solution distributions it can be seen that HaD-MOEA has shown to focus
mostly on the other criteria, and this achieved quite bad solution distributions for
the Etwt and Mut criteria. The cause for this problem is probably due to the fact
that the closest neighbours are used to calculate the crowding distance. This crowd-
ing distance can perform badly if small groups of solutions, which are far apart from
each other, exist in the search space. The problem here is that since the crowding
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distance is calculated only on the nearest neighbours of a solution, it is possible that
all solutions will have a similar value of the crowded distance, and therefore all the
solutions could be deleted even if they are far away from other solutions. This can
have a negative effect on diversity, which is especially important when optimising
criteria combinations with large Pareto fronts.

The MOEA/D algorithm has shown to achieve quite poor performances through
most of the optimised criteria. We believe that the reasons for such behaviour are
twofold. The first reason is the same as for NSGA-III, meaning that the way the
algorithm was designed is not appropriate for optimising the tested criteria sets. The
second reason is probably due to the way in which the parameters were optimised,
meaning that first the generic parameters were optimised, after which the algorithm
specific parameters were optimised. It is possible that the combination method which
is used in MOEA/D has a great influence on all other parameters, and therefore it is
possible that the optimal parameters for that combination method would differ from
the ones which were determined in this paper. Also, since MOEA/D uses a quite
small population compared to the other algorithms, it will be much more difficult
for it to obtain a good set of solutions, especially for problems with large Pareto
fronts.

Based on the results it can be concluded that there is much difference in the
performance of the different MOGP algorithms. Because of its strong convergence
ability, NSGA-III has shown to perform well on smaller number of criteria, and
on larger criteria in which there are no criteria which are have a strong negative
correlation with other criteria (like Etwt and Mut). For such cases NSGA-II has
shown to perform much better, since out of all the tested algorithms it has shown to
produce more diverse solutions, and is therefore better able to cover the Pareto front.
The other two MOGP algorithms, although did perform well on certain objective
combinations, were in most cases inferior to the NSGA-II and NSGA-III algorithms.

7 Conclusion

This article analysed the performance of DRs generated by four multi-objective and
many-objective algorithms for evolving dispatching rules for different many-objective
scheduling problems. The generated DRs have proven to be not only competitive to
some standards DRs on many of the tested criteria subsets, but have also shown
to be able to outperform them in many occasions, especially for smaller criteria
sets. For such smaller sets it was also shown that the DRs generated by many-
objective DRs could also outperform the results of the single objective DRs designed
by standard GP. Their additional strength lies also in the fact that they are able
to generate good schedules for criteria combinations for which standard DRs might
not achieve good results. However it was noticed that on some criteria subset the
algorithms struggled to evolve DRs which could really perform well over all the
optimised criteria. Therefore, even if the algorithms have shown good performance,
it is still necessary to be careful for which criteria set the optimisation is performed,
as to increase the performance of the developed DRs as much as possible.

By analysing the performance of the different MOGP algorithms which were
tested in this paper, several interesting conclusions can be drawn. It was shown
that more than the number of optimised cirteira, the combination of criteria had
a much larger impact on the achieved results, with algorithms performing much
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better if correlated criteria are optimised together. In order to further analyse the
interdependence of criteria, the Pareto fronts for all pairs of criteria were plotted,
and based on those images it was concluded that the Etwt and Mut criteria correlate
negatively with all of the other objectives.

Finally, through the analysis of the tested MOGP algorithms it was concluded
that the best performances were achieved by either NSGA-II or NSGA-III. NSGA-
III has shown to have a much larger convergence ability than the other algorithms,
which makes it more appropriate for smaller criteria combinations and combinations
in which the optimised criteria are not extremely negatively correlated. On the other
hand, NSGA-II has shown to achieve a much better diversification of solutions, which
is beneficial in situations where the set of optimised criteria contains many negatively
correlated criteria, and therefore a good diversification is needed in order to cover the
entire Pareto front. MOEA/D and HaD-MOEA were in most cases unable to achieve
equally good results as the previous two algorithms. For HaD-MOEA the reason is
mostly due to the choice of the crowding distance calculation method, which doesn’t
seem to perform well, while on the other hand for MOEA/D the reason seems to be
due to the sequence in which the parameters were optimised.

In future studies the analysis will be extended to some other multi-objective and
many-objective algorithms like: strength Pareto evolutionary algorithm 2 (SPEA2)
[75]; many-objective metaheuristic based on the R2 indicator (MOMBI) [22], [26];
and Unified NSGA-III (U-NSGA-III) [66]. Additionally, the objective set will also
be expanded as to include more non-standard criteria, which were not extensively
covered in the literature up until now and for which standard DRs do not even exist.
Additional topics which will also be studied are the use of different local search and
similar heuristics which could lead to further improvement in the results and could
also speed up the evolution process, as well as the use of related GP methods like
GEP for evolving many-objective DRs. Finally, the automatic simplification of rules
and more detailed analysis of the developed many-objective rules will also be studied
in the future.
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