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Abstract

In the real world, scheduling is usually performed under dynamic conditions,

which means that it is not known when new jobs will be released into the

system. Therefore, the procedure which is used to create the schedule must be

able to adapt to the changing conditions during the execution of the system.

In dynamic conditions, dispatching rules are one of the most commonly used

methods for creating the schedules. Throughout the years, various dispatching

rules were de�ned for a wide range of scheduling criteria. However, in most

cases when a new dispatching rule is proposed, it is usually tested on only one

or two scheduling criteria, and compared with only a few other dispatching rules.

Furthermore, there are also no recent studies which compare all the di�erent

dispatching rules with each other. Therefore, it is di�cult to determine how

certain dispatching rules perform on di�erent scheduling criteria and problem

types. The objective of this study was to collect a large number of dispatching

rules from the literature for the unrelated machines environment, and test them

on nine scheduling criteria and four problem types with various machine and job

heterogeneities. For each of the tested dispatching rules it will be outlined in

which situations it achieves the best results, as well as which dispatching rules

are best suited for solving each of the tested scheduling criteria.
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conditions, release times

1. Introduction1

Scheduling is a decision-making process which deals with the allocation of2

resources to tasks over a given period of time (Leung, 2004; Pinedo, 2012). The3

goal of the scheduling process is to create a schedule which optimises one or more4

user de�ned criteria. Scheduling plays an important role in most manufacturing5

systems (Dimopoulos & Zalzala, 2000; Ko�er et al., 2009), but is also used6

in many other real world scenarios, like scheduling planes on runways (Cheng7

et al., 1999; Hansen, 2004), scheduling for radiotherapy pre-treatment (Petrovic8

& Castro, 2011), scheduling tasks on CPUs (Pinedo, 2012), scheduling in railway9

tra�c (Corman & Quaglietta, 2015), and many others. Because of its wide10

applicability, as well as its complexity, various scheduling problems have been11

studied in the last several decades.12

Most instances of scheduling problems belong to the category of NP-hard13

problems, which makes it impossible to obtain an optimal solution in a reason-14

able amount of time. Because of this reason, scheduling problems are in most15

cases solved by using di�erent heuristic methods, which obtain a satisfactory16

solution in a relatively small amount of time. Although many heuristic methods17

have been speci�cally designed for solving the unrelated machines environment18

(Fanjul-Peyro & Ruiz, 2010, 2011; Cota et al., 2014; de C. M. Nogueira et al.,19

2014), in most cases scheduling problems are solved by using di�erent meta-20

heuristic methods (like genetic algorithms, particle swarm optimisation, tabu21

search, and many other) (Hart et al., 2005). All the aforementioned methods22

can be applied only on scheduling problems under static conditions, where the23

information about all jobs is known before the execution of the system, and24

thus the schedule can be created beforehand. However, many scheduling prob-25

lems occur in dynamic scheduling environments, in which it is not known in26

advance when jobs will arrive into the system, and what their properties will27

be. Therefore, it is not possible to create a schedule up front, but rather the28

2



schedule needs to be constructed simultaneously with the execution of the sys-29

tem. In order to solve scheduling problems under dynamic conditions, many30

simple scheduling methods, called dispatching rules, have been de�ned in the31

literature.32

Dispatching rules (DRs) are simple constructive scheduling heuristics, which33

iteratively build up a schedule. This is done in a way that each time a certain34

machine is free, the DR determines which of the available, but yet unscheduled35

jobs, should be scheduled on the given machine. In order to determine which36

job should be scheduled next, DRs most commonly use a priority function to37

rank the jobs, and schedule the job with the best priority value. The priori-38

ties of jobs are usually calculated based on some characteristics of the jobs and39

the current state of the system. Therefore, DRs can be used under dynamic40

scheduling conditions, since they will only use the currently available informa-41

tion to decide which jobs should be scheduled next. Because DRs construct42

the schedule iteratively, they achieve much better execution times than meta-43

heuristic methods (Ðurasevi¢ & Jakobovi¢, 2016), and can thus react quickly to44

changes which happen in the scheduling environment. However, designing good45

DRs is usually a lengthy trial and error process, which needs to be performed by46

domain experts. To tackle this problem, di�erent machine learning and evolu-47

tionary computation methods have been used to automatically design new DRs48

(Branke et al., 2016; Nguyen et al., 2017). Although automatically designed49

DRs usually achieve better performance than manually designed DRs, they are50

also more complex and not as interpretable. Additionally, manually designed51

DRs are often used as a baseline for evaluating the performance of automatically52

designed DRs. Because of all these reasons, it is still important to design new53

and improved DRs, and also to be aware of how the various manually designed54

DRs perform on di�erent scheduling criteria.55

Although a wide range of DRs have been de�ned for the unrelated machines56

environment, very little research was performed to compare the performance of57

all the proposed DRs, and test how they perform for di�erent scheduling criteri-58

a. Maheswaran et al. (1999) compared eight DRs for minimising the makespan59
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criterion. In the paper the selected DRs were applied in a dynamic environment60

where jobs were released during the execution of the system. Braun et al. (2001)61

analysed the performance of six DRs in the static scheduling environment for62

minimising the makespan criterion. They additionally compared the considered63

DRs with �ve other methods which can be applied for solving static scheduling64

problems, like genetic algorithms and similar search based heuristic methods.65

Du Kim & Kim (2004) propose a new DR for minimising the makespan and66

compare it with three existing DRs for scheduling in the unrelated machines67

environment under dynamic conditions. Izakian et al. (2009) compared six DRs68

for scheduling tasks in heterogeneous distributed environments. The authors69

compared the results achieved by the di�erent DRs when optimising the mean70

makespan and mean �owtime criteria. Pfund et al. (2008) compared several DRs71

for the unrelated parallel machines with setup and ready times, for optimising72

the total weighted tardiness criterion. However, only the static scheduling en-73

vironment was considered in the previous study. Yang-Kuei & Chi-Wei (2013)74

have considered scheduling in the unrelated machines environment with release75

times, however, once again only for the static scheduling conditions. They com-76

pared several DRs for optimising three criteria independently, the makespan,77

total completion time, and total weighted tardiness. Tseng et al. (2009) com-78

pare six DRs for optimising the makespan and total weighted tardiness criteria79

when scheduling jobs in the heterogeneous computing environment. The DRs80

were applied in a dynamic scheduling environment where jobs were released into81

the system during the execution of the system.82

The aim of this paper is to provide an overview of DRs which can be applied83

for solving the unrelated machines scheduling problem with release times. The84

considered scheduling problem will be solved under dynamic conditions, mean-85

ing that the schedule needs to be constructed simultaneously with the execution86

of the system. To collect most of the proposed DRs which would be applica-87

ble for solving such scheduling problems, an extensive survey of the existing88

literature on DRs for the unrelated machine environment was conducted. In89

addition, a new DR called just in time and a new version of the work queue DR90
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are proposed in this paper, both of which were designed manually. All the DRs91

will be tested on nine scheduling criteria to give a notion on how the collected92

DRs perform on various scheduling objectives. Furthermore, the DRs will be93

tested on four di�erent problem sets, each of which will be generated with a dif-94

ferent machine and job heterogeneity, to analyse how the selected DRs perform95

on di�erent problem con�gurations. Based on all the conducted experiments,96

the paper will draw conclusions on which of the tested DRs were the most ap-97

propriate for optimising the tested criteria, as well as how di�erent methods98

compare to each other. This should allow for an easier selection of appropriate99

DRs for a given criterion and heterogeneity conditions.100

The rest of the paper is organised as follows. Section 2 gives an overview101

of the unrelated machines environment and the objectives which will be used102

to measure the performance of the created schedules. The DRs which were103

selected from the literature are enumerated and described in Section 3. The104

design of the experiments is described in Section 4. Section 5 outlines the results105

achieved by all the selected DRs on the nine scheduling criteria. Section 6 gives106

a discussion about the main conclusion which can be drawn from the obtained107

results. Finally, Section 7 gives the conclusion of this survey and outlines some108

possible future research directions.109

2. Unrelated machines environment110

The unrelated machines environment consists of n jobs which need to be111

scheduled on one of the m available machines. It is presumed that both the112

number of machines and jobs are �nite. Each job can be scheduled on only a113

single machine, and once it starts with its execution it can not be interrupted114

until it is completed. Additionally, each machine can execute one job at a time.115

The index j is usually used to denote a concrete job, while the index i is used116

to denote a concrete machine. For each job and machine pair a processing time117

pij is de�ned, which determines the amount of time needed for machine i to118

execute job j. Each job also has a release time rj which determines when the119
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job becomes available and is released into the system, a due date dj which deter-120

mines the time until a job should �nish with its execution or otherwise a certain121

penalty will be invoked, and a weight wj which determines the importance of122

the job. In this paper three job weights will be used, based on the criterion123

which is optimised: tardiness weight (wTj ), earliness weight (wEj ), and comple-124

tion time weight (wCj
). All three weights can have di�erent values for a single125

job. Scheduling in the unrelated machines environment can be found in many126

practical real world examples, such as in: multiprocessor computers, landing127

lanes in airports, operating rooms in hospitals, circuit board manufacturing,128

semiconductor manufacturing, group technology cells, painting and plastic in-129

dustries, injection moulding process and remanufacturing, railway rescheduling130

(Fanjul-Peyro & Ruiz, 2012; Lee et al., 2013; Wang et al., 2013; Quaglietta et al.,131

2016).132

After the schedule is constructed, several metrics can be calculated for each133

job. These metrics will later on be used to calculate the values of the di�erent134

scheduling criteria. The following metrics are most commonly used (Leung,135

2004; Pinedo, 2012):136

• Completion time of a job (Cj) - the moment in time at which job j137

�nishes with its execution and exits the system.138

• Flowtime of a job (Fj) - the amount of time that job j spent in the139

system:140

Fj = Cj − rj . (1)

• Tardiness of a job (Tj) - the amount of time that job j spent executing141

after its due date:142

Tj = max{Cj − dj , 0}. (2)

• Earliness of a job (Ej) - the amount of time that job j �nished prior to143

its due date:144

Ej = max{−(Cj − dj), 0}. (3)
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• Unit penalty (Uj) - a �ag denoting whether a job is tardy or not:145

Uj =

1 : Tj > 0

0 : Tj = 0
. (4)

The following nine scheduling objectives will be used in order to evaluate the146

quality of the schedules created by the tested DRs (Allahverdi et al., 1999; Le-147

ung, 2004; Allahverdi et al., 2008; Pinedo, 2012; Durasevi¢ & Jakobovi¢, 2017):148

• Makespan (Cmax) - denotes the completion time of the last job that149

leaves the system:150

Cmax = max
j
{Cj}. (5)

• Maximum �owtime (Fmax) - denotes the maximum �owtime achieved151

by any of the jobs:152

Fmax = max
j
{Fj}. (6)

• Maximum tardiness (Tmax) - denotes the maximum tardiness achieved153

by any of the jobs:154

Tmax = max
j
{Tj}. (7)

• Total weighted completion time (Cw) - denotes the weighted sum of155

all completion times:156

Cw =
∑
j

wCjCj , (8)

• Total weighted tardiness (Twt) - denotes the weighted sum of tardiness157

values of all jobs:158

Twt =
∑
j

wTjTj , (9)

• Total �owtime (Ft) - denotes the sum of �owtimes of all jobs:159

Ft =
∑
j

Fj , (10)
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• Weighted number of tardy jobs (Nwt) - denotes the weighted sum of160

all tardy jobs:161

Nwt =
∑
j

wTjUj . (11)

• Weighted earliness and weighted tardiness (Etwt) - denotes the sum162

of the total weighted tardiness and the total weighted earliness:163

Etwt =
∑
j

(wEjEj + wTjTj), (12)

• Machine utilisation (Mut) - denotes the di�erence between the maxi-164

mum utilisation and minimum utilisation of all machines:165

Mut = max
i

(
Pi

Cmax

)
−min

i

(
Pi

Cmax

)
, (13)

where Pi is de�ned as the sum of processing times of all jobs which were166

executed on machine with index i.167

By using the standard notation of scheduling problems, the problem studied168

in this paper can be de�ned as Rm|rj |γ, where γ represents one of the nine169

previously de�ned criteria. Additionally, scheduling will be performed under170

dynamic conditions, which means that during scheduling it will not be known171

when the next job enters the system, neither which will be the characteristics of172

that job. Once the job enters the system, all its characteristics become available.173

Therefore, during the execution of the system, the DRs are applied at each174

decision point to determine which of the released jobs should be scheduled next.175

3. Dispatching rules for the unrelated machines environment176

This section will describe various dispatching rules for solving the unrelated177

machines scheduling problem with release times and under dynamic conditions,178

which were collected from the literature. The dispatching rules are applied to179

determine which job should be scheduled next on which machine each time a job180

enters the system and there is at least one machine free, or a machine becomes181
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free and there is at least one job waiting to be scheduled. The priority values182

calculated by DRs for scheduling job j on machine i will be denoted as πij . It183

should be noted that the priority values for some rules are calculated based only184

on job properties, and will therefore be the same for all machines. The following185

26 DRs will be tested:186

• Minimum completion time (MCT) (Maheswaran et al., 1999; Braun

et al., 2001) - jobs are selected in provisional order and the priorities of

the selected job on all machines are calculated as

πij =
1

max(mri, time) + pij
,

where mri represents the time when machine i becomes available, and187

time represents the current time of the system. In this way jobs will be188

scheduled on the machine on which they will be completed the soonest.189

• Minimum execution time (MET) (Maheswaran et al., 1999; Braun

et al., 2001) - determines the priorities of jobs as

πij =
1

pij
.

Therefore, jobs will be scheduled depending only on their processing times,190

so that each job is scheduled on the machine on which it achieves its191

minimum processing time. This can naturally lead to situations in which192

a great amount of jobs is waiting to be processed on a single machine,193

while the other machines are free. In order to avoid this, jobs will be194

selected by their processing time, but executed on a machine on which195

they achieve their minimum completion time.196

• Earliest release date (ERD) (Pinedo, 2012) - determines the priorities

of jobs as

πij =
1

rj
.

This means that jobs will be scheduled in order by which they became197

available. The job with the highest priority will be scheduled on the198

machine on which it achieves its minimum completion time.199
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• Longest processing time (LPT) (Pinedo, 2012) - determines the prior-

ities of jobs as

πij = pij .

Jobs with the longest processing time will therefore be selected �rst and200

scheduled on the machine on which they achieve their minimum comple-201

tion time.202

• Weighted shortest processing time (WSPT) (Lee et al., 1997) - cal-

culates the priorities as

πij =
wCj

pij
.

This rule functions similarly as the MET rule, however, it additionally203

considers weights which can be de�ned for jobs. The job with the largest204

priority value is selected and scheduled on the machine on which it achieves205

its minimum completion time.206

• Maximum standard deviation (Maxstd) (Munir et al., 2008) - calcu-207

lates the standard deviations of processing times for each job, and sched-208

ules the one with the highest standard deviation. The selected job is209

scheduled on the machine on which it achieves its minimum completion210

time. The intuition behind this rule is to prioritise those jobs which have211

a high variation of their processing times on di�erent machines, since they212

will have a larger in�uence on the makespan if scheduled on an inappro-213

priate machine.214

• Switching algorithm (SA) (Maheswaran et al., 1999) - uses both the

MET and MCT rules in a cyclic fashion depending on the load distribution

of the system. The motivation behind this heuristic lies in the fact that the

MET rule can create imbalance in the load of the machines by assigning

most of the jobs to only a small subset of machines. The MCT rule, on

the other hand, tries to even out the load balance across all the machines.

Therefore the SA heuristic uses both rules to keep a good balance across

all machines, but also to assign jobs to those machines on which they have
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the smallest processing times. The heuristic uses the load balance index to

determine when the algorithm should switch from one rule to the other.

The index is calculated as

∇ =
mrmin
mrmax

,

where mrmin denotes the earliest machine ready time, and mrmax the215

latest machine ready of all machines in the system. Additionally, two216

threshold values are also de�ned: ∇l and ∇h. The SA heuristic starts to217

schedule tasks by using the MCT rule until the load balance index reaches218

a value of at least ∇h, when it switches to the MET rule. This will cause219

the load balance index to decrease over time until it decreases to a value220

of ∇l or less, when the SA heuristic switches again back to the MCT rule.221

• k-percent best (KPB) (Maheswaran et al., 1999) - considers only a cer-222

tain subset of machines when scheduling a job. The subset of machines223

is constructed by selecting the m ∗ (k/100) machines on which the job j224

achieves the smallest processing times. The job is assigned to a machine225

from the selected subset on which it achieves the minimum completion226

time. The purpose of this heuristic is to schedule jobs on machines for227

which they have the smallest processing times. In this way the rules tries228

to prevent them from being scheduled on other machines which could be229

more suitable for other jobs which arrive into the system.230

• Ordered minimum completion time (OMCT) (e Santos & Madureira,

2014) - represents an extension of the MCT rule in which the priorities of

the jobs are calculated as

πij = α ∗ σ + (1− α) ∗ S,

where σ represents the standard deviation of all processing times of job j,231

α ∈ [0, 1] a control parameter, and S the su�erage value which is de�ned232

as the di�erence between the second smallest completion time and the233

smallest completion time of job j. The job with the highest priority is234
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scheduled on the machine on which it achieves its smallest completion235

time. By using the standard deviation and su�erage values, this rule tries236

to determine for which jobs it would be more damaging if they were not237

scheduled on their preferred machine, and gives them a larger priority238

value.239

• Opportunistic load balancing (OLB) (Braun et al., 2001) - schedules240

a job on the next available machine, regardless of the expected execution241

time or completion time of that job. The intuition behind this rule is242

to evenly distribute the load on all machines. Unfortunately, since this243

rule does not consider the execution times of jobs, it can create schedules244

with poor results for the makespan criterion. This can be improved to a245

certain degree so that if several machines are free at the same time, the246

job is scheduled on the machine on which it achieves its smallest execution247

time.248

• Earliest due date (EDD) (Pfund et al., 2008; Pinedo, 2012) - calculates

the priories of jobs as

πij =
1

dj
.

The reasoning behind this rule is to schedule the job with the earliest due249

date, to minimise the tardiness of jobs. The job with the largest prior-250

ity value is scheduled on the machine on which it achieves its minimum251

completion time.252

• Minimum slack (MS) (Pinedo, 2012) - calculates the priorities of jobs

as

πij = max (dj − pij − time, 0)

. In this rule the job with the smallest priority is selected and scheduled253

on the machine on which it achieves its minimum completion time. The254

rule tries to �rst schedule those jobs which are already late or close to255

being late.256
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• Montagne's heuristic (MON) (Morton & Pentico, 1993) - calculates the

priorities of jobs as

πij =
wTj

pij
∗
(

1− dj
ps

)
,

where ps represents the sum of processing times of all available jobs for257

machine i. The rule then schedules the job which achieved the highest258

priority value to the machine on which it achieves its minimum completion259

time. This rule tries to scale the WSPT rule with an additional slack factor260

prioritise to jobs which have an earlier due date. A disadvantage of this261

rule is that the slack factor is not dynamic, but rather constant during262

the system execution.263

• Weigthed critical ratio (CR) (Morton & Pentico, 1993) - calculates the

priorities of jobs as

πij =
wTj

pij

(
1

1 +
(dj−pij−time)

p̄

)
,

where p̄ represents the average processing time of all jobs waiting to be264

scheduled. The job with the highest priority is scheduled on the machine265

on which it achieves its minimum completion time. This rule extends the266

WSPT rule with a dynamic slack factor, by which it prioritises jobs which267

are close to their due dates. The disadvantage of this rule is that if the268

job is late, the priority continues to grow. In this survey the CR rule will269

be used without the weight, since this variant achieved better results.270

• Cost over time (COVERT) (Morton & Rachamadugu, 1982; Morton &

Pentico, 1993) - calculates the priorities of jobs as

πij =
wTj

pij
max

[(
1− max (dj − pij − time, 0)

kp̄

)
, 0

]
,

where k represents a scaling parameter. The job with the highest priority271

is scheduled on the machine on which it achieves its minimum completion272

time. This rule is similar to the CR rule, however it does not allow that273

the priority of jobs increases the more they are late.274
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• Apparent tardiness cost (ATC) (Vepsalainen & Morton, 1987; Lee

et al., 1997; Pfund et al., 2008; Yang-Kuei & Chi-Wei, 2013) - calculates

the priorities of jobs as

πij =
wTj

pij
exp

[
−max (dj − pij − time, 0)

kp̄

]
.

The job with the highest priority value is selected and scheduled on the275

machine on which it achieves its minimum completion time. The rule can276

be considered a combination of the WSPT and MS rules, and the scaling277

factor is used to determine which of these rules will have more in�uence278

in the ATC rule.279

• Min-min (Maheswaran et al., 1999; Braun et al., 2001; Tseng et al., 2009)280

- calculates the completion time of each available job on all the machines.281

After that, for each job the machine for which the job achieves its minimum282

completion time is determined. The job with the overall smallest comple-283

tion time is selected and scheduled on the machine on which it achieves284

its minimum completion time. Algorithm 1 represents the min-min rule.285

Algorithm 1 Min-min rule

1: while unscheduled jobs are available do

2: for each unscheduled job j do

3: for each machine i do

4: Calculate the completion time cij for job j and machine i

5: end for

6: end for

7: For each job determine the machine on which it achieves its minimum

completion time

8: Select the job which achieves the overall minimum completion time

9: Schedule the selected job to the machine on which it achieves its mini-

mum completion time

10: end while
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• Max-min (Maheswaran et al., 1999; Braun et al., 2001) - for each job the286

rule determines the machine for which the corresponding job achieves its287

minimum completion time. However, unlike the min-min rule, the max-288

min rule selects the job with the largest minimum completion time. In289

that way the max-min rule will prioritise jobs with the longer executing290

times.291

• Min-max (Izakian et al., 2009) - for each job the rule determines the292

machine for which the corresponding job achieves its minimum completion293

time. The job whose minimum processing time divided by the processing294

time on the selected machine in the previous step has the maximum value295

will be scheduled on the selected machine. The intuition behind this rule296

is to schedule the job whose processing time on the selected machine is297

the closest to the shortest processing time of that job.298

• Su�erage (Maheswaran et al., 1999) - for each job the rule determines the299

machine for which the corresponding job achieves its minimum completion300

time. The rule then determines the su�erage value for each job. The job301

with the largest su�erage value is scheduled on the machine for which it302

achieves its minimum completion time. The intuition behind this heuristic303

is to schedule the job which would "su�er" the most if not scheduled on304

the machine with its minimum completion time.305

• Su�erage2 (Rafsanjani & Bardsiri, 2012) - for each job the rule deter-

mines the machine for which the corresponding job achieves its minimum

completion time. The rule calculates the su�erage value for each job, but

additionally scales this value with the following factor

mini pij
mini ctij

,

where ctij denotes the completion time of job j on machine i. With306

this scaling factor the rule also incorporates the information about the307

processing and completion times when selecting the job to be scheduled.308
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The job with the largest scaled su�erage value is selected and scheduled309

on the machine for which the job achieves its minimum completion time.310

• Relative cost (RC) (Xhafa et al., 2007) - for each job this rule determines

the machine on which the job achieves its minimum completion time. Then

for each job it calculates two parameters, namely the static relative cost

and dynamic relative cost. The static relative cost for job j and machine

i is calculated as

γsij =
pij∑

k∈machines pkj

m

,

while the dynamic relative cost is calculated as

γdij =
ctij∑

k∈machines ctkj

m

.

The total priority of a job is calculated as

πij =
1

(γsij)
(α) ∗ γdij

,

where α represents a user de�ned scaling factor. The selected job is sched-311

uled on the machine on which it achieves its minimum completion time.312

This rule tries to balance between the jobs minimum processing time and313

minimum completion time, and select the one which has smaller values for314

both.315

• Longest job to shortest resource - shortest job to fastest resource316

(LJFR-SJFR) (Izakian et al., 2009) - for each job the rule determines the317

machine for which the corresponding job achieves its minimum completion318

time. In the �rst step this rule schedules m jobs with the longest mini-319

mum completion times to the fastest machines. After this �rst step the320

rule alternatively schedules the job with the shortest minimum execution321

time to the fastest machine, and then the job with the longest minimum322

execution time to the fastest machine.323

• Minimum execution completion time (MECT) (Du Kim & Kim,324

2004) - represents a combination between the MET and MCT dispatching325
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rules. Algorithm 2 represents the outline of MECT. The DR �rst deter-326

mines the maximum ready time of all machines mrmax. Afterwards, the327

rule determines the machines on which job j can �nish with its execution328

prior to mrmax. If such machines exist, the one for which job j achieves329

the minimum execution time is selected. However, if such machines do330

not exist, the machine on which job j achieves its minimum completion331

time is selected. Out of all unscheduled jobs, the job which achieves the332

minimum completion time on the selected machine will be scheduled. The333

intuition behind MECT is to alternatively use the minimum execution and334

completion times, in order to perform the scheduling decision. The rule335

will use the minimum execution time to select the machine on which job336

j should be executed, if this will not lead to the increase of the makespan.337

However, if there is no decision which does not increase the makespan,338

then the machine for which job j achieves its minimum completion time339

is selected.340

• Work queue (WQ) (Izakian et al., 2009) - is in the literature de�ned in341

a quite similar way as the OLB rule. Therefore, in this study a variant of342

the WQ rule is proposed and used. This variant selects the machine that343

has the least workload, i.e. the machine which up to now spent the least344

time processing jobs. After the machine is selected, the job which achieves345

the minimum completion time on the selected machine is scheduled on it.346

The motivation behind this rule is to evenly distribute the work over all347

machines.348

• Just in time (JIT) - is a DR which is proposed in this study. This rule

tries to schedule the jobs as closely to their due dates as possible. To

achieve this, the rule calculates the earliness or tardiness of the job and

multiplies it with the corresponding job weight. Therefore, the priority

value for each job is calculated as

πij =

wTj ∗ (dj − pij − time)2, if job j is late

wEj
∗ (dj − pij − time)2, if job j is early

.
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Algorithm 2 MECT rule

1: while unscheduled jobs are available do

2: Let mri denote the ready time of machine i

3: mrmax = maxi(mri)

4: Let ctij represent the completion time of job j on machine i

5: for each unscheduled job j do

6: Let M ′ represent all machines for which pij +mri < mrmax

7: Let smj represent the selected machine for job j

8: if |M ′| > 0 then

9: smj = arg mini∈M ′ pij

10: else

11: smj = arg mini∈M ctij

12: end if

13: end for

14: Schedule the job with the smallest value of ctsmjj

15: end while
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The job with the smallest priority value is selected and scheduled on the349

machine on which it achieves its minimum completion time.350

4. Experimental design and setup351

Since for the evaluation of the selected problem instances it is necessary to352

have a wide range of di�erent problems, this section will describe the way in353

which the problem instances, which were used for evaluation purposes, were354

generated.355

For the generation of processing times, two parameters need to be de�ned,356

φj which is a measure that determines the job heterogeneity, while φm de�nes357

the measure of machine heterogeneity. The φj parameter controls whether the358

di�erent jobs will have similar or vastly di�erent processing times. On the other359

hand, the φm parameter controls whether a single jobs will have similar or vastly360

di�erent processing times on the di�erent machines. For each job j a random361

number µj is generated by using an uniform distribution from the interval [1, φj ].362

The corresponding processing times for job j are then generated in a way that363

for each machine i a random number is sampled from the uniform distribution364

between [1, φm], and is multiplied by µj . Based on previous studies (Tseng et al.,365

2009), in this paper four parameter combinations will be used: φj = 3000 and366

φm = 100 for high job and high machine heterogeneity, φj = 3000 and φm = 10367

for high job and low machine heterogeneity, φj = 100 and φm = 100 for low368

job and high machine heterogeneity, φj = 100 and φm = 10 for low job and low369

machine heterogeneity.370

The release times of the jobs were generated by using a uniform distribution

from the interval

rj ∈
[
0,
p̂

2

]
,

where p̂ represents the expected duration of the schedule that is de�ned as

p̂ =

∑n
j=1

∑m
i=1 pij

m2
.

This means that all jobs are expected to be released during the �rst half of371

the system execution, which results with a system that has a higher load. The372
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reason why such problem instances were used lies in the fact that for problems373

with lower load most of the DRs achieved a very similar value for the makespan374

criterion, which would make it impossible to evaluate the DRs for that criterion.375

The due dates of jobs were also generated using a uniform distribution from

the interval

dj ∈
[
rj + (p̂− rj) ∗

(
1− T − R

2

)
, rj + (p̂− rj) ∗

(
1− T +

R

2

)]
.

The parameter T represents the due date tightness which adjusts the percentage376

of late jobs, while the parameter R represents the due date range which adjusts377

the dispersion of due dates. Both parameters assumed values of 0.2, 0.4, 0.6,378

0.8 and 1 in various combinations.379

Finally, the weights of jobs are generated by using the uniform distribution380

from the interval < 0, 1]. Each one of the three de�ned weights, wEj
, wTj

, and381

wCj
, are generated independently from each other.382

By using the previously de�ned expressions, four problem instance sets, one383

for each of the previously mentioned machine and job heterogeneity parameter384

value combinations, were generated. Each problem set consists of 60 indepen-385

dently generated problem instances, where each instance consists of 10 machines386

and 1000 jobs. However, each problem instance is generated by using di�erent387

values for the due date parameters. The generated problem instances with the388

best until now known solutions can be obtained from the project site 3.389

To test the performance of all the individual DRs a simple simulator was390

designed. Based on the de�ned problem instance and DR the simulator will391

simulate how the DR would be used to construct the entire schedule for the392

given problem. In each discrete time moment the simulator checks whether it393

needs to invoke the DR to update the schedule, or if it will simulate that some394

work is performed on the machines and will move to the next moment in time. If395

at the current time moment a job is released into the system and there is at least396

one available machine, or if a machine becomes available and there is at least397

3http://gp.zemris.fer.hr/scheduling/problemsets.7z
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one job waiting to be scheduled, then the simulator will invoke the DR. Such a398

moment in time will be denoted as a decision point. In all other time moments,399

the simulator will simply move to the next time moment to simulate that work400

is being performed on the machines. When a DR is invoked by the simulator,401

it will consider only those jobs which are released but yet unscheduled, and will402

posses no knowledge about any of the future jobs that will arrive in the system.403

Additionally, it is possible that at a certain decision point the DR determines404

that a job should be scheduled on a machine which is already executing a job.405

This situation occurs since the priorities of jobs are calculated for all machines,406

whether they are free or not. If it happens that a job should be scheduled on407

a machine which is already taken, the scheduling of this job is postponed to a408

later moment in time. This allows the DRs to insert idle times into the schedule,409

and not to schedule a job as soon as a machine becomes available. Furthermore,410

if at any moment a tie between two machines occurs during the execution of411

the DR, then the machine with a smaller ID is selected (all machines have an412

ID associated to them, and are always evaluated in the order of their IDs). It413

should also be mentioned that at a single decision point more than one job can414

be scheduled, if there are enough available machines.415

In addition to the performance of the individual DRs, the estimated lower416

bound (ELB) for each criterion will also be denoted for the four problem sets.417

The ELB values for a problem set are calculated by summing up the best solution418

obtained by any of the DRs and several genetic algorithm executions for each419

problem instance. Although these values do not represent the optimal solutions420

which can be obtained, they still provide a general idea about the absolute421

performance of the DRs.422

Another important thing which has to be outlined are the execution times423

of the individual DRs. The time required to calculate the priority value for424

a single job can be considered almost negligible. However, since at a single425

decision point the number of jobs and machines based on which the updated426

schedule needs to be determined can be vast, the time required to determine the427

updated schedule can also increase substantially. Therefore, the time required428
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to update the schedule depends heavily on the number of unscheduled jobs and429

available machines at the current decision point. However, to provide a general430

overview of the execution times for the individual DRs, the time required to431

update the schedule in a single decision point was measured for all DRs. The432

decision point was modelled in a way that there are 1000 unscheduled jobs and433

10 available machines. In order to calculate the updated schedule in such a434

situation with a relatively large amount of jobs, all DRs required between 0.02435

and 0.7 seconds, except for OLB which executed for only 0.005 seconds due to436

its simplicity. Based on the measured execution times it is evident that the437

DRs can calculate the updated schedule in a relatively small amount of time438

even in decision points with a large number of unscheduled jobs and available439

machines. This allows for the DRs to be used in dynamic environments in which440

it is required to quickly perform the scheduling decision.441

Finally, it needs to be mentioned that the parameters for each of the DRs442

were �ne tuned on an independent problem instance set, and that the values for443

which the best results were achieved were selected. The ATC rule was executed444

with k = 0.05, the RC rule with α = 0.2, the SA rule with ∇l = 0.1 and445

∇h = 0.8, the OMCT rule with α = 0.9, the COVERT rule with k = 0.2, while446

the other rules do not use any parameters.447

5. Results448

This section will outline the results which were obtained by the selected449

DRs for the nine scheduling objectives. Each result of the DRs denoted in450

the tables represents the sum of the results for the 60 problem instances used451

to evaluate the DRs. In each table the best result for each criterion will be452

denoted in bold, while the best �ve results for each criterion will be denoted453

with a grey cell. The table includes three additional columns which denote the454

average rank of each DR on several sets of criteria. The column denoted as455

Rankt represents the average rank of the DR on the set consisting of three due456

date related criteria (Nwt, Tmax, and Twt). On the other hand, the column457
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denoted as Rankcf represents the average rank of the rules on the set consisting458

of completion time and �owtime related criteria (Cmax, Cw, Fmax, and Fw).459

These two groups of criteria were selected since the performance of the DRs460

seems to be relatively correlated for the criteria within each group. Finally, the461

column denoted as Rank represents the average rank for each DR across all the462

optimised scheduling criteria.463

Table 1 represents the results achieved by the selected DRs for the problem464

instance set which was generated by using high job and high machine hetero-465

geneity. The results demonstrate that DRs which achieve a good performance466

on the Cmax criterion also achieve a good performance on the Fmax criterion as467

well. This is well evident since the top �ve DRs are the same for both criteria.468

The best overall results for both criteria were achieved by the Su�erage2 DR.469

For the Cw and Ft criteria it can also be observed that if a DR achieves a good470

result on one criterion, it also achieves a good value on the other. Although471

WSPT achieved the best result for the Cw criterion, it was unable to achieve a472

good performance for the Ft criterion, for which the min-min DR achieved the473

best result, followed closely by the KPB and MECT DRs. It is interesting to474

note that for the Etwt and Mut the best results are mostly achieved by DRs475

which do not perform well on other scheduling criteria. For Etwt the best re-476

sult was achieved by the JIT DR, whereas for the Mut criterion the best result477

is achieved by the LPT DR. For the remaining three due date related criteria478

(Nwt, Tmax, and Twt), the ATC, MON, and COVERT DRs achieve a good479

performance on all three criteria. However, neither DR achieves the best result480

for all three criteria. What is surprising is that for the Tmax criterion the best481

result is achieved by the proposed JIT DR, almost two times better than the482

second best result achieved by the ATC rule.483

The average rank for the due date related criteria shows that the ATC rule484

achieves the overall best performance on the aforementioned set of criteria. The485

rule achieved the best result only for the Twt criterion, and performed well for486

the other two criteria. The COVERT rule obtained only a slightly lower average487

rank, but nevertheless performed well across all the due date related criteria.488
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Table 1: Results for the test set generated with a high job and a high machine heterogeneity

Cmax Cw Fmax Ft Etwt Mut Nwt Tmax Twt Rankt Rankcf Rank

ELB 11.73 2268 11.67 2565 970.3 4.15*10−10 15.61 2.189 380.3 - - -

MCT 15.39 6980 15.27 6858 13402 4.84*10−7 22.88 10.092 2346.1 20 20 18.2

MET 13.30 2990 13.18 2862 14482 7.75*10−7 18.42 7.527 889.24 10 8.3 11.6

ERD 14.76 7177 14.50 7045 13327 3.50*10−7 23.08 9.696 2408.7 20 20.5 17.9

LPT 13.80 9194 13.77 9061 12947 1.023*10−8 25.53 9.749 3221.5 23.7 21 17.7

WSPT 13.74 2610 13.61 3603 14281 5.44*10−7 19.21 8.498 1158.6 13.3 10.3 13

Maxstd 14.07 8532 14.03 8398 13106 1.98*10−8 24.72 9.945 2968.3 23 18.2 18.4

SA 13.36 3534 13.23 3405 14259 7.58*10−7 19.06 7.506 1049.7 10.3 9.3 11.8

KPB 12.35 2740 12.23 2611 14555 8.80*10−7 18.14 6.862 800.72 5 4.8 9.1

OMCT 14.02 8505 13.98 8371 13105 2.01*10−8 24.73 9.886 2953.9 22.3 21 17.6

OLB 12.82 2856 12.71 2726 14517 8.67*10−7 18.28 6.964 839.56 8 7.3 10.9

EDD 13.82 3860 13.70 3728 14240 7.31*10−7 19.36 8.077 1205.1 12.7 14.5 14.7

MS 14.79 7136 14.55 7004 13366 4.04*10−7 23.07 9.645 2407.9 19 20.5 17.8

MON 13.71 3739 13.58 3608 13873 5.10*10−7 17.99 5.325 754.99 3.3 12 9.3

CR 14.01 4851 13.88 4714 13884 6.97*10−7 20.47 8.300 1517.1 15 16.5 15.3

COVERT 13.67 3725 13.54 3593 13880 5.14*10−7 17.98 5.315 752.17 2 10.3 8.4

ATC 13.72 3727 13.61 3595 13878 5.16*10−7 17.99 5.306 751.60 1.7 11.8 9

Min-min 12.35 2739 12.22 2610 14556 8.63*10−7 18.14 6.833 800.85 5.3 3.8 8.7

Max-min 15.88 7784 15.63 7649 13221 2.76*10−7 23.82 10.621 2659.7 22.3 23 19.2

Min-max 11.87 6751 11.77 6624 13293 2.25*10−7 22.54 7.797 2182.8 15 8.5 10.4

Su�erage 12.14 7007 12.03 6874 13278 1.46*10−7 22.83 8.148 2294.9 16.7 10.5 11.6

Su�erage2 11.74 8787 11.70 8658 12825 6.76*10−8 24.86 8.078 2964.1 20.7 12.5 13.1

RC 12.13 4038 11.99 3907 14096 5.57*10−7 19.58 7.097 1219.8 12 8 11.3

LJFR-SJFR 12.56 2790 12.44 2661 14541 7.80*10−7 18.18 7.054 818.84 7.7 6.3 10.3

MECT 12.34 2740 12.21 2612 14556 8.82*10−7 18.15 6.815 801.66 5.7 4.3 9.4

WQ 60.73 29994 60.60 29852 22060 1.73*10−7 44.33 51.021 18188 26 26 23.8

JIT 13.81 7225 13.70 7092 12301 3.19*10−7 20.90 2.904 1559.6 10.3 18.5 12.8
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On the other hand, the min-min rule obtained the best average rank for the489

completion time and �owtime related criteria. This rule is followed closely by490

the MECT and KPB rules which obtained a slightly lower average rank than the491

min-min rule. By considering the average rank on all the criteria, the best rank492

is achieved by the COVERT rule, meaning that it performed relatively well on493

a wide range of criteria. Although the KPB rule did not achieve the best result494

for any of the criteria, it still belongs to the �ve best DRs based on their rank,495

since it also performs well for most of the criteria. The MECT rule also performs496

well for all criteria, which can be seen from the fact that for �ve criteria the497

rule achieves results which are among the top �ve results. Unfortunately, for498

the Etwt and Mut criterion the rule achieved among the worst results, which499

consequentially led to the deterioration of the rule's rank. From the results in500

the table it is evident that the DRs with the best ranks can be divided into two501

groups. The �rst group consists of rules which perform well on all criteria except502

for the Etwt and Mut criteria (like KPB, MECT, and min-min). The second503

group consists of those rules which perform well only on two or three criteria,504

while on the others they achieve moderate results (like COVERT, MON, and505

ATC).506

Table 2 represents the results achieved for the problem set generated with a507

high job and a low machine heterogeneity. By examining the table it is evident508

that the DRs perform quite similar as they did for the problem set with high509

machine and job heterogeneity. For example, for the Cmax, Cw, and Fmax510

criteria the top �ve rules are the same for both problem sets. For the Cmax511

criterion the best result was achieved by the Su�erage2 rule, while for Cw the512

best result was obtained byWSPT, which is the same as for the previous problem513

set. However, for the Fmax criterion the best result was achieved by the RC514

rule, followed closely by the Su�erage2 rule. The MECT rule achieved the best515

overall result for the Ft criterion. For the Etwt criterion the best result was516

achieved by WQ, which did not achieve good results for Etwt on the previous517

set. On the other hand, for the Mut criterion the LPT DR once again achieved518

the best result. The remaining three due date related criteria are solved best519
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Table 2: Results for the test set generated with a high job and a low machine heterogeneity

Cmax Cw Fmax Ft Etwt Mut Nwt Tmax Twt Rankt Rankcf Rank

ELB 16.37 4468 16.08 3854 1326 4.36*10−9 2.988 1.118 23.98 - - -

MCT 20.26 9229 19.69 8034.4 22840 3.53*10−6 8.213 7.498 855.2 18.7 19.8 18.2

MET 17.94 5230 17.28 4041.4 25818 5.19*10−6 4.935 5.587 343.0 10 8.8 12.1

ERD 19.23 9472 16.86 8285.0 22528 2.40*10−6 8.253 6.674 824.0 17.3 15.5 15.0

LPT 18.21 12132 18.11 10927 20818 1.63*10−7 10.89 7.509 1282 24.3 20.5 17.6

WSPT 18.64 4535 18.08 5261.7 24915 3.25*10−6 5.933 6.426 497.7 12.7 10.5 12.4

Maxstd 18.53 11603 18.41 10408 21230 2.09*10−7 10.50 7.682 1229 23.3 20.8 17.9

SA 17.96 5531 17.21 4344.3 25544 5.0�5*10−6 5.137 5.526 354.0 10.3 9.8 12.2

KPB 17.11 5065 16.53 3875.7 25936 5.39*10−6 4.767 5.186 319.0 6 5.3 9.7

OMCT 18.52 11623 18.40 10425 21223 2.05*10−7 10.54 7.683 1234 24.3 20.8 18.0

OLB 17.72 5287 17.04 4097.4 25758 5.474*10−6 4.927 5.320 341.3 8.7 8.3 11.7

EDD 19.18 7935 17.14 6749.1 23746 4.16*10−6 7.247 6.180 666.5 14 14.5 14.8

MS 19.28 9475 16.94 8288.0 22528 2.52*10−6 8.270 6.688 825.6 18.3 16.5 15.8

MON 18.70 6460 18.10 5268.2 24696 3.52*10−6 4.391 3.338 269.1 2 14.3 10.7

CR 19.34 8466 17.41 7287.3 23365 3.90*10−6 7.671 6.478 742.4 16 16.5 15.4

COVERT 18.70 6459 18.10 5269.6 24696 3.50*10−6 4.406 3.342 269.5 3.33 14.3 10.9

ATC 18.64 6447 18.09 5257.6 24702 3.49*10−6 4.401 3.304 266.9 1.7 12.3 9.6

Min-min 17.10 5065 16.50 3875.4 25936 5.25*10−6 4.771 5.132 318.9 5.3 4.3 9.0

Max-min 20.58 10188 18.21 9001.1 22072 1.93*10−6 9.045 7.484 954.2 21 22 18.4

Min-max 16.76 9972 16.44 8762.9 22213 1.34*10−6 8.758 6.323 901.2 18.3 11.3 12.6

Su�erage 16.72 9843 16.30 8634.4 22312 1.55*10−6 8.650 6.171 876.8 17 10.3 12.0

Su�erage2 16.37 11353 16.26 10142 21201 2.12*10−7 9.857 6.442 1081 20.3 11.8 13.2

RC 16.87 7210 16.25 6017.5 24187 3.77*10−6 6.351 5.297 510.3 11 7.3 10.6

LJFR-SJFR 17.29 5097 16.67 3907.0 25913 5.14*10−6 4.804 5.295 323.5 7.3 6.3 10.1

MECT 17.05 5048 16.45 3859.1 25949 5.56*10−6 4.760 5.162 317.1 4.7 3.3 8.8

WQ 60.69 30110 59.95 28879 20290 1.47*10−6 30.22 40.08 9996 26 26 21.0

JIT 19.18 10108 18.75 8911.4 21716 2.23*10−6 6.481 2.875 528.9 9 20.8 13.9

by the ATC, COVERT, and MON rules, with MON achieving the best result520

for the Nwt criterion, and ATC for the Twt criterion. As for the previous set,521

the best result for the Tmax criterion was achieved by the JIT rule.522

The ATC rule achieved the best average rank for the set of due date relat-523

ed criteria for this problem set as well. The MON and COVERT rules again524

obtained the second best and third best ranks, with the MON rule obtaining a525

lower average rank for the due date related criteria. On the other hand, for the526

set of completion time and �owtime related criteria the best average rank was527

obtained by the MECT rule, whose results were among the top �ve for each of528

the criteria in this set. The min-min and KPB rules came second and third with529
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somewhat larger average ranks. Regarding the average ranks on all the criteria,530

there are certain changes in the ranks compared to the previous problem set.531

For example, the best average rank was achieved by the MECT rule, which is532

not surprising considering that for six criteria it was among the top �ve rules.533

However, for the Etwt and Mut criteria, this rule achieved the worst results534

among all the tested DRs. Min-min, KBP, and LJFR-SJFR were among the535

top �ve rules even though they did not achieved the best result for any of the536

criteria. Nevertheless, they achieved good performance on most of the criteria537

but, similarly as the MECT rule, they performed quite bad for the Etwt and538

Mut criteria. The ATC rule performs well for the due date related criteria, while539

for the other criteria it performs worse to a certain extent. Nevertheless, this540

rule was still able to achieve the third best rank among all the DRs.541

Table 3 represents the results achieved by the DRs when applied on problem542

instances generated with a low job heterogeneity and a high machine hetero-543

geneity. Smaller changes in the performance of rules for some criteria are again544

noticeable when compared to the previous two test sets, but most of the rules545

retain a very similar performance. For the Cmax and Cw criteria the same �ve546

rules once again achieve the best results. However, for the Cmax criterion the547

min-max rule achieved the best result this time, followed closely by the Su�er-548

age2 rule. For the Cw criterion the best result was once again achieved by the549

WSPT rule. For the Fmax criterion, the best results are now achieved by rules550

which did not achieve the best results in the previous cases, such as MS, CR,551

EDD, and ERD which achieves the overall best result for this criterion. The552

MECT rule achieved once again the best result for the Ft criterion. For the553

Etwt criterion the best result was achieved by the WQ rule, with the other rules554

performing similar as for the previous two problem sets. Once again for theMut555

criterion the LPT DR achieved the best result. For the due date related criteria556

the ATC, COVERT, and MON rules achieve the top results for all the three557

criteria. This time the MON and COVERT rules achieved better values for the558

due date related criteria than ATC, which is probably due to the choice of the559

parameter value for ATC.560
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Table 3: Results for the test set generated with a low job and a high machine heterogeneity

Cmax Cw Fmax Ft Etwt Mut Nwt Tmax Twt RankT Rankcf Rank

ELB 11.99 4583 7.176 773.5 1093 1.56*10−8 2.330 0.719 6.422 - - -

MCT 15.45 7194.0 13.67 3314 25042 1.34*10−5 4.386 3.764 225.4 19 19.5 17.6

MET 13.73 4797.1 12.28 938.8 27088 2.20*10−5 2.673 2.837 59.39 10.3 9 12.1

ERD 14.77 7238.9 7.191 3366 24942 9.78*10−6 4.317 2.163 199.3 11.7 14 12.2

LPT 14.08 9176.1 13.69 5317 23449 3.06*10−6 5.745 4.445 423.8 25 21 18.1

WSPT 14.04 4583.3 13.00 1417 26693 1.58*10−5 3.0368 3.368 103.9 14.3 10.5 13.3

Maxstd 14.19 8607.7 13.76 4748 23936 3.20*10−6 5.387 4.410 378.1 23 20.3 17.7

SA 13.69 4836.9 11.97 975.6 27056 2.24*10−5 2.696 2.719 60.97 10 9 12.0

KPB 12.94 4677.4 11.48 820.2 27186 2.43*10−5 2.558 2.542 49.60 6 5 9.8

OMCT 14.21 8634.1 13.77 4769 23922 3.15*10−6 5.403 4.431 382.5 24 21.3 18.2

OLB 14.48 4997.4 13.00 1140 26925 2.36*10−5 2.798 3.160 76.96 12.3 13 14.7

EDD 14.88 6762.8 7.900 2891 25368 1.54*10−5 4.096 2.182 175.0 11.3 13.3 12.8

MS 14.81 7253.7 7.227 3381 24931 1.01*10−5 4.348 2.181 201.3 12.7 15 13.0

MON 14.12 5304.2 12.92 1445 26606 1.60*10−5 2.493 1.769 41.97 1.3 13.3 10.2

CR 14.86 6982.3 9.270 3119 25267 1.22*10−5 4.440 2.700 240.7 16.3 14 14.3

COVERT 14.02 5334.2 12.82 1470 26580 1.51*10−5 2.518 1.726 42.79 1.7 12.3 9.3

ATC 14.06 5360.4 12.89 1495 26556 1.58*10−5 2.526 1.783 43.47 3 13.5 10.4

Min-min 12.96 4677.5 11.51 822.7 27186 2.37*10−5 2.571 2.558 49.73 7 6 10.3

Max-min 15.94 7841.8 8.337 3968 24453 7.96*10−6 4.794 2.632 255.4 17 17 14.9

Min-max 12.01 6585.5 11.03 2728 25518 7.63*10−6 3.922 2.952 170.1 14 8.3 10.7

Su�erage 12.43 7021.4 11.68 3165 25163 6.50*10−6 4.206 3.307 211.5 16.7 11.8 12.7

Su�erage2 12.15 8698.1 11.76 4828 23779 4.19*10−6 5.372 3.602 349.7 21.3 15.3 14.8

RC 12.58 5161.8 11.23 1299 26776 1.73*10−5 2.892 2.760 80.45 12 7.3 11.4

LJFR-SJFR 13.09 4692.7 11.62 833.7 27177 2.27*10−5 2.599 2.724 51.65 9 7 11.1

MECT 12.73 4634.6 11.11 773.5 27223 2.56*10−5 2.545 2.404 44.60 5 3.8 9.1

WQ 60.96 30025 59.34 26234 19630 4.99*10−6 28.62 38.32 8959 26 26 20.9

JIT 17.33 9811.1 16.62 5952 22779 8.89*10−5 4.698 3.870 303.8 21 25 19.3
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For this problem set, the best rank for the due date related criteria was561

achieved by the MON rule, followed closely by the COVERT rule. The ATC562

rule, which achieved the best ranks for the previous two problem sets, achieved563

this time only the third best rank. For the set of completion time and �owtime564

related criteria the overall best rank was obtained by the MECT rule. The565

second best and third best average ranks were obtained by the KPB and min-566

min rules, respectively. This is mostly consistent with the performance of the567

rules on the previous problem set, except for the fact that the KPB rule now568

obtains a slightly better overall performance than the min-min rule. Considering569

the average ranks on all the criteria, the MECT rule achieved the best overall570

rank. Once again it performs well for most criteria, except for the Etwt and571

Mut criteria. The COVERT and MON rules also achieved a good rank, although572

they achieved good results only for the due date related criteria, while for the573

other criteria they achieved mostly mediocre results. The KPB and min-min574

rules also belong to the top �ve DRs by their ranks. Neither of those two rules575

achieved the best results for either one of the criteria, but managed to perform576

well for most of the criteria.577

Finally, Table 4 represents the results achieved by the rules for the problem578

set with a low job and machine heterogeneity. From the results it is evident579

that for this problem instance the behaviour is much more di�erent than for580

any of the previous three problem sets. For the Cmax criterion, the best result581

was achieved by the Su�erage2 rule. However, rules like maxstd, max-min and582

MCT also obtained good results for this criterion, although on the previous three583

problem sets they were unable to do so. For the Cw criterion the situation is584

similar as for the previous problem sets, with WSPT achieving the best result585

once again. The max-min rule achieved the best result for the Fmax criterion,586

while the MS and ERD rules also achieved very similar results. For the Ft587

criterion, the LJFR-SJFR rule achieved the best result by a small margin over588

the min-min, KPB and RC rules. The WQ rule again achieves the best result589

for the Etwt criterion, with no other rule achieving even remotely good results.590

Additionally, the WQ rule achieves also the best result for the Mut criterion as591
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Table 4: Results for the test set generated with a low job and a low machine heterogeneity

Cmax Cw Fmax Ft Etwt Mut Nwt Tmax Twt RankT Rankcf Rank

ELB 30.33 13763 1.069 218.5 603 1.19*10−7 2.220 0.164 7.972 - - -

MCT 30.3471 13780 1.599 232.6 22834 3.39*10−4 2.254 0.236 8.970 16.3 14.9 14.9

MET 30.3534 13770 1.830 223.5 22842 3.53*10−4 2.254 0.263 8.724 16 13.3 16.0

ERD 30.3377 13777 1.153 230.1 22836 3.33*10−4 2.256 0.196 8.841 12 11.5 10.9

LPT 30.3331 13786 1.583 238.8 22828 3.35*10−4 2.256 0.202 9.075 15.3 15 13.3

WSPT 30.3528 13765 1.738 225.0 22841 3.48*10−4 2.261 0.252 8.939 19.7 11.5 15.6

Maxstd 30.3347 13783 1.540 236.5 22830 3.36*10−4 2.252 0.227 9.207 15.7 13.3 12.8

SA 30.3534 13770 1.854 223.6 22842 3.49*10−4 2.255 0.242 8.679 14.7 14.3 15.6

KPB 30.3534 13767 1.643 220.8 22844 3.51*10−4 2.247 0.250 8.481 10.7 10.8 13.1

OMCT 30.3339 13782 1.569 235.6 22831 3.38*10−4 2.256 0.218 9.017 16.3 13 13.6

OLB 31.203 14014 6.267 466.9 22619 1.01*10−4 2.467 0.837 19.744 24 24 19.2

EDD 30.3526 13772 1.432 225.1 22841 3.44*10−4 2.252 0.220 8.700 12.3 10.8 12.6

MS 30.3362 13776 1.151 229.0 22837 3.38*10−4 2.251 0.194 8.889 8.7 10.5 10.1

MON 30.3534 13772 1.816 225.6 22840 3.51*10−4 2.242 0.208 8.396 4.3 15 12.1

CR 30.3526 13773 1.641 226.7 22839 3.52*10−4 2.255 0.275 8.935 18.3 14.8 16.8

COVERT 30.3516 13773 1.570 226.3 22839 3.54*10−4 2.242 0.202 8.405 4 12.8 11.1

ATC 30.3516 13773 1.573 225.9 22840 3.51*10−4 2.245 0.207 8.461 5.7 12.5 11.6

Min-min 30.3534 13767 1.735 220.7 22844 3.50*10−4 2.252 0.251 8.442 10.7 10 12.6

Max-min 30.3353 13784 1.150 237.5 22830 3.29*10−4 2.257 0.204 9.374 17 12 12.1

Min-max 30.3361 13770 1.159 223.2 22843 3.33*10−4 2.246 0.197 8.567 6 6 7.6

Su�erage 30.3360 13768 1.205 221.1 22844 3.35*10−4 2.252 0.190 8.474 5.7 5.3 7.6

Su�erage2 30.3319 13774 1.257 227.0 22839 3.42*10−4 2.254 0.192 8.631 8.3 9.3 10

RC 30.3473 13768 1.410 220.8 22845 3.37*10−4 2.246 0.218 8.519 8.7 7 10

LJFR-SJFR 30.344 13767 1.564 220.6 22844 3.37*10−4 2.246 0.226 8.396 6.7 5.8 8.8

MECT 30.3600 13789 1.855 242.1 22825 5.44*10−4 2.269 0.312 9.555 23 23 21.2

WQ 62.1436 31019 57.95 17450 17331 0.43*10−4 24.238 34.55 5867 26 26 20.4

JIT 31.7544 15792 19.61 2245 20977 1.31*10−4 2.598 2.212 36.21 25 25 20.0

well. For this problem set, no single rule performs well for all three due date592

related. The ATC, MON, COVERT, and LJFR-SJFR rules perform well for593

the Twt and Nwt criteria, but usually not for the Tmax criterion, for which the594

Su�erage rule performs the best.595

The best rank for the due date related criteria was obtained by the COVERT596

rule, followed closely by the MON rule. The ATC rule achieved the third best597

average rank, the same as the su�erage rule. However, it is interesting to note598

that the average values of these rules for the set of due date related criteria599

are larger than for any of the previous three problem sets. The reason for this600

is due to the fact that no single rule obtains good results across all the due601

date related criteria, which then leads to a larger average rank. For the set602
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consisting out of the completion time and �owtime related criteria the best603

average rank was obtained by the su�erage rule. The second and third best604

ranks were obtained by the LJFR-SJFR and min-max rules. However, even for605

this criteria set it is evident that the best average rank value is larger than it606

was in the previous three problem sets. Therefore, for the problem set with a607

low job and machine heterogeneity the DRs do not perform equally well on all608

criteria within these two groups as they did for the previous three problem sets.609

The overall best rank across all the criteria was achieved by both the Su�erage610

and min-max rules. These two rules demonstrated good performance across611

all criteria, except the Etwt criterion for which they achieved among the worst612

results from all the rules. Surprisingly, neither of the rules which were among the613

best for solving due date related criteria for the previous three problem sets are614

now among the top �ve rules when considering their ranks. For this problem set615

the MS rule achieved the best rank among the DRs for optimising the due date616

related criteria. Although this rule did not perform well for the Twt criterion,617

it achieved relatively good results for several other criteria. Additionally, the618

LJFR-SJFR and Su�erage2 rules also achieved a good rank which placed them619

among the �ve best rules for this problem set.620

The comparison of the DRs with the ELB values leads to some interesting621

observations. First of all, the DRs have shown to be least e�ective for the Etwt622

and Mut criteria. However, this is to be expected since DRs were usually not623

designed to optimise such criteria. For the due date related criteria the results624

obtained by the DRs when compared to the ELB values are still signi�cantly625

worse. This is especially evident for the Twt criterion, while for the other two626

criteria the di�erence is not as prominent. Furthermore, for the problem set with627

low job and machine heterogeneity the di�erences between the results obtained628

by the DRs and the ELB values diminish for the due date related criteria. On629

the other hand, for the completion time and �owtime criteria the di�erences are630

quite small. This means that the DRs are most appropriate and well designed631

for dealing with such types of criteria.632

Aside from considering the four problem sets individually, it is also inter-633
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esting to denote the best ranking rules on all four problem sets together. The634

MON and COVERT rules obtain the best average rank of 2.8, while the ATC635

rule obtains the average rank of 3 for the set of due date related criteria. Based636

on the average rank values it is evident that these three rules perform well for637

the due date related criteria across all the problem sets. For the completion638

time and �owtime criteria the best rules across all four problem sets are the639

min-min, LJFR-SJFR, and KPB rules with average ranks equalling to 6, 6.3,640

and 6.4 respectively. The ranks denote that for this set of criteria it is harder for641

a single rule to perform well for all the problem sets. If all nine criteria and all642

four problem sets are considered at the same time, then the best average rank643

is obtained by the COVERT rule, with an average rank equalling to around 9.4.644

Aside from this rule, the LJFR-SJFR, ATC, and min-min rules also obtained645

quite good average rank values of 10, 10.1, and 10.1 respectively. The afore-646

mentioned rules can be considered the most versatile rules, since they achieve647

the best average rank value across all the tested problems and all the optimised648

criteria. Therefore, if the heterogeneity of the jobs and machines in the system649

is not known in advance and it is required for the rule to perform well over most650

of the criteria, then one of the aforementioned DRs should be used.651

6. Discussion and analysis652

In this section a short analysis based on the results obtained in the previous653

section will be performed. The analysis will be divided into two parts. The �rst654

part will focus on DRs and tries to analyse for what situations they are most655

well suited. In the second part for each criterion it will be analysed which are656

the best rules for that criterion.657

6.1. Analysis of DRs658

Although MET is a quite simple DR, it managed to achieve good results in659

some occasions. Except for the set with low machine and job heterogeneity, this660

rule performed well for the Cw and Ft criteria, usually being ranked between661
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the �fth and seventh place for those two criteria. However, for the other criteria662

it did not achieve as good results. Therefore, it is evident that in cases of high663

heterogeneity it can be bene�cial to schedule jobs by their processing times, since664

there will be large di�erences between the processing times of a single job. Thus,665

jobs should usually be scheduled on those machines for which they have smaller666

processing times. For the case when the heterogeneity is low, the performance667

of the rule deteriorates signi�cantly for most criteria, since there is no large668

di�erence between the processing times on the di�erent machines. MCT is also669

a simple rule, however, unlike the MET rule, it did not achieve as good results,670

especially for problems with high job heterogeneity. This behaviour is expected,671

since the jobs which should be scheduled are selected randomly. Therefore the672

rule does not select the jobs in any ingenious way, but just determines on which673

machine to schedule the selected job. In order to avoid the random selection of674

jobs, the OMCT rule orders the jobs by using a priority based on the standard675

deviation of processing times. However, using these priorities is only partially676

successful. For the problems with high heterogeneity the rule performed rather677

well for the Etwt and Mut criteria, being between the fourth and sixth best678

rule for the aforementioned criteria. However, for all the other criteria the679

rule obtained results which were among the worst. For the problems with low680

machine and job heterogeneity the rule performed well for the Cmax criterion,681

while for the other criteria it again performed quite poorly. The MECT rule,682

which represents a combination of the MET and MCT rules, performs much683

better than the previous three rules for all problems except those with low684

machine and job heterogeneity. The rule achieved a good performance for all685

of the criteria except the Etwt and Mut criteria. The reason for such a good686

performance comes from the fact that if a job would not increase the makespan,687

the DR schedules the job on the machine with the shortest processing time.688

On the other hand, if it would increase the makespan the DR schedules the job689

on the machine with the earliest completion time. Therefore, the rule tries to690

simultaneously reduce the �owtime and makespan related criteria. However, the691

rule also reduces the due date related criteria as well, since it tries to execute692
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jobs as fast as possible, thus reducing the possibility of them being late. This693

makes MECT one of the most versatile rules. The rule achieved the best results694

for the Ft and Cw criteria. However, on problems with low machine and job695

heterogeneity the rule achieved bad results. This is probably due to the fact696

that the processing times over the di�erent machines do not have large variations697

and thus the adaptive part of the rule is not useful. These observations con�rm698

those from the original paper where the MECT rule was proposed.699

The WSPT rule represents an extension of MET, however, it also takes into700

account the weights of jobs when calculating priorities. This enables the rule to701

achieve the best result for the Cw criterion across all four problem sets, making702

it the main choice when this criterion needs to be optimised. For the other703

criteria the rule does not perform well, however, it performs better on problems704

with high heterogeneity. The LPT rule has shown variable behaviour depending705

on the heterogeneity of the problems. For problem sets with high heterogeneity,706

this rule achieved good performance for the Etwt and Mut criteria. By �rst707

scheduling jobs with the longest processing times, the rule is able to evenly708

distribute the load across several machines. When used for problem instances709

with low job and machine heterogeneity, this rule is also able to obtain a very710

good result for the makespan criterion. However, for most of the other criteria711

the rule did not obtain good results.712

The goal of the ERD rule is to schedule those jobs which entered the system713

sooner. When the job heterogeneity is low, this rule obtains good results for714

the Fmax and Tmax criteria, since the rule will reduce the time which the job715

spends in the system. However, if the job heterogeneity is high the rule does not716

perform well for most of the criteria. The reason why the rule does not perform717

well under high job heterogeneity is because jobs will have largely di�erent718

processing times. Therefore, if the processing times of jobs are not considered719

when calculating the priories, it is possible that jobs with large processing times720

will be scheduled. This will delay the execution of other jobs and increase the721

value of the scheduling objectives. The maxstd rule generally achieved bad722

results across all the criteria. For problems with high heterogeneity the rule723
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achieved good results for the Mut and Etwt criteria. The performance of the724

rule did improve slightly when the heterogeneity is low for jobs and machines,725

even achieving a relatively good result for the Cmax criterion. Even so, on726

the other criteria the results are not competitive with other rules. Therefore,727

the information about the standard deviation of the processing times does not728

provide any signi�cant information during the scheduling process.729

The results have demonstrated that the min-min rule was one of the best730

performing rules. This is especially true for the problems with high job het-731

erogeneity, for which the rule performs well for the Cw and Ft criteria, being732

among the top three rules for those criteria. For the other criteria, except Etwt733

and Mut, the rule also achieves good results, being either the �fth or sixth best734

rule. This shows that min-min is an appropriate rule for cases where job het-735

erogeneity is high. The reason for such a good performance comes from the736

fact that it tries to complete the jobs as soon as possible, which optimises the737

Ft criterion. However, for problem instances with low job heterogeneity, the738

performance of the rule deteriorates. The rule still achieves excellent results for739

the Ft and Cw criteria, but the performance on the other criteria deteriorates.740

The max-min heuristic is not as successful as the min-min heuristic. It performs741

well only for the problems with the low heterogeneity, and only for the Fmax742

and Mut criteria. This is again the consequence of smaller di�erences between743

processing times, since this rule selects those jobs with higher processing times,744

which leads to bad schedules on problems with high heterogeneity.745

The min-max rule is much more successful. For example, for problems with746

high heterogeneity it achieved results which are among the best for the Cmax and747

Fmax criteria. Thus, the modi�cation of the rule which also takes into account748

that jobs are schedules on machines on which they have shorter processing times749

is bene�cial for optimising the makespan criterion. The reason for this is that750

by scheduling the rules on machines on which they have shorter processing times751

will e�ectively lead to their faster execution, but also keep certain machines free752

for more appropriate jobs which could be released in the future. For problems753

with low heterogeneity this rule is unable to achieve such good results for those754
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two criteria. However, the rule performs well across most of the criteria, usually755

ranking between the fourth and seventh place. Such behaviour is expected,756

since for low heterogeneity conditions the di�erences between the processing757

times will be much less prominent. Therefore, scheduling jobs on machines on758

which they have smaller processing times will not have an equally strong e�ect759

as in conditions with higher heterogeneity.760

The su�erage rule achieved good results for the Cmax criterion, especially761

for the problems with high heterogeneity, where it was ranked between the762

second and fourth place. For problems with high job heterogeneity, it also763

achieved good results for the Fmax and Mut criteria. For the other criteria it764

achieved quite poor results. However, for problems with low machine and job765

heterogeneity, it performs rather well across most of the criteria, usually ranking766

either �fth or sixth for most criteria. Thus, the rule exhibits a similar behaviour767

as the min-max rule, being highly specialised under high heterogeneity for only768

a few criteria, but performing well for most criteria under low heterogeneity.769

The extended su�erage rule, denoted as su�erage2, has shown to be the best770

rule for the Cmax criterion. It achieved the best results for all problem sets771

except for the one with low job and high machine heterogeneity, on which it772

achieved the second best result. For problems with high job heterogeneity the773

rule also achieved good results for the Fmax criterion, ranking second or �rst,774

and the Etwt criterion, for which it ranks second and third. However, for775

problems with high heterogeneity the rule achieves poor performance on most776

other criteria. On the problem instances with low heterogeneity the performance777

of the rule improves for other criteria, but still the performance for most of them778

was mediocre. Therefore, this rule highly specialised for optimising the Cmax779

criterion, while neglecting other criteria.780

The SA rule achieved mediocre results across most of the criteria, regardless781

of the heterogeneity of the problem instances. Therefore, this is one of the rare782

rules which did not perform well on at least one criterion. The LJFR-SJFR has783

shown to perform well across most criteria, except the Etwt and Mut criteria,784

when considering problem instances with high heterogeneity. For most criteria785
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it achieved a rank between seven and nine, except for the Ft and Cw criteria, for786

which it achieved the forth and �fth best result, respectively. However, for the787

problems with low heterogeneity the rule achieves the best result for the Ft and788

Twt criteria, and second best for the Cw criterion. Although it is surprising that789

this rule achieved the best result for the Twt criterion, it can be explained by790

the fact that by optimising the Ft criterion the rule reduced the amount of time791

the jobs spent in the system, and therefore indirectly also reduced the tardiness792

of the jobs. KPB is another rule which achieved a good performance for the Cw793

and Ft criteria across all problem sets, always achieving values which are among794

the top four results. For problems with high job heterogeneity the rule achieved795

good results for other criteria, ranking between sixth and ninth place for all other796

criteria, except for the Etwt and Mut criteria. However, as the heterogeneity797

is reduced, the results of this rule also deteriorate. Therefore, limiting the798

the machines on which jobs can be scheduled is more bene�cial under high799

heterogeneity conditions, since in those conditions the processing times of jobs800

will have very di�erent values for the di�erent machines. The behaviour of the801

RC rule is interesting since it varies with regards to the heterogeneity of the802

problems. For high job heterogeneity this rule achieves good results for the803

Cmax and Fmax criteria, while performing mediocre for other criteria. However,804

for problem instances with low job and high machine heterogeneity, the rule805

performs well for most criteria, but does not excel in either. On the other806

hand, for problems with low heterogeneity the rule performs the best for the Ft807

criterion and well for most other criteria. Therefore, RC proves to be a quite808

versatile rule, across all the heterogeneity conditions.809

The OLB rule has generally achieved mediocre or bad performance regardless810

of the heterogeneity of the problem instances. However, this is expected since811

the rule randomly selects the job which should be scheduled next. The WQ rule812

performs poorly for most of the rules. The only criteria for which it performs well813

are the Etwt and Mut criteria. However, it does not consistently perform well814

on both of the aforementioned criteria. For Mut it performs well consistently815

across all the problem types, but obtains the best result for problems with816
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low heterogeneity. On the other hand, for all problem sets, except the one817

with high machine and job heterogeneity, this rule performed well for the Etwt818

criterion. The reason for this is that by dispatching jobs across machines to819

evenly distribute the load will lead to an increase in tardiness, but also to a820

signi�cant decrease in the earliness of the jobs, which then also leads to a better821

value of the Etwt criterion. The JIT rule was proposed for optimising the Etwt822

criterion, which it does since it usually achieved either the best or second best823

result for the Etwt criterion. However, apart from optimising this criterion,824

the rule also achieved the best result for the Tmax criterion when applied on825

problem instances with high job heterogeneity. Thus, by trying to schedule the826

job as close to its due date, many jobs end up being late, however, none of them827

ends up being completed long after their due date.828

The EDD rule is the simplest rule designed for optimising due date related829

criteria. Due to its simplicity it was unable to achieve good results on any830

of the tested criteria, except for Fmax in only one occasion. The MON rule,831

although also being a rather simple rule, achieved much better results than832

EDD. The rule performed well for all the due date related criteria. It performed833

especially well for the Nwt criterion for which it achieved the best result for all834

problem sets, except the one with high machine and job heterogeneity, where835

it achieved the third best result. The MS rule was shown to perform poorly on836

problem instances with high job heterogeneity. On the problem sets with low job837

heterogeneity the rule achieves good results, mostly for the Fmax criterion, but838

also for the Tmax criterion. In the case of low heterogeneity, the rule does not839

perform poorly for any of the tested criteria. Therefore, scheduling jobs closer840

to their due date is mostly useful for problems with low job heterogeneity. The841

CR rule represents a simple extension of the MS rule. Unfortunately, this rule842

did not achieve good results on most of the problem sets. Therefore, the rule843

did not demonstrate any advantages with regards to the other tested rules.844

The COVERT rule is similar to the CR rule, however, it does not allow for845

the priorities to increase with the increase of the tardiness of the job. Such a846

modi�cation has proven to be useful, since the rule achieved extremely good847

38



results. Naturally, the rule achieved the best results for the due date related848

criteria. The best performance of the rule can be noted on the problem sets849

with high machine heterogeneity, on which the rule always achieved results850

which were among the top three for the due date related criteria. Additionally,851

for these two problem sets the rule did not achieve poor results for any of the852

tested criteria. This allowed the rule to achieve a high rank when all the criteria853

are considered, meaning that the rule is well rounded. However, for the problem854

sets with low machine heterogeneity, the performance of the rule deteriorated.855

The rule still achieved good results for the due date related criteria, but usually856

it did not achieve the best results for any of the criteria. Therefore, the rule857

seems to struggle in choosing the right machine on which it should schedule the858

job, since it achieves inferior performance when the execution time of jobs is859

similar across all machines. The ATC rule represents a further extension of the860

COVERT rule, which uses an exponential function to model the priorities. This861

rule achieves the best performance when applied on problem sets with high job862

heterogeneity. On these sets it achieves the best result for the Twt criterion, and863

second best results for the Nwt and Tmax criteria. For the problem sets with864

high job heterogeneity this rule even obtained the best average rank when only865

the due date related criteria are considered. However, the rule achieved mediocre866

results for most of the other criteria, but still for neither of the criteria it achieved867

the worst results. For problems with low job heterogeneity the performance of868

the rule deteriorates, but it still manages to perform well for most due date869

related criteria, obtaining the third best rank for them.870

6.2. Analysis of scheduling criteria871

For the Cmax criterion the best results are achieved by the su�erage2, min-872

max, su�erage, and MECT rules. All these rules are similar in the fact that they873

use the minimum completion time to determine on which machine the current874

job should be scheduled. The di�erences arise mostly in the way that they select875

the job which should be scheduled. For example, min-max tries to execute the876

job on the machine for which it has the minimal processing time. Su�erage2877

39



and su�erage take into account the di�erence between the shortest and second878

shortest minimum completion time to determine which job would "su�er" most879

if not executed on the machine with the minimum completion time. MECT, on880

the other hand, schedules a great deal of jobs on machines on which they achieve881

their minimum processing time. Therefore, to optimise the Cmax criterion, it882

is not enough for the rules to take into account the minimum processing times883

of jobs. They have to additionally ensure that either the jobs are executed on884

machines on which they have a short processing time, or that the job can not885

be scheduled e�ciently on any other machine. With these strategies the rule886

ensures that it will not schedule jobs on just any machine, but rather that it887

will keep certain machines free if it determines that the current jobs can not be888

e�ciently executed on them.889

The Cw criterion is the only criterion for which one rule achieved the best890

result across all the test sets. For this criterion the WSPT rule achieved the best891

results, which is expected since it directly uses the information about the weights892

of jobs, in addition to their processing times. Other rules which perform well for893

this criterion are the min-min, KPB, and LJFR-SJFR rules. However, neither894

of these three rules takes into account the weights of jobs. Min-min schedules895

the jobs with the smallest minimum execution time, thus trying to complete the896

jobs as soon as possible. KPB works similarly, however, it additionally limits897

the number of machines on which the job can be scheduled. The LJFR-SJFR898

also uses the minimum completion time, however, it interchangeably schedules899

jobs with the longest and smallest completion time. Therefore, the best results900

for this criterion are achieved by rules which take into account directly the901

job weight for the completion times, or which schedule jobs by their minimum902

completion times. However, no rule combines both of these, therefore it could903

be possible to extend the min-min rules with job weights to obtain better results904

for this criterion.905

For the Etwt criterion it is not simple to �nd a single DR which performs906

well on all problem sets. The proposed JIT rule most consistently achieved907

the best results for this criterion. The LPT rule also achieved good results for908
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the Etwt criterion across all the problem sets. It is interesting that this rule909

performs well for this criterion, although not using information about earliness910

or tardiness at all. The explanation for such a result lies in the fact that by911

prioritising rules with the longest processing times, the jobs are completed at912

a later moment in time, thus increasing tardiness, but reducing earliness. The913

WQ rule achieves an interesting result for this criterion, since it performs well914

on all problem sets, except on the set with high job and machine heterogeneity.915

Therefore, balancing the load across all the machine also has a good e�ect on the916

Etwt criterion. Unfortunately, it is hard to �nd a common behaviour between917

the three aforementioned rules. The only thing they have in common is that918

they do necessarily schedule the jobs with the minimum completion time, and919

that jobs usually have a large completion time. Only the proposed JIT rule920

directly uses the tardiness and earliness information to schedule the jobs, and921

therefore should be more reliable than the other two methods. Additionally,922

in most cases the JIT rule achieves a better value for the Twt criterion, which923

means that it still tried to reduce the tardiness of jobs.924

In the case of the Fmax criterion, no single rule achieved the best perfor-925

mance on all problem sets. The best results were obtained by the RC, su�erage,926

su�erage2, min-max, and ERD rules. The �rst four rules try to schedule jobs927

on most appropriate machines. Usually, they achieve this by trying to schedule928

a job with the minimum completion time, but also taking into account that the929

job is not scheduled on a machine on which it has a large processing time. With930

this the rules can decide not to schedule jobs on certain machines, in order to931

keep them free until a more suitable job is released. Consequentially, the rules932

will try to execute the jobs as soon as possible, but will rather try to sched-933

ule them on machines which are most appropriate. This will allow for jobs to934

be executed as fast as possible, and will thus reduce the time which the jobs935

spend in the system. The ERD rule works in a di�erent way, since it prioritises936

jobs which were released earlier. With this the rule implicitly tries to reduce937

the �owtime of each job, since it will try to schedule it as soon as a machine938

becomes free. However, this rule usually did not perform equally well as the939
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aforementioned rules. Thus, for this criterion, it is bene�cial to schedule jobs by940

using the minimum completion time and some additional criteria which ensure941

that the job is scheduled on the most appropriate machine.942

The results for the Ft criterion are quite similar to those obtained for the Cw943

criterion, which in itself is expected since both criteria have a similar de�nition.944

The best results for this criterion are achieved by the min-min, KPB, and LJFR-945

SJFR rules. The reason why the aforementioned three rules perform well is due946

to the fact that all three rules try to schedule jobs by their minimum completion947

times. Therefore, they try to minimise the amount of time that the rules spend948

in the system. On the other hand, the WSPT rule which performed best for the949

Cw criterion, does not perform well for this criterion since it uses job weights950

which are not used in the de�nition of the Ft criterion. Therefore, the best951

rules for this criterion are those which try to schedule jobs so that they �nish952

executing as soon as possible, such as the min-min rule.953

The situation for the Mut criterion is not as simple as for the previous cri-954

teria, since no single rule performs well for this criterion across all four problem955

sets. This is likely the result of the fact that the heterogeneity of the problem956

instances has a large in�uence on this criterion, and how the schedule which957

optimises it should be constructed. For problem instances with high hetero-958

geneity the LPT rule achieved the best results. This is probably due to the fact959

that there is a high variability between processing times of jobs. Therefore, by960

executing those which have the longest processing time �rst the rule can more961

evenly distribute the load across all machines. On the other hand, for problems962

with low heterogeneity, the best results were achieved by the WQ rule. This963

is probably due to the fact that all the processing times are now more or less964

similar, and therefore this rule can more e�ectively distribute the balance across965

all the machines. Other rules which performed well for this criterion are OMCT966

and maxstd rules for problems with high heterogeneity. On the other hand, the967

OLB and JIT rules performed best under low job and machine heterogeneity.968

This demonstrates that to optimise this criterion under di�erent conditions rules969

which have a completely di�erent behaviour are required.970

42



For the Nwt, Tmax, and Twt criteria the best results are achieved by rules971

which are designed for optimising the due date related criteria. The three best972

rules for the aforementioned criteria were MON, COVERT, and ATC. For the973

Nwt and Twt criteria the best results are mostly achieved by the MON rule,974

while for the Tmax criterion the COVERT rule achieved the best results in975

most cases. All three rules perform well for the three tested due date related976

criteria. It is interesting to note how the MON rule, which uses only a static977

slack factor, performs better in certain occasions than the two rules which use a978

dynamic slack factor. The obvious reason for this is that the other two rules use979

an additional scaling parameter which in�uences the performance of the rules.980

Therefore, it is likely possible that if other values for those scaling parameters981

were used, the ATC and COVERT rules would achieve better performance.982

When rules are executed under dynamic conditions, it is not known in advance983

which parameter value would lead to the best results. For the Tmax criterion984

the best results for problem sets with high job heterogeneity were achieved by985

the JIT rule. Although the rule results in large tardiness values, it manages to986

schedule jobs in a way that no job is extensively late, at least when the processing987

times of jobs are highly di�erent between jobs. In the end, it is evident that988

for the due date related criteria the rules need to use the information about the989

slack of the jobs in order to obtain the best results.990

7. Conclusion991

In this paper a review of existing DRs which can be applied for scheduling992

in the unrelated machines environment with release times and under dynamic993

conditions was given. Additionally, all the collected DRs were evaluated on sev-994

eral problem sets and by using nine scheduling criteria. The results demonstrate995

that there is no single DR which would perform well for all of the nine tested996

criteria, but rather that DRs usually achieve the best performance for only one997

or two criteria, or perform well across several criteria but do not excel in any of998

the criteria. For most criteria it was possible to determine several DRs which999
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performed well across all the test sets, regardless of the heterogeneity condi-1000

tions. However, for only a few criteria a single DRs was able to achieve the1001

best result for all four problem sets. This shows that DRs are quite sensitive to1002

the heterogeneity conditions of the problem instances, and that changing those1003

conditions can have an in�uence on the performance of DRs. For some criteria,1004

like Etwt and Mut, the performance of DRs depends on a much greater exten-1005

t to the heterogeneity conditions. The results obtained in this paper should,1006

however, give a good notion of which DRs are appropriate for optimising which1007

scheduling criteria, and under which heterogeneity conditions.1008

Although this paper gives an overview of the di�erent DRs, it is still possible1009

to make other reviews which would focus only on speci�c criteria. For example,1010

it would be interesting to investigate how the due date range and tightness1011

in�uence the performance of di�erent DRs for the due date related criteria.1012

With such an investigation it would be possible to determine which rules are1013

appropriate for problems with speci�c tardiness conditions. Since this study1014

gave an overview of rules which performed best for each of the criteria, and also1015

outlined certain similarities between those rules, it could be possible to use that1016

knowledge to design novel DRs, which could perform better than the existing1017

rules. Finally, it could also be useful to analyse all the good DRs in more detail,1018

in order to identify the useful parts of these manually designed DRs, and to1019

try to use these parts when automatically designing new DRs by using di�erent1020

machine learning and evolutionary computation methods. This could very likely1021

lead to simpler, but more e�cient automatically designed DRs.1022
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