Improving genetic algorithm performance by population
initialisation with dispatching rules

Ivan Vlagi¢!, Marko Durasevi¢!, Domagoj Jakobovié!

wan.vlasic2@fer.hr, marko.durasevic@fer.hr, domagoj.jakobovic@fer.hr

¢ University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia

Abstract

Scheduling is an important process that is present in many real world scenarios
where it is essential to obtain the best possible results. The performance and
execution time of algorithms that are used for solving scheduling problems are
constantly improved. Although metaheuristic methods by themselves already
obtain good results, many studies focus on improving their performance. One
way of improvement is to generate an initial population consisting of individu-
als with better quality. For that purpose a variety of methods can be designed.
The benefit of scheduling problems is that dispatching rules (DRs), which are
simple heuristics that provide good solutions for scheduling problems in a small
amount of time, can be used for that purpose. The goal of this paper is to anal-
yse whether the performance of genetic algorithms can be improved by using
such simple heuristics for initialising the starting population of the algorithm.
For that purpose both manual and different kinds of automatically designed
DRs were used to initialise the starting population of a genetic algorithm. In
case of the manually designed DRs, all existing DRs for the unrelated machines
environment were used, whereas the automatically designed DRs were gener-
ated by using genetic programming. The obtained results clearly demonstrate
that using populations initialised by DRs leads to a significantly better perfor-
mance of the genetic algorithm, especially when using automatically designed
DRs. Furthermore, it is also evident that such a population initialisation strat-
egy also improves the convergence speed of the algorithm, since it allows it to
obtain significantly better results in the same amount of time. Additionally, the
DRs have almost no influence on the execution speed of the genetic algorithm
since they construct the schedule in time which is negligible when compared to
the execution of the genetic algorithm. Based on the obtained results it can be
concluded that initialising individuals by using DRs significantly improves both
the convergence and performance of genetic algorithm, without the need of hav-
ing to manually design new complicated initialisation procedures and without
increasing the execution time of the genetic algorithm.

*Corresponding author

Preprint submitted to Computers and Industrial Engineering May 5, 2020



Keywords: Scheduling, Unrelated machines environment, Genetic algorithms,
Dispatching rules, Population initialisation

Symbols
C; completion time of job j
d; due date of job j
i index of machine
j index of job
m number of machines
n number of jobs
Dij processing time of job j on machine 4
7§ release time of j

T; tardiness of job j
Twt total weighted tardiness of a schedule

w weight of job j

1. Introduction

Scheduling is defined as an optimisation problem in which it is required
to determine the allocation of a certain number of jobs to a limited number
of machines, so that some user defined criteria are optimised .
The interest for solving scheduling problems is quite high since they appear
in many real world situations like airplane scheduling (Cheng et al., [1999b;
Hansen| [2004), scheduling in manufacturing and fabrication (Dimopoulos & Za-|
1zala, 2000; Pfund et al., 2006; Chiang et al., [2008} [Kofler et al.,[2009), scheduling
in cloud environments (Zhan et al.L[2015} [Singh & Chanal, 2016), staff scheduling
(Ernst et all 2004), multiprocessor scheduling (Hou et all [1994)), or schedul-
ing patients in hospitals (Petrovic & Castrol 2011). An additional reason why
these problems are heavily researched is because most of them are NP-hard.
Therefore, it is not possible to develop an algorithm that could obtain optimal
solutions for such problems in a reasonable amount of time. As a consequence,
scheduling problems are usually solved by a variety of heuristic algorithms.
With these heuristics it is possible to rapidly obtain good solutions for different
scheduling problems. The solution quality and the time required to construct it
will depend on the type of heuristic which is used. Based on the way how the
heuristics solve scheduling problems, they are usually divided into improvement
and constructive heuristics.

Constructive heuristics start with an empty solution, after which they it-
eratively construct the entire schedule. Therefore, constructive heuristics do




not search the entire space of solutions, but rather use a certain kind of strat-
egy to determine how the schedule should be constructed. As a consequence,
constructive heuristics can create schedules in a quite small amount of time.
Furthermore, since they iteratively build solutions, they do not require that all
information about the problem is available at the start, but rather the infor-
mation can become available as the system is executed. As a result, they can
be used for solving scheduling problems under dynamic conditions, where the
schedule is constructed simultaneously with the execution of the system and
not all information about the problem is available up front. Since they do not
search the entire solution space of the problem, but rather use a greedy strategy
to construct the solution, they mostly achieve inferior results when compared to
improvement heuristics. Constructive heuristics most often appear in the form
of dispatching rules (DRs) (Purasevi¢ & Jakobovid, 2018]).

Improvement heuristics start with an initial solution or set of solutions for
a specific scheduling problem, and then iteratively try to improve the solu-
tions by using various operations. This means that they perform a search over
the solution space of the problem to find the best possible solution. Because
of that they are likely to obtain good solutions for different kinds of schedul-
ing problems. Although they can obtain quite good solutions, it is necessary
to provide them with enough computational time to reach them. Thus, im-
provement heuristics usually require a substantially larger amount of time to
obtain good solutions than constructive heuristics, but the solutions they ob-
tain are in most cases significantly better. Since these methods start with a
concrete solution, they can mostly be applied only for solving scheduling prob-
lems under static conditions, in which all the information about the system
is available beforehand. There is also a wide range of metaheuristic methods
that can be applied, such as genetic algorithms (?), particle swarm optimisation
(Kennedy & Eberhart, [1995]), ant colony optimisation (Colorni et al.l [1991)), but
also many other nature inspired algorithms like the bat algorithm (Gandomi &
Yang| [2014)), harmony search (Geem et al., 2001, rain-fall optimisation(Kaboli
et al., 2017b)), and many others (Boussaid et al., 2013; |Gogna & Tayal, 2013).
Metaheuristic methods were applied for solving various kinds of optimisation
problems like vehicle routing problems (Li et al.l [2015)), design of cryptographic
functions (Picek et al. 2016} Picek et al., 2016)), solving the economic dispatch
problem (Modiri-Delshad et al., [2016}; Kaboli & Algallaf, 2019), electric power
consumption forecasting (Kaboli et al 2016ba, [2017a), as well as for many
other areas (Fitzgerald et al., 2015} |[Krawiec & Pawlak, 2015; Soler-Dominguez
et all 2017; |Sebtahmadi et al., 2018; Mohamad Izdin Hlal et al., 2019) Differ-
ent metaheuristic methods have also been applied for solving various scheduling
problems in the literature (Cheng et all |1996; [Wang et all, [1997; |Cheng et al.
1999a); [Zhou et al.l [2001} [Tshibuchi et all [2003; [Hart et al 2005} [Gao et al.
2007; [Vallada & Ruiz, 2011; Lin et al., |2013; Lee et al.l [2013]).

The performance of improvement heuristics depends on many different pa-
rameters, and it is required to perform an initial parameter optimisation step
to improve the odds of obtaining good solutions. Aside from the algorithm pa-
rameters, the initial population of solutions has a significant influence on the




quality of the results, but also on the convergence speed of the algorithms. In
most cases the initial populations which are used by the improvement heuris-
tics are constructed randomly. As a consequence, the initial population usually
consists out of solutions of poor quality. Therefore, the improvement heuristics
have to invest time to construct solutions with good characteristics. For that
reason, several papers focused on analysing the influence of different population
initialisation mechanisms to enhance the performance of improvement heuristics
(Rahnamayan et al., |2007a; Diaz-Gomez & Hougen! 2007; |[Rahnamayan et al.)
2007b; |Kazimipour et al.l 2013, |2014)).

Unfortunately, for solving scheduling problems there is not a substantial
amount of research which is focused on initialisation techniques of improvement
heuristics. [Burke et al.| (1998) analysed the influence of several heuristic initial-
isation strategies on the quality and diversity of the initial population. Based
on the results obtained in the paper, the authors concluded that using the pro-
posed initialisation strategies evolutionary algorithms can perform much better.
However, the methods proposed in that study are applicable for the timetabling
and other related problems, which means that the methods used for population
initialisation can not be applied to other kinds of scheduling problems without
significant changes. Yang et al.| (2009) propose a novel initialisation method
which is based on two sub-methods, the global and local selection. These meth-
ods were used to initialise the population of a genetic algorithm when solving
the flexible job shop problem. The proposed initialisation method works simi-
larly as many dispatching rules since it tries to allocate the selected job and its
operations to the machines that could complete those operations the soonest.
The obtained results show that the proposed initialisation method can improve
the performance and computational time of the algorithm. The drawback of this
proposed method is that when constructing the initial population it randomly
selects and orders the jobs, rather than using some more sophisticated ordering
procedure which would lead to even better initial populations. |[Vigneswari &
Mohamed| (2014) apply the artificial bee colony algorithm with three initiali-
sation procedures for solving the grid scheduling problem. The results show
that by using the initialisation strategies the genetic algorithm achieves a bet-
ter performance than by using random initialisation. However, the initialisation
techniques proposed in this study are algorithm specific, which means that they
are applicable only for the considered artificial bee algorithm and do not use any
information about the scheduling problem that was considered. |Sarathambekai
& Umamaheswari (2017) use a discrete particle swarm optimisation algorithm
which is enhanced with the opposition-based technique for generating the initial
solutions for scheduling tasks in multiprocessor environments. The proposed ini-
tialisation method allocates the jobs on the machines based on their load, which
has shown to perform well for the makespan and flowtime related criteria. How-
ever, this method also focuses on just the allocation aspect of the scheduling
problem, and not on the order in which the jobs will be executed.

In most of the previously outlined studies completely new initialisation tech-
niques were developed. However, designing new initialisation techniques is a
difficult trial and error task. This is due to the reason that a great variety of



scheduling problems exist, and thus appropriate initialisation procedures would
need to be designed for all the different variants. Therefore, many studies also
based their initialisation techniques on existing DRs, since this omits the need
to design new initialisation procedures. Xhafa & Abraham| (2008) outline that
DRs can be used to generate several good solutions in the initial population
which could then accelerate the search. However, the authors do not provide
any investigation of the effect of using DRs for initialising the population of the
genetic algorithm. Xiong et al.| (2012)) used several DRs in the initialisation pro-
cedure of the proposed multi-objective evolutionary algorithm to improve the
quality of the initial population. This study only compared the proposed algo-
rithm which included such population initialisation strategies with some other
algorithms, and thus the benefit and influence of the population initialisation
with DRs was is not clear from the study, since the proposed algorithm also
includes other improvements like local search. Han et al,| (2016) use the MME
heuristic, which represents a combination of two popular DRs, for generating
the initial population for the fruit fly optimisation algorithm. This study also
did not analyse the effect that the proposed initialisation method had on the al-
gorithm, rather it just compared the modified algorithm with other algorithms.
Unlike in the previously outlined studies where manually designed DRs were
used, Kuczapski et al.| (2010]) evolved new DRs which were used for initialising
the starting population. The rules were represented as composite DRs, which
represents a weighted sum of several popular DRs. Then by using a genetic
algorithm the weights for the composite DR are optimised. The experimental
results demonstrate that the proposed population initialisation strategy leads
to better results than by using only randomly generated solutions in certain
cases. Unfortunately the experimental results and discussion provided in the
paper were not very extensive. Furthermore, the way in which the DRs were
designed, by using a weighted sum, has in similar research proven to be inferior
to other methods of automatically designing DRs which are based on genetic
programming and similar methods (Branke et al.| |2015]).

As can be seen from the outlined literature review, the initial population
for solving scheduling problems can either be initialised by using specifically de-
signed initialisation strategies or by using existing simple heuristic procedures,
most notably DRs. Designing initialisation strategies for the various problem
variants and optimisation criteria would be quite time consuming. Thus even
though such initialisation procedures might be effective, the need to always
design new strategies represents a significant drawback. This would be espe-
cially problematic for problems that are more complex and not standard. As
a consequence, initialising the population by using DRs seems to be a more
favourable approach. The reason for this is that a lot of different DRs exist
for various kinds of scheduling problems which could be reused for initialising
the population of genetic algorithms. In previous studies the initial population
still consisted mostly out of randomly designed solutions, while only several
solutions were generated by using DRs. Most of the studies used population
initialisation as an additional part of their newly designed algorithms, and did
not provide a detailed analysis on how that part actually influences the per-



formance. Furthermore, most studies used manually designed DRs to generate
the initial population. Therefore, one could also argue that there are scheduling
problems for which no adequate DRs exist, which could be used to initialise
the population of the genetic algorithm. However, in recent years a great deal
of research was done in the area of automatic DR design by using genetic pro-
gramming (GP) (Branke et al., |2016; [Nguyen et al., |2017)). These DRs obtain
mostly better results than manually designed DRs, which could also make them
more suitable for initial population generation. Furthermore, GP can be used
to design DRs for any kind of scheduling problem which eliminates the need
of manual design of novel population initialisation methods. In the end, DRs
do provide more flexibility when generating the initial population for meta-
heuristic methods. However, the existing research still leaves many questions
open regarding to this topic, which is mostly due to the fact that population
initialisation was used with other methods (like local search) to improve the
performance and no detailed analyses were performed to asses the influence of
population initialisation via DRs. Therefore the following questions still remain
open in the currently available studies:

1. How much influence does initialisation with DRs have on the performance
and the convergence of genetic algorithms?

2. Are automatically designed DRs better for initialising the starting popu-
lation than the manually designed ones?

3. How does the ratio between randomly initialised and DR initialised indi-
viduals in the population influence the performance?

4. What influence does initialisation with DRs have on the diversity of the
population?

The objective of this paper is to investigate how the performance of a genetic
algorithm can be improved by constructing an initial population with a better
quality. The main goal is to clearly denote and analyse the influence of the
DR initialisation strategies on the performance and convergence speed of the
genetic algorithm, depending on whether manually or automatically designed
DRs are used to initialise the population. Another focus is to analyse the
influence of the proposed initialisation methods on the population diversity and
consequentially the algorithm performance. The genetic algorithm was selected
since it is one of the most commonly used improvement heuristics which is
used in the literature to solve scheduling problems |Hart et al.| (2005). However,
the tested initialisation procedures can be used to initialise the populations
of any other population based methods. This paper will specifically focus on
the construction of the initial population by using DRs. Since DRs can create
schedules of a relatively good quality in a small amount of time, they would not
increase the execution time of the genetic algorithm substantially, but would
lead to the construction of a better initial population. By using DRs it is not
necessary to define any complex initialisation strategies, due to the reason that
these DRs can be designed automatically which decrease the effort required for
developing them. The paper will also analyse the difference in the performance
of the genetic algorithm when manually or automatically designed DRs are



used to create the initial population. The contributions of this paper can be
summarized as:

1. Application of manually and automatically designed DRs for population
initialisation of GAs

2. Performance comparison of initialisation strategies using different DR
groups and population sizes

3. Convergence analysis of the algorithm when using different DRs for ini-
tialisation

4. Diversity analysis of the populations constructed by different initialisation
methods

The rest of the paper is organised as follows. Section [2| provides an intro-
duction into the topics of scheduling problems, genetic algorithms, and DRs.
The population initialisation strategies that will be analysed in this paper are
described in Section [3] The experimental set-up is explained in Section[dl The
obtained results are presented in Section [§] while Section [6] provides a short
discussion based on the obtained results. Finally, Section [7] provides a short
conclusion and outlines possible future research directions in this topic.

2. Background

2.1. Scheduling

Since scheduling problems are present in many real world situations, they
have attracted a lot of attention from researchers. In order to model the vari-
ous situations that can appear in the real world, several machine models have
been proposed (Pinedol [2012)). In this paper the unrelated machines scheduling
environment will be used. This environment specifies that each job needs to
be assigned on one of the available machines for execution. However, in this
environment each machine executes the jobs with a different speed. Therefore,
no relations between the different machines can be deduced. For example, one
machine can execute one job faster than another machine, while all other jobs
can be executed faster on the second machine. This property makes solving
problems in this environment quite challenging.

When specifying the scheduling problem, the number of machines in the
problem is usually denoted with m, while the number of jobs is denoted as n.
The index 7 is used to denote a certain machine, while the index j is used to
denote a specific job. For each job several properties have to be specified. The
most important property is the processing time of job j on machine i, which is
denoted as p;;. This is the only property that has to be specified, since all others
depend on the type of the scheduling problem and criterion which is optimised.
If the jobs are not available at the start of the system, but rather they arrive
during the execution of the system, then a release time for is specified for each
job. This property is denoted as r; and represents the time when the job is
released into the system. In certain cases each job can also have a due date,
which is denoted as d;. The due date defines the point in time until which a



job should be executed. If the job is not finished until then, a certain cost or
penalty is invoked. This penalty becomes larger as the time after which the job
is executed after its due date increases. This property is only specified and used
if due date related criteria have to be optimised. Finally, all the jobs are usually
not equally important. For example, some jobs need to be executed as soon as
possible, and if they are not executed on time a larger penalty will be invoked
than in the case if some other jobs would be late. In order to denote that some
jobs are more important than others a weight, denoted as wj, is associated with
each job. A larger weight denotes that the job is more important and that it
should be scheduled sooner.

By using the aforementioned properties a solution can be constructed and
evaluated by using different scheduling criteria (Allahverdi et al.l 1999} 2008}
Durasevi¢ & Jakobovié, 2018). The scheduling criterion which will be optimised
depends largely on the user requirements. In this paper the time which the jobs
finish after their due date will be minimised. In order to do that, a measure
which calculates the time that the job spent executing after its due date is de-
fined. This measure is called tardiness and is calculated as T; = max(C; —d;,0),
where Tj represents the tardiness of job j, and C) represents the completion
time of job j. Based on this measure the total weighted tardiness is calculated
as Twt = Y ;w;Tj. As it can be seen from the definition, this criterion also
uses the job weights to give more importance to certain jobs, which means that
more important jobs will have a larger influence on this criterion if they are
tardy. This criterion specifies the total tardiness of all jobs in the schedule, and
needs to be minimised.

2.2. Genetic algorithm

Genetic algorithm (GA) is a popular metaheuristic optimisation method
which is used to solve various kinds of problems, including different kinds of
scheduling problems. The first step which needs to be performed when apply-
ing a GA for solving a problem is to select the solution representation. Although
various solution representations have been proposed for solving scheduling prob-
lems (Costa et al., |2013; [Purasevi¢ & Jakobovid, [2016; Bean) [1994; |Behnamian
et al.l 2009 Balin, [2011)), in this paper the solutions will be represented by us-
ing the machine list encoding (MLE) (Vallada & Ruizl |2011)). The reason why
this solution representation was selected is not only due to its simplicity, but
also because in some preliminary experiments it obtained the best results out
of several tested solution representations. Figure [I]shows a solution represented
by using the MLE for a scheduling problem consisting of three machines and
nine jobs. In this encoding for each machine there is a list of jobs that need to
be executed on the specific machine. The jobs are executed on the machine in
the order in which they appear in the list. In this example, jobs 3 and 7 would
be executed on machine 0, jobs 5, 1, 2, and 0 would be executed on machine 1,
while jobs 6, 4, and 8 would be executed on machine 2.

Aside from specifying the solution representation, it is additionally required
to select the genetic operators which will be used. For the crossover operator the
point crossover will be used. An example of this crossover is shown in Figure



Machine 0 3 7

Machine 1 5 1 2 0

Machine 2 6 4 8

Figure 1: A solution represented by the machine list encoding

=

D
Parent 1 IT
Machine 0 ‘ 3 ‘ 7 ‘ 8 ‘ 4 ‘ 6 ‘
Machine 1 ‘ 5 ‘ 1 ‘ 2 ‘ 0 ‘ Child
i Machine0 | 8 | 7 ] 8 | o ]
P2
P R
Parent 2 T Machine 1 5 1 0 4 2
Machine 0 ‘ 8 ‘ 5 ‘ 6 ‘ 1 ‘
Machine 1 ‘ 0 ‘ 7 ‘ 4 ‘ 2 ‘ 3 ‘

Figure 2: Point crossover used for MLE

2] In this crossover for each machine permutation list a random crossover point
is selected. The child individual is constructed in a way that all jobs which
appear before the crossover point in the first parent are directly copied into the
child individual. To ensure that the lists in the child individual represent valid
permutations, it is not possible to copy all the jobs after the crossover point
from the second parent. Instead, all jobs in a permutation list of the second
parent will be traversed, and for each job it will be checked whether it already
appears in any of the machine lists of the child individual. If it does, it will be
skipped, otherwise it will be placed on the corresponding machine in the child
individual. In this way it is ensured that the child individual represents a valid
solution. In the example in Figure [2| the crossover point for the first machine
was selected so that the first three jobs are taken from the first parent, while for
the second machine only the first two jobs would be taken from the first parent.
After that, the list for the first machine in the second parent is traversed, during
which job 6 is put into the permutation list of the child, while jobs 5 and 1 are
skipped since they are already present in the list of the second machine. The
same procedure is also used to determine which jobs will be placed on the second
machine in the child individual.



Before mutation After mutation

Machine 0 ‘ 3 ‘ 7 ‘ 8 ‘ 6 ‘ Machine 0 ‘ 3 ‘ 7 ‘ 8 ‘ 6 ‘
Machine 1 ‘ 5 ‘ 1 ‘ 0 ‘ 4 ‘ 2 ‘ Machine 1 ‘ 5 ‘ 0 ‘ 4 ‘ 1 ‘ 2 ‘
~_
(a) Insertion on the same machine
Before mutation After mutation
Machine 0 ‘ 3 ‘ 7 ‘ 8 ‘ 6 ‘ Machine 0 n
Machine 1 ‘ 5 ‘ 1 ‘ 0 ‘ 4 ‘ 2 ‘ Machine 1 ‘ 5 ‘ 0 ‘ 4 ‘ 1 ‘ 7 ‘ 2 ‘

(b) Insertion on a different machine

Figure 3: Insert mutation used for MLE

For the mutation operator the insert mutation will be used. In this mutation
a random job is selected and a new position is randomly chosen for it. Figure
shows an example of the insert mutation. In this operator two different cases
can occur. The first case is that the job is placed on the same machine, but on
a different position, which is denoted in Figure[3a] In the second case, the job is
scheduled on a completely different machine and placed on a random position,
which is denoted in Figure [3D] Since the position on the second machine is
randomly selected, it can be either different or even the same as the position on
the initial machine. Since the mutation can not result in invalid permutations
there is no need to have additional constraints in the mutation operator.

2.8. Dispatching rules

As denoted in the introduction, DRs are simple heuristics that create the
schedule incrementally. This is done in a way that at each decision point they
determine which job should be scheduled next on which machine. A decision
point can be defined as a moment in time when a job is released and there
are available machines in the system, or a machine becomes available and there
are unscheduled jobs in the system. The selection of a job is usually made by
calculating the priority for each job by using certain job and system parameters.
For example the priority of job j can be calculated by the function

which would simply calculate the priority based on the release times of the
jobs. The job with the largest priority is then selected and scheduled on the
appropriate machine. For the aforementioned priority function the job which
was released the earliest would have the highest priority and would be scheduled
first. The DR then moves to the next decision point, and again determines which
jobs should be scheduled. The procedure is repeated until all jobs are scheduled.

10



Naturally, there are DRs of different complexities, ranging from those simple
which make the decision based only on one or two job and system parameters,
to those more complex which define more sophisticated scheduling procedures
Maheswaran et al.| (1999); Braun et al. (2001)); Purasevi¢ & Jakobovid| (2018).
Furthermore, the definition of DRs also depends on the criterion which need
to be optimised, since different system and job properties will be used when
optimising different scheduling criteria.

One additional property which needs to be specified for DRs is which jobs
are considered at each decision point. The type of rules which consider only
those jobs which were released until the decision point are designed for solving
dynamic scheduling problems. These DRs assume that the information about the
unreleased jobs is not available, and thus they do not use it. This makes the rules
simpler and faster, but also more myopic if static information is available, since
by using that information they could perform better decisions and obtain better
results. Most of the DRs proposed in the literature are of this type. However,
DRs can be extended to also consider jobs which are not yet released at the
current decision point (Branke & Pickardtl |2011)). These rules also calculate
priorities for jobs that are yet unreleased, and if one such job has the highest
priority it will be scheduled instead. Such rules will have a better overview
on the problem since they will have the possibility to introduce idle times in
the schedule if they determine that a more important job will soon be released
into the system. As a result, such rules will achieve better solutions than DRs
designed for dynamic scheduling problems.

3. Population initialisation by dispatching rules

As denoted in the introduction, the initial population of the GA will be ini-
tialised by using four different DR initialisation strategies. Each of the initiali-
sation strategies mentioned in this section has certain benefits and drawbacks,
which will be discussed in detail in the later part of the paper.

The first initialisation strategy will use a set that consists out of 26 manually
designed DRs for solving the unrelated machines scheduling problem, described
in (Durasevi¢ & Jakobovi¢, |2018]). The set includes many popular and com-
monly used DRs like ATC (Lee et al., [1997), min-min (Maheswaran et al.
1999), and sufferage (Maheswaran et al., [1999). Unfortunately the set of man-
ually designed DRs is quite limited. Since designing new DRs manually is a
difficult and time consuming process, it is not expected that the number of such
DRs will significantly increase in the future. Thus the number of solutions that
can be generated by them is also limited. Furthermore, not all of the included
DRs are designed to optimise the Twt criterion. Therefore, not all the solutions
in the initial population will have a good quality for that criterion. All of the
DRs in this set consider only the released jobs in each of the decision points,
which means that they are designed to deal with problems under dynamic con-
ditions. The initialisation strategy which will initialise the population by using
the solutions generated by manually designed DRs will be denoted as DEX.

11



The second initialisation strategy uses a set of DRs which consists out of
DRs automatically designed by using GP. The DRs were designed as described
in a previous study which dealt with the automatic generation of DRs for the
unrelated machines environment (Durasevié¢ et al.l |2016). The DRs generated
for this set were also designed so that they consider only the jobs which were
released until the current decision point. All the DRs in this set were generated
for optimising the Twt criterion, which means that all of them should obtain
good results for the given criterion. The benefit of using DRs generated by GP
is that a large number of such DRs can be generated without significant effort.
Furthermore, in most cases these automatically generated DRs obtain better
results than manually designed DRs, which makes them more favourable. The
initialisation strategy that will use this set of DRs will be denoted as DGP.

The problem with the previous two DR sets is that the DRs in both of
them are designed for dynamic scheduling, whereas the GA is used for solving
static problems. This means that the DRs in the previous two sets will construct
solutions by using only partial information about the problem. This will result in
solutions that are worse than those that could be obtained if all the information
about the problem had been used. Therefore, the final set of DRs consists out
of rules which are designed for solving static scheduling problems. This should
result in a better starting population since the DRs will use all the information
about the scheduling problem (similarly as the GA) and will thus be able to
construct better schedules. The DRs in this set will use look-ahead, which will
allow them to take into account all the jobs that have to be scheduled. All the
DRs in this set were also generated by using GP. The initialisation strategy that
will use this set of DRs will be denoted as SGP in the results.

Aside from the previous three initialisation strategies, an additional strategy
will be used which initialises the population by using the union of the results ob-
tained by the three above mention initialisation strategies. The idea behind this
initialisation strategy is to test whether a combination of the three different DR
types could be beneficial to the GA, since it would lead to a more diverse initial
population. The strategy that will initialise the individuals as a union of all the
three aforementioned strategies will be denoted as CMB in the experiments.

4. Experimental setup

The aforementioned initialisation strategies will be tested for solving the
scheduling problem which can be denoted as Rm|r;|Twt (Pinedo, |2012). This
notation denotes that the unrelated machines scheduling problem subject to
job release times is solved, and that the total weighted tardiness criterion is
optimised. To test the influence of the different initialisation strategies, a set
of problem instances will be used to measure the performance of each strategy.
The problem set which was used to test the performance of the initialisation
strategies consists out of 60 randomly generated problem instances. The num-
ber of jobs n can range from 12 to 100, while the number of machines m can
range from 3 to 10. Furthermore, the job due dates are also generated with
different parameters to simulate problems in which more jobs will be late, or

12



problems in which all jobs can complete prior to their due dates. Since the
problem set consists out of 60 problem instances, the GA is executed for each
problem instance independently and the total fitness on the entire problem set
is calculated as the sum of the Twt values for each of the individual problem
instances. More about the problem instance generation procedure can be found
in (Durasevi¢ et al., 2016])).

For solving the aforementioned scheduling problem a steady state tourna-
ment GA will be used. The parameters of the GA were previously optimised
to obtain the best possible results. The algorithm will use a population size of
30 individuals when no initialisation strategy is used, or when the population
size is not specified. For the mutation the probability of 0.9 will be used. The
tournament will consist out of three individuals, where the two better ones are
recombined and the worst one is eliminated. The algorithm is set to terminate
after one million function evaluations. In this way the GA will perform the same
amount of work for all initialisation strategies and different population sizes.

To test the performance of the different population initialisation strategies,
each of them will first be used to generate the initial population without any
additional randomly generated individuals. In this case, the GA will use differ-
ent population sizes, which adhere to the number of DRs in each strategy that
were used to generate the initial schedules. Since for the manually designed
DRs only 26 rules were found in the literature, the GA will use a population
consisting out of 26 individuals. For the automatically generated DRs designed
for dynamic scheduling conditions 50 good DRs were obtained, the population
size will be fixed to that number. Finally, 30 good DRs were automatically gen-
erated for static scheduling conditions, therefore the GA will use a population
size of 30 individuals for this initialisation strategy. When all three initialisation
strategies are combined, then the population size for the GA will be equal to
the sum of the population sizes for the individual initialisation strategies, which
totals to 106 individuals. Aside from using populations which consists only out
of individuals generated by DRs, the GA will also be tested in situations where
larger population sizes are used. In these cases the individuals which were not
initialised by the selected initialisation strategy are simply generated randomly.
In these tests the GA will use population sizes of 150, 200, and 500 individuals.

Each experiment in this paper is executed 30 times to ensure that statistically
significant results were obtained. To test whether the results obtained by the
various initialisation strategies and population sizes are significantly different
from one another, the Mann-Whitney statistical test will be used. To asses that
two results are significantly different from each other the p value needs to be
less than 0.05.

5. Results

5.1. Performance comparison of the initialisation strategies

In this section the results for the tested initialisation strategies will be pre-
sented. Table [2| represents the results obtained for the different initialisation

13



strategies, as well as for the various tested population sizes. The entry denoted
with "-" for the population size represents that the population sizes for each
initialisation strategy are different. This is due to the fact that each initiali-
sation strategy will initialise the population only with solutions generated by
DRs, which causes that for each strategy the GA will have a different popu-
lation size. When using the random (RND) initialisation, the GA will use a
population size of 30 individuals. For each population size and initialisation
strategy four metrics are calculated: the minimum, median, maximum, and to-
tal minimum (Tmin). The total minimum metric represents the fitness value
which is calculated by summing the best fitness value (obtained by any of the
30 independent executions of the GA) for each problem instance. Therefore,
this measure represents the best possible results that were obtained by the GA
across all 30 executions, and not during only one GA execution. The cells which
are greyed out denote the best results for each of the metrics which are denoted
in the table. The results are additionally denoted in Figure[d by using box plots.

The first thing that can be seen from the results is that the random initiali-
sation strategy obtains the worst results among all the initialisation strategies.
This is especially evident from the fact that even the best results obtained in
the 30 executions are worse than the worst result obtained in the 30 runs by
the other initialisation strategies. This can best be seen for population sizes of
150, 200, and 500 individuals. Furthermore, the results obtained by the RND
initialisation strategy are the most dispersed among all the initialisation strate-
gies. This means that to be sure that good results are really obtained for a
scheduling problem the GA needs to be executed several times to ensure that
it did not get stuck in a local optima. The results of the statistical tests per-
formed between the RND initialisation strategy and the other strategies prove
that the RND initialisation strategy obtains significantly worse results. Regard-
ing the different population sizes used by the GA there is almost no significant
difference between the results obtained by each of them. Only the GA with the
population size of 500 individuals obtained a significantly better result over the
GA with the population size of 30 individuals. However, the p value was quite
close to 0.05 and thus the significance of this result is not quite strong.

The DEX initialisation strategy obtained much better results than the RND
strategy, usually achieving results that better by around 3.4%. However, its
performance still falls behind the other initialisation strategies. The figures
show that most of the results achieved by the GA with this strategy are worse
than most of the results obtained by the remaining three strategies, although the
differences are less than 1%. The statistical tests prove that when compared
to the three remaining population initialisation strategies, this one achieves
significantly worse results. When different population sizes are tried out with
this initialisation strategy it can be seen that there are only slight differences
in the obtained results. However, when using a population of 500 individuals
the GA achieved results which were significantly better than when using any
of the smaller population sizes. Therefore, this strategy seems to work best
when used with a large number of additionally randomly generated individuals.
Furthermore, this initialisation strategy reduces he range of the obtained results

14



Table 2: Results obtained by testing different initialisation strategies and population sizes

Initialisation strategies

Population size
CMB DEX DGP RND SGP

Tmin 9.439 9.499 9.445 9.485 9451
~ Min 9.46 9.528 9.466 9.608  9.473
Med 9.492 9.566 9.509 9.9 9.493
Max 9.511 9.637 9.538 10.18 9.516

Tmin 9.435 9.462 9.441 9.475 9.456
Min 9.458 9.504 947  9.662 9.471

150
Med 9.488 9.579 9.506 9.834 9.491
Max 9.507 9.639 9.538 10.084 9.512
Tmin 9.431 9.472 9.439 9475 9.453

200 Min 9.463 9.521 9.481 9.672 9.465
Med 9.485 9.563 9.502 9.831 9.491
Max 9.524 9.615 9.548 10.059 @ 9.516
Tmin 9.43 945 9438 9.492 9.453

500 Min 9.457 9.502 | 9.456 9.605  9.466

Med 9.485 9.545 949 9.821 9.494
Max 9.511 9.633 9.527 9.942 9.514

15



by a factor of 5 when compared to the RND strategy, which demonstrates
just how much the dissipation of the results can be reduced by initialising the
population.

9.5 f } = | — r 7
9.4t t \ t t t = 94k L L L L L
RND DEX DGP SGP CMB RND DEX DGP SGP CMB
(a) Different starting population sizes (b) Population size of 150 individuals
: T : : : :

101 F T g T T T

0| 1 9.9|
9.9+ - v
.

9.8

9.6 |- . |
9.6 - |
. .
9.5 ot

o == == == I = ==
RND DEX DGP sap CMB RND DEX DGP sap CMB
(¢) Population size of 200 individuals (d) Population size of 500 individuals

Figure 4: Comparison of the results obtained by various population sizes

With the DGP initialisation strategy the GA obtains better results than
by initialising the population either randomly or by using manually designed
DRs. The improvements over the RND strategy equal to around 4% on the
average. By using this initialisation strategy the GA obtains results which are
only slightly dispersed. This is a benefit of this strategy since it means that
upon several executions of the GA it should obtain similar results. The results
denote that this strategy still achieves slightly worse results than the remaining
two initialisation strategies, especially for the smaller population sizes. This
is also backed up by the statistical tests which show that the results obtained
by the GA with DGP are significantly worse then when using either SGP or
CMB. For the population size of 500 individuals there is no significant difference
between DGP and the remaining two initialisation strategies. Still, it can be
concluded that the GA with DGP is inferior than the GA which would use one
of the other two initialisation strategies, although the differences between the
results on the average are not larger than 0.3%. It seems that this initialisation

16



strategy also benefits from using a larger population which is additionally filled
with randomly generated individuals. The statistical test also backs up this
conclusion, since the results obtained when using the population size of 500 are
significantly better than the results obtained by the GA for any of the three
smaller population sizes. On the other hand, there is no statistically significant
difference between the results obtained for the other population sizes.

By using the SGP initialisation strategy the GA achieves the second best
results. The improvements over the RND strategy remain at around 4%. Only
the the CMB strategy achieves consistently a better median value than the SGP
strategy. However, the statistical tests show that there is no significant difference
between these two initialisation strategies for all population sizes except for the
population size of 500 individuals for which the CMB strategy achieved signifi-
cantly better results. Even in this case the p value was quite large, which means
that the significance of the result is not strong. The box plots also denote that
the results obtained by this strategy are also not very dispersed, meaning that
the algorithm behaves very stable. Even more, with this initialisation strategy
the GA obtains the least dispersed results among all the strategies. Compared
to the RND strategy this one achieves a range of solutions which is 13 times
smaller. Additionally, it is evident that using additional randomly generated
individuals with this initialisation strategy does not lead large differences in the
results. The statistical tests back up this conclusion since there is no significant
difference between the results obtained for for the different population sizes.
Therefore, unlike the previous initialisation strategies, this one does not benefit
from using larger population sizes.

Finally, with the CMB initialisation strategy the GA obtains the best pos-
sible results, which is also evident from the table, since for most metrics this
strategy obtains the best values. The improvements over the RND strategy
remain at around 4%. As outlined in the previous paragraphs this strategy
obtains significantly better results than all other strategies, except for the SGP
strategy with which it achieves mostly the same results. Furthermore, this ini-
tialisation strategy also does not benefit greatly from increasing the population
size by adding randomly generated individuals, since the statistical tests show
that for all the tested population sizes the GA obtains results between which
there is no significant difference.

Another interesting thing, which can be observed from the results, is that the
GA obtains a similar value for the Tmin metric for all initialisation strategies
and population sizes. In all experiments the Tmin value ranged between 9.43
and 9.5. Thus, the GA shows that regardless of the initialisation strategy it
can obtain results of the same quality if it executed several times and the best
results are collected for each problem instance. In that regard it could even
seem that there is actually no benefit behind using other initialisation strategies.
However, it should be noted that when using better initialisation strategies like
SGP and CMB, the median value obtained on the experiments is much closer
to the Tmin value, than when using the random initialisation strategy. For
example, for the CMB initialisation strategy the GA obtained median values
which are only by around 0.5% worse than those of the Tmin values. This

17



means that with this initialisation strategy the GA is able to converge closely to
the best obtained results in almost each of its executions. Therefore, to obtain
really good solutions it is not even required to execute the GA several times,
but rather good solutions can be obtained even with one GA execution. This
further demonstrates the superiority of the GA when using DRs to initialise the
starting population.

5.2. Fitness dynamics during the GA execution

Besides analysing the total results after the execution of the GA, it is also
interesting to observe how the fitness changes during the execution of the GA.
Figure [p] represents the average fitness of the best individual on the 30 execu-
tions. Each figure denotes how the fitness changes with the number of evalu-
ations which were performed by the algorithm. Since it can be difficult to see
differences between some initialisation strategies, additional zoomed in figures
were also included. The figures show how with the different initialisation strate-
gies the GA starts with populations of vastly different qualities. As expected,
the worst initial population quality is obtained by random initialisation, which
usually generates a population that has an average T'wt value between 500 and
700. On the other hand, all the other population initialisation strategies start
with with a population that has an average Twt value between 9.9 and 13. Thus
the other initialisation strategies start with a population that is better by more
than one order of magnitude. Therefore, when using the random initialisation
strategy the GA has to invest a lot of time to reach good solutions, whereas the
other initialisation strategies already start with good solutions which the GA
can fine tune during the evolution process.

From the graphs it is evident that at the start of the evolution process the
GA heavily explores the search space and thus quickly improves the quality of
its best solution. Thus, in this phase the GA tries to locate good solutions
which will be fine tuned in the later phase of the algorithm. Naturally, the time
which the GA will spend exploring depends on the initialisation strategy that
is used. The RND strategy requires the largest amount of time to obtain good
solutions, which is expected since all of them are randomly generated. On the
other hand the CMB and SGP initialisation strategies can be seen to start with
very good solutions, and thus the algorithm does not have to invest too much
time into obtaining good solutions.

After these good solutions were obtained, the GA focuses on exploiting and
further improving those solutions. This part of the evolution can best be ob-
served on the zoomed in figures. For example, with the RND initialisation
strategy the GA can be seen to still improve the solutions when it comes close
the maximum number of function evaluations. Therefore, if the algorithm was
given more time, it would continue to improve these solutions since it is still
relatively far from the best possible solutions. However, when using other ini-
tialisation strategies it is evident that the quality of the best solution starts to
stagnate before the GA reaches the maximum number of function evaluations.
Only for the DEX strategy the GA does not start to stagnate for all population
sizes, since it starts with a population that is inferior to that of the other three

18



Twt

Twt

Twt

Twt

15 =
14 1
13 1[—r~D —RND
— DEX N — DEX
12 — DGP S — DGP
— SGP — sGP
1 J|—cmB — CMB
10
0 200 400 600 800 1000 T0 200 400 600 800 1000
Number of evaluations (in thousands) Number of evaluations (in thousands)
(a) Default population sizes (b) Default population sizes (zoomed in)
107 . . . . -
9.9
— RND
|| — RND - o8 — DEX
— DEX e — DGP
4| — pap 9.7 — SGP
— SGP — CMB
J|—cmB 06
9.5 . i
0 200 400 600 800 1000

0 200 400 600 800 1000 Number of evaluations (in thousands)
Number of evaluations (in thousands)
(d) Population size of 150 individuals (zoomed

(c) Population size of 150 individuals in)
15F \ T T ‘ 4 10
9.9
||— RrND s — RND
— DEX . — DEX
1|— pap g — DGP
— SGP 9.7 — SGP
||—cmB — CMB
9.6
9.5 !
0 200 400 600 800 1000 0 200 400 600 80 1000
Number of evaluations (in thousands) Number of evaluations (in thousands)
(e) Population size of 200 individuals (f) Population size of 200 individuals (zoomed in)
10F T T T ‘ 5
15F 5
9.9
14} 1
— RND
J 9.8 |
13 —RND . — DEX
— DEX e — DCP
12 1l— pap 9.7} — SGP
— scp — CMB
11 J|—cmB 061
10 8 95 T <)
\ 0 200 400 600 80 1000
L=
0 200 400 600 800 1000 Number of evaluations (in thousands)
Number of evaluations (in thousands)
(h) Population size of 500 individuals (zoomed
(g) Population size of 500 individuals in)

Figure 5: The change of the minimum fitness value during the execution of the algorithm
with different population sizes

19



10F =

9.9 b —
— 106
— 150
— 200
— 500

— 106
— 150
— 200
9.7 + [——500

9.8 b

Twt

Twt

9.6 b 9.49 |

I L T
- ) 400 600 800 1000
0 200 400 600 800 1000 Number of evaluations (in thousands)

Number of evaluations (in thousands)

,
05l | 0 200

(b) CMB for different population sizes (zoomed
(a) CMB for different population sizes in)

Figure 6: Comparison of the minimum values obtained by different population sizes for the
CMB initialisation strategy

strategies. On the other hand, with the CMB and SGP initialisation strategies
the GA begins to stagnate quite early in the evolution process. Therefore, with
this initialisation strategy the GA could have been terminated much sooner
without any significant influence on the obtained results. The other two initial-
isation strategies, DEX and DGP, usually start to stagnate at a later moment
in the evolution, but still the GA could be terminated sooner without a signif-
icant loss in the quality of the obtained results. Therefore, these initialisation
strategies do not only obtain better results, they also significantly improve the
convergence speed of the GA, allowing it to reach good solutions in a much
smaller amount time.

Figure [0] represents the change of the minimum fitness of the GA with the
number of function evaluations for the different population sizes. The figure
denotes the results for the CMB initialisation method because it obtained the
best results out of all tested initialisations strategies. As the figure shows, the
GA improves the solutions very little in the later phases of the evolution process,
meaning that the GA converged to a good solution which it now only fine tunes.
Additionally, it can be seen that by using larger population sizes the GA indeed
obtains better results. However, it must be noted that these differences are
almost negligible which can be seen from the scale of the graph. Therefore,
increasing the population size when using the CMB initialisation strategy will
not lead to a significant increase in the performance of the GA.

6. Discussion

The results in the last section have clearly demonstrated that by using DRs
to initialise the initial population leads to a better performance of the GA. Such
a behaviour is expected since the DRs are able to construct initial solutions
of good quality. Thus, the GA does not have to invest time to generate these
solutions by itself, but can rather focus on refining those solutions which were
generated by the DRs. It could seem that by using solutions generated by
DRs could lead to a premature convergence of the GA to a local optimum, or

20



that the initial population would not provide the GA with enough diversity to
perform the search. However, the results show that no such thing happens,
since even if larger population sizes with additional randomly generated DRs
were used, there was usually no significant difference in the results. Therefore,
even smaller populations which consist exclusively out of individuals generated
by DRs provide enough diversity for the GA. A further proof of the superiority
of the GA which uses DRs for solution initialisation of random initialisation is
that in almost all cases the best solution obtained by the RND strategy was
worse than the worst solution obtained by the other initialisation strategies.
This just confirms that the solution distributions obtained by the RND and the
other strategies significantly differ from each other.

The choice of the initialisation strategy has been demonstrated to influence
the performance of the GA algorithm. Table [3| denotes the performance of the
DRs, used in the different initialisation strategies, on the entire problem set.
From the table it is evident that the manually generated DRs obtain the worst
results among the four DR groups. Aside from obtaining the worst results, it
is also evident that these rules obtain quite dispersed results. This is expected
since not all DRs that were used were designed for minimising the T'wt criterion.
The GA also obtains inferior results when using this initialisation strategy than
the other three. As a result, manually designed DRs are clearly least suitable for
initialising the population of the GA. The automatically generated DRs achieve
a much better performance on the problem set, which then also causes the GA to
perform better. Even here it can be seen that there is a great difference between
the solutions obtained by DRs designed for dynamic and static conditions. This
means that DRs designed by GP for static scheduling seem to be most suitable
for initialising the population of the GA. The combination of all the DRs obtains
a worse median value than the DRs designed only for static scheduling, which is
expected since it includes some bad results generated by manually designed DRs.
This combination of DRs generates solutions with the most diversity. By using
this combination of DRs the GA obtained the best results, although they were
not significantly better than those obtained when using automatically designed
DRs for static conditions. The additional variability that the combination of
DRs provides seems to be only of little use to the GA. Therefore, for the GA
it seems to be more important to generate an initial population consisting out
of good solutions, than by providing more variability in the population. Even
though the performances of the DRs on their own are vastly different, these
differences are largely reduced after the optimisation with the GA. Thus, it
would seem that all the DRs provide solutions which contain good building
blocks that can be then combined and improved by the GA.

Another interesting thing that was observed from the results in the last sec-
tion was the faster convergence when using the proposed initialisation strategies.
Although it was expected that the GA will have a faster convergence by using
the proposed initialisation strategies, it is still surprising that the differences
would be so significant. The DRs do not seem to lead to a better convergence
only due to the fact that they provide initial solutions of better quality. This
is evident when comparing the random initialisation with the DGP and DEX

21



Table 3: Performance of the DRs on the problem instances

DR type Min Med Max
Manual dynamic DRs (DEX) 13.30 17.10 364.0
GP generated dynamic DRs (DGP) 12.96 13.60 16.33
GP generated static DRs (SGP) 11.02 11.64 13.53
Combination of all DRs (CMB) 11.02  13.50 364.0

initialisation strategies. As was seen in the last section, GA with random ini-
tialisation can reach the quality of the initial population of the DEX and DGP
strategies quite quickly. But regardless of that, GA with random initialisation
was unable to reach the results that are close to those obtained when using the
DEX and DGP. Therefore, it seems that the fitness of the initial population is
not the only factor which influences the convergence of the GA. It is likely that
the initial solutions that are provided by DRs contain elements that are also
present in the optimal solution. The GA can then combine these elements and
converge much faster to better solutions. On the other hand, with the random
initialisation method the GA seems to converge more often to a local minimum
in which it gets stuck. Since it has no representative solutions which would
guide the search, the algorithm just randomly searches for good solutions which
do not necessarily have to be close to the optimal solution.

Table [4] represents the number of function evaluations required by the GA
with random initialisation to obtain a solution that can outperform the best
solution in the initial populations generated by the other initialisation strate-
gies. The table shows that when using either the DEX or DGP the GA with
random initialisation needs up to around 100 000 function evaluations to reach
the quality of the best solution in those initial populations. However, for the
other two initialisation strategies the difference is more evident. For the default
population sizes the GA with random initialisation needs over 600 000 function
evaluations to obtain a solution better then the best one in the initial popu-
lation of the SGP and CMB initialisation strategies. This means that the GA
with random initialisation spends more than half of its evolution process trying
to obtain a solution that is at least as good as the one in the initial population
of the other two initialisation strategies. When the population size increases,
the number of evaluations required to reach those solutions decreases, but still
the GA with random initialisation spends around a third of its time to reach
equally good solutions. This just shows how good solutions the DR initialisa-
tion strategies can provide and how much time the GA can save if it uses them
instead of evolving them by itself.

To better outline the superiority of the initialisation strategies over random
initialisation, Table [5| denotes the number of function evaluations required for
the GA with the proposed initialisation strategies to obtain a better result
than the best one obtained by the GA with random initialisation. This table

22



Table 4: Number of evaluations (in thousands) required for the GA with random
initialisation to obtain a solution equal to the best solution in the initial population of other
initialisation strategies

Population size
- 150 200 500

DEX 20 30 40 60

DGP 40 50 60 100
SGP 630 380 320 320
CMB 630 390 330 330

Table 5: Number of evaluations (in thousands) required by the GA with the initialisation
strategies to find a solution better than the best solution found by GA with random
initialisation

Population size
- 150 200 500
DEX 50 40 40 50
DGP 10 10 10 20
SGP 10 10 10 10
CMB 10 10 10 10

shows that initialisation strategies like CMB and SGP needed no more than 10
000 function evaluations to obtain a better solution than the GA with random
initialisation would obtain after the entire evolution process. This means than
in only 1% of its execution time, the GA with the SGP and CMB initialisation
strategies obtains better solutions than the GA with random initialisation. For
example, for the given parameters one execution of the GA on all problem
instances took around 500 seconds with the RND strategy. If the SGP strategy
were used, this would mean that the GA could obtain equally good results in
only 5 seconds of execution. This observation additionally shows how much the
initialisation strategies can have an influence on the convergence speed of the
GA, since it can be concluded that they increased the convergence speed by more
than two orders of magnitude. Such an improvement can be very important if
the algorithm is used for scheduling problems in which the parameters change
often and therefore it is required to quickly reconstruct the schedule.

One could argue that by using the initialisation strategies the execution
time of the GA increases. However, the DRs construct the solutions in a small
amount of time. For example, manually designed DRs require 0.14 seconds
on average to construct a solution. On the other hand DRs generated by GP
for dynamic conditions require 0.091 seconds, while DRs generated for static
conditions require 0.16 seconds. Therefore, to construct the entire population,
all initialisation strategies require around 5 seconds. Since it was previously

23



denoted that the SGP method needs around 5 seconds to reach equally good re-
sults as the RND strategy after 500 seconds, this would mean that together with
the population initialisation process SGP would require around 10 seconds to
reach equally good solutions as the RND strategy. Therefore, the SGP method
would still be 50 times faster in obtaining equally good solutions. This large
difference in the processing times just additionally denotes the large gap in the
convergence speed between the RND and the other initialisation strategies.

One possible disadvantage of the initialisation methods could be that it is
required to collect the existing DRs, which might be scarce for the given schedul-
ing problem. However, since automatically generated DRs have demonstrated
to obtain even better solutions, and the GA also obtains better results when
using them for initialising the population, there is no need to use manually
designed DRs. Naturally, automatically generated DRs need to be generated
by GP or some other optimisation method, but this has already been a thor-
oughly researched topic, since DRs were generated for many different scheduling
problems and conditions. Even though the process of generating new DRs is
time consuming, it can be performed at any time prior to using them for the
initialisation process. Therefore, a sufficient number of rules can be generated
offline up front, and then just reused to create the initial population any time it
is required. Therefore the time required to generate the DRs does not directly
influence the execution time of the GA.

It is also interesting to analyse the diversity of the initial population which
is constructed by each initialisation method. However, measuring the diversity
between solutions is quite difficult. Therefore several measures which give a
notion about the difference between the solutions are defined. All the metrics
are calculated on a pair of schedules created for the same problem instance. In
this paper four diversity measures will be defined: machine dissimilarity, job
dissimilarity, job distance, and real job distance. The machine dissimilarity
metric is calculated for two schedules as the number of jobs which are scheduled
on different machines divided by the total number of jobs. For example, the
value of this metric for the schedules in Figure [7] would be 0.4, since jobs 0,
2, 6, and 7 are allocated to different machines in those two schedules. On the
other hand, job dissimilarity measures the diversity of the sequences of jobs on
the machines. Since it is difficult to measure the difference in job sequences
if certain jobs are allocated to different machines, this measure only considers
jobs which are allocated to the same machine. This measure is calculated as the
number of jobs that are on the same position on a machine in both schedules,
divided by the number of jobs that are allocated to the same machines in both
schedules. In the example, jobs 1, 3, 5, and 9 are allocated to machine 1 in
both of schedules, while jobs 4 and 8 are allocated to machine 2. For machine
1 their ordering in schedule 1 is 3, 9, 5, 1, while their ordering in schedule 2 is
3, 1,9, 5. This means that job 3 has the same position in both schedules, while
the other jobs have different positions, and thus this measure for this machine
would be 0.75, since three out of the four jobs are located on different positions
in two schedules. For the entire schedule the value of this measure would be
0.83, since the two jobs allocated to machine 2 in both schedules are on different

24



Schedule 1 Schedule 2

MachineO‘?‘i&‘O 9‘5‘1‘ Machineo‘3‘l‘9‘6‘2‘5‘

Machine 1 ‘ 8 ‘ 4 ‘ 7 6 ‘ Machine 1 ‘ 4 ‘ 7 ‘ 8 ‘ 0 ‘

Figure 7: Example of two schedules

positions. The job distance measure is calculated in a similar way, but instead
of measuring the number of jobs on different positions, it sums the distance of
their positions on the machine in different schedules. For example, since job 3
is on the same position in both schedules, its distance would be 0, while for job
1 the distance would be 2, because on machine 1 it is located on position 4, but
on machine 2 it is located on position 2. As is evident from the description,
all jobs which are not located on the same machine in both schedule are not
considered when calculating the distance. This can be a bit misleading, since it
is possible that between two jobs there are a lot of jobs that are in between but
are not allocated to the same machine in both schedules. Therefore, another
measure denoted as real job distance is defined. The value of this metric for job
1 would be 4 since the position of the job would be 6 on machine 1 if all jobs
were considered. The metric values in the following paragraphs represent the
average metric values calculated between each pair of schedules constructed by
each of the initialisation methods.

Table [6] denotes the values of the diversity measures for the starting popu-
lation when the default population sizes are used. The table shows that there
is a big difference in the diversity of the starting population when different ini-
tialisation techniques are used. The most diverse solutions are obtained by the
random initialisation method, which is evident from the fact that it obtained the
largest vales for all the measures. The difference between it and the other meth-
ods is especially large for the machine dissimilarity measure, which means that a
large number of jobs are allocated to different machines in the generated sched-
ules, and the real job distance. This is expected since the jobs are allocated
completely randomly to the machines. On the other hand, the initialisation
methods which used existing DRs all generate less diverse initial populations.
In the schedules constructed by these methods jobs are more likely to be sched-
uled to the same machine, and will usually be scheduled in similar sequences.
The DEX initialisation method has the largest value for the machine dissim-
ilarity measure, which is expected since the DRs in this initialisation method
optimise different criteria, therefore it is expected that they will schedule jobs
to different machines. On the other hand, DEX and DGP have the smallest job
dissimilarity, which is the consequence of the fact that they are dynamic rules
and thus schedule jobs mostly in the order of their arrival. Figure [§| shows the
change of the diversity metrics during the evolution process. From the figure it
is evident that the diversity metrics quickly decrease at the start of the evolution
process, until they reach a certain value which remains similar during the entire
evolution process. The RND and DGP initialisation methods have the largest

25



Table 6: Diversity metric values for the initial populations constructed by the population
initialisation methods with the default population sizes

RND DEX DGP SGP CMB

Machine dissimilarity 80.05 21.52 7.62 13.52 16.29

Job dissimilarity 17.54  9.02 10.82 15.61 14.13
Job distance 1473 0.677 0.988 1419 1.270
Real job distance 5.495 1.169 1.142 1.766 1.666
é [—rxD £ —RND
E — DEX E — DEX
2 | — pap £ — DGP
g — SGP 2 — SGP
£ —CMB 2 —CMB
3 =
E
0.08 . . . . | | ! |
0 200 400 600 80 1000 0 200 400 600 800 1000
Number of evaluations (in thousands) Number of evaluations (in thousands)
(a) Machine dissimilarity (b) Job dissimilarity
‘ ‘ ‘ ‘ ‘ 18
14 g
16
12 . g
g — RND ER! —RND
El — DEX z — DEX
E {|— pap 2 12 ||—pap
2 — SGP = — SGP
= — CMB E — CMB
0.8 : = 1 1
0.8 W
06 ‘ ! AN gl ‘ ‘ !
0 200 400 600 80 1000 0 200 400 600 800 1000
Number of evaluations (in thousands) Number of evaluations (in thousands)
(c) Job distances (d) Real job distance

Figure 8: Diversity metric dynamics during evolution with default population sizes

values for the diversity measures during the entire evolution process, while the
other methods usually have similar values for all the metrics.

Table [7] shows the values of the metrics when the population size of 500
individuals is used. This time the difference in the diversity metrics between
the different initial populations is almost non existent. The reason for this
is that now most of the population is initialised randomly. Therefore, in this
case the initialisation method does not have any influence on the diversity of
the solutions. Figure [9] shows the dynamics of the diversity metrics during the
evolution process. In this case the dynamics and values of the diversity metrics
are similar for all five population initialisation methods.

Based on the population diversity analysis, it can be concluded that the
initialisation methods have a large influence on the population diversity if the
population is only initialised by them. However, if only a part of the population

26



Table 7: Diversity metric values for the initial populations constructed by the population

initialisation methods with the population size of 500 individuals

RND DEX DGP SGP CMB
Machine dissimilarity 80.00 79.84 79.30 79.77 77.17
Job dissimilarity 17.58 17.51 17.45 17.53 17.36
Job distance 1.468 1.464 1.461 1.466 1.455
Real job distance 5.468 5.435 5.400 5.430 5.258
0.22 |
g — RND {[—=r~D
£ — DEX — DEX
K || — par — DGP
B — SGP — SGP
z ||—cmB o4 || — CMB
0.16 1
0 200 400 600 800 1000 0 200 40 600 800 1000
Number of evaluations (in thousands) Number of evaluations (in thousands)
(a) Machine dissimilarity (b) Job dissimilarity
2.2 |
8 |[—RrND —RND
5 — DEX — DEX
5 — DGP M| — pap
2 — SGP ¥||— sap
= J|— cmB —CMB
18 |
020 40 600 800 1000 020 40 600 800 1000

Number of evaluations (in thousands)

(c) Job distances

Figure 9: Diversity metric dynamics during evolution with a population of 500 individuals

27

Number of evaluations (in thousands)

(d) Real job distance



is initialised by DRs and most of it is initialised randomly, then the diversity of
the initial population is quite similar. Since the previous sections showed that
there is mostly no significant difference when increasing the population size, it
can be concluded that the diversity of the initial population does not have a
critical influence on the performance of the GA. Rather, it seems that the most
important factor is the quality of the initial solutions that are used.

All the provided results demonstrated that population initialisation with
DRs has significantly improved the performance of the GA, while requiring a
significantly smaller amount of time to reach good solutions. The method as
it is could be used for solving any real world unrelated machines scheduling
problem without any significant modifications. However, the initialisation pro-
cedure with DRs makes GAs even more competitive for real world scheduling
problems. Since the GA can now obtain much better results, this makes it more
desirable for being used in real world applications. Furthermore, due to its fast
convergence, the GA is also more likely to be used for problems which need
to be solved under a certain time constraint. As a result, the GA could be
applied in problems which are performance and time critical. Therefore, it is
safe to conclude that the simple initialisation procedure leads to a significant
improvement on the performance of the algorithm.

7. Conclusion

This paper analysed the influence of initialising the starting population of
a GA with solutions generated by various DRs. In comparison with random
initialisation, by using the DR based initialisation strategies the GA obtained
significantly better results. Apart from providing better results, the initialisa-
tion strategies also improve the convergence rate of the algorithm, allowing it
to reach better solutions in a smaller amount of function evaluations. Further-
more, by using the initialisation strategies based on DRs the GA obtains more
stable results, which reduces the need to execute the GA several times to ensure
that good solutions are obtained, and that the GA did not get stuck in a local
optimum. Finally, as the execution time of DRs is almost negligible, using them
for the construction of initial solutions does not have a large effect on the total
execution time of the GA.

Out of the four tested initialisation strategies based on DRs, the best results
were obtained by the CMB strategy which used all the DRs together, and the
SGP strategy which used the only DRs suitable for scheduling under static con-
ditions which were generated by GP. Since there is no major difference between
the results obtained by CMB and SGP, it is sufficient to use only automatically
generated DRs for initialising the population of the GA. This has a large benefit
since GP can be used to design DRs for various scheduling problems and can
be used to generate any number of DRs.

Depending on the initialisation method the improvements ranged up to 4%
on average over the random initialisation method. The time to obtain the same
quality of the results was at the same time largely reduced, up to a factor of
50. Furthermore, the GA has proven to produce more stable results, meaning

28



that upon several executions the spread of the obtained results is minimal.
The reduced population diversity of the populations initialised by the DRs did
not influence the performance of the GA, meaning that the diversity is not
necessarily the main driving force in this case, but rather the availability of good
solutions in the population. Another great benefit of DRs is that unlike other
initialisation strategies, they do not have to be designed manually, but can rather
be generated with the use of GP, which reduces the effort that has to be invested
into the design of the algorithm. Since all the obtained results speak in favour
of the DR initialisation methods that these strategies significantly improve the
GA for solving the unrelated machines scheduling problem. Therefore, such
strategies should be used as a part of GAs in order to improve their performance
and convergence.

Since the GA with the population initialised by using DRs achieves great
improvements over the GA which uses randomly generated DRs, there is moti-
vation to research this topic further in future studies. One direction would be
to investigate scheduling problems which have additional constraints like setup
times, precedence constraints, etc. Additionally, another direction would be to
test all the described initialisation strategies in other scheduling environments,
to see how they would influence the performance of the GA for solving those
scheduling problems. Finally, it would also be interesting to investigate the effect
of such initialisation strategies when performing multi-objective optimisation.

Declaration of interest and funding

This research did not receive any specific grant from funding agencies in the
public, commercial, or not-for-profit sectors.
Declarations of interest: none

References
References

Allahverdi, A., Gupta, J. N., & Aldowaisan, T. (1999). A review of scheduling
research involving setup considerations. Omega, 27, 219-239.

Allahverdi, A., Ng, C., Cheng, T., & Kovalyov, M. Y. (2008). A survey of
scheduling problems with setup times or costs. European Journal of Opera-
tional Research, 187, 985-1032. URL: http://linkinghub.elsevier.com/
retrieve/pii/S0377221706008174. doi:10.1016/j.ejor.2006.06.060.

Balin, S. (2011). Non-identical parallel machine scheduling using genetic al-
gorithm. Fxpert Systems with Applications, 38, 6814-6821. URL: http:
//linkinghub.elsevier.com/retrieve/pii/S0957417410014272. doi:10.
1016/j.eswa.2010.12.064.

29


http://linkinghub.elsevier.com/retrieve/pii/S0377221706008174
http://linkinghub.elsevier.com/retrieve/pii/S0377221706008174
http://dx.doi.org/10.1016/j.ejor.2006.06.060
http://linkinghub.elsevier.com/retrieve/pii/S0957417410014272
http://linkinghub.elsevier.com/retrieve/pii/S0957417410014272
http://dx.doi.org/10.1016/j.eswa.2010.12.064
http://dx.doi.org/10.1016/j.eswa.2010.12.064

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and
optimization. ORSA Journal on Computing, 6, 154-160. doi:10.1287/ijoc.
6.2.154.

Behnamian, J., Zandieh, M., & Fatemi Ghomi, S. (2009). Parallel-
machine scheduling problems with sequence-dependent setup times using
an ACO, SA and VNS hybrid algorithm. FEzpert Systems with Applica-
tions, 36, 9637-9644. URL: http://linkinghub.elsevier.com/retrieve/
pii/S0957417408007252. doi:10.1016/j.eswa.2008.10.007.

Boussaid, 1., Lepagnot, J., & Siarry, P. (2013). A survey on optimiza-
tion metaheuristics. Information Sciences, 237, 82 — 117. URL: http:
//www.sciencedirect.com/science/article/pii/S0020025513001588.
doithttps://doi.org/10.1016/j.ins.2013.02.041. Prediction, Control
and Diagnosis using Advanced Neural Computations.

Branke, J., Hildebrandt, T., & Scholz-Reiter, B. (2015). Hyper-heuristic Evo-
lution of Dispatching Rules: A Comparison of Rule Representations. FEvolu-
tionary Computation, 23, 249-277. URL: http://www.mitpressjournals.
org/doi/10.1162/EVCO_a_00131. doif10.1162/EVCO\_a\_00131

Branke, J., Nguyen, S., Pickardt, C. W., & Zhang, M. (2016). Automated
Design of Production Scheduling Heuristics: A Review. IEEE Transactions on
Evolutionary Computation, 20, 110-124. URL: http://ieeexplore.ieee.
org/document/7101236/. doij10.1109/TEVC.2015.2429314.

Branke, J., & Pickardt, C. W. (2011). Evolutionary search for diffi-
cult problem instances to support the design of job shop dispatching
rules. FEuropean Journal of Operational Research, 212, 22-32. URL: http:
//linkinghub.elsevier.com/retrieve/pii/S0377221711000981. doi:10.
1016/j.ejor.2011.01.044.

Braun, T. D., Siegel, H. J., Beck, N., Boloni, L. L., Maheswaran, M., Reuther,
A. 1., Robertson, J. P., Theys, M. D., Yao, B., Hensgen, D., & Freund,
R. F. (2001). A Comparison of Eleven Static Heuristics for Mapping a Class
of Independent Tasks onto Heterogeneous Distributed Computing Systems.
Journal of Parallel and Distributed Computing, 61, 810-837. URL: http:
//linkinghub.elsevier.com/retrieve/pii/S07437315600917143. doi:10.
1006/jpdc.2000. 1714

Burke, E. K., Newall, J. P., & Weare, R. F. (1998). Initialization strate-
gies and diversity in evolutionary timetabling. FEwvol. Comput., 6, 81—
103. URL: http://dx.doi.org/10.1162/evco.1998.6.1.81. doii10.1162/
evco.1998.6.1.81.

Cheng, R., Gen, M., & Tsujimura, Y. (1996). A tutorial survey of job-shop
scheduling problems using genetic algorithms—i. representation. Computers
& Industrial Engineering, 30, 983-997. URL: https://doi.org/10.1016/
0360-8352(96) 00047-2. doi:10.1016/0360-8352(96)00047-2.

30


http://dx.doi.org/10.1287/ijoc.6.2.154
http://dx.doi.org/10.1287/ijoc.6.2.154
http://linkinghub.elsevier.com/retrieve/pii/S0957417408007252
http://linkinghub.elsevier.com/retrieve/pii/S0957417408007252
http://dx.doi.org/10.1016/j.eswa.2008.10.007
http://www.sciencedirect.com/science/article/pii/S0020025513001588
http://www.sciencedirect.com/science/article/pii/S0020025513001588
http://dx.doi.org/https://doi.org/10.1016/j.ins.2013.02.041
http://www.mitpressjournals.org/doi/10.1162/EVCO_a_00131
http://www.mitpressjournals.org/doi/10.1162/EVCO_a_00131
http://dx.doi.org/10.1162/EVCO_a_00131
http://ieeexplore.ieee.org/document/7101236/
http://ieeexplore.ieee.org/document/7101236/
http://dx.doi.org/10.1109/TEVC.2015.2429314
http://linkinghub.elsevier.com/retrieve/pii/S0377221711000981
http://linkinghub.elsevier.com/retrieve/pii/S0377221711000981
http://dx.doi.org/10.1016/j.ejor.2011.01.044
http://dx.doi.org/10.1016/j.ejor.2011.01.044
http://linkinghub.elsevier.com/retrieve/pii/S0743731500917143
http://linkinghub.elsevier.com/retrieve/pii/S0743731500917143
http://dx.doi.org/10.1006/jpdc.2000.1714
http://dx.doi.org/10.1006/jpdc.2000.1714
http://dx.doi.org/10.1162/evco.1998.6.1.81
http://dx.doi.org/10.1162/evco.1998.6.1.81
http://dx.doi.org/10.1162/evco.1998.6.1.81
https://doi.org/10.1016/0360-8352(96)00047-2
https://doi.org/10.1016/0360-8352(96)00047-2
http://dx.doi.org/10.1016/0360-8352(96)00047-2

Cheng, R., Gen, M., & Tsujimura, Y. (1999a). A tutorial survey of job-shop
scheduling problems using genetic algorithms, part II: hybrid genetic search
strategies. Computers € Industrial Engineering, 36, 343-364. URL: https://
doi.org/10.1016/s0360-8352(99)00136-9. doij10.1016/s0360-8352(99)
00136-9.

Cheng, V., Crawford, L., & Menon, P. (1999b). Air traffic control using
genetic search techniques. In Proceedings of the 1999 IEEE International
Conference on Control Applications (Cat. No.99CH36328) (pp. 249-254).
IEEE volume 1. URL: http://ieeexplore.ieee.org/document/806209/.
do0i:10.1109/CCA.1999.806209.

Chiang, T. C., Shen, Y. S., & Fu, L. C. (2008). A new paradigm for
rule-based scheduling in the wafer probe centre. International Journal
of Production Research, 46, 4111-4133. URL: https://doi.org/10.1080/
00207540601137199. doii10.1080/00207540601137199

Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed optimization by
ant colonies.

Costa, A., Cappadonna, F. A., & Fichera, S. (2013). A hybrid genetic algo-
rithm for job sequencing and worker allocation in parallel unrelated machines
with sequence-dependent setup times. The International Journal of Advanced
Manufacturing Technology, 69, 2799-2817. URL: http://link.springer.
com/10.1007/s00170-013-5221-5. doij10.1007/s00170-013-5221-5.

Diaz-Gomez, P. A., & Hougen, D. F. (2007). Initial population for genetic
algorithms: A metric approach. In GEM.

Dimopoulos, C., & Zalzala, A. (2000). Recent developments in evolution-
ary computation for manufacturing optimization: problems, solutions, and
comparisons. [EFFEE Transactions on Fvolutionary Computation, 4, 93—
113. URL: http://ieeexplore.ieee.org/document/850651/, doi:10.1109/
4235.850651.

Durasevié, M., & Jakobovié¢, D. (2018). Evolving dispatching rules for optimis-
ing many-objective criteria in the unrelated machines environment. Genetic
Programming and FEvolvable Machines, 19, 9-51. URL: https://doi.org/
10.1007/s10710-017-9310-3\ d0i:10.1007/s10710-017-9310-3.

Ernst, A., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling
and rostering: A review of applications, methods and models. Furopean
Journal of Operational Research, 158, 3-27. URL: https://doi.org/10.
1016/s0377-2217(03) 00095-%. d0ii10.1016/s0377-2217(03) 00095-x.

Fitzgerald, J. M., Ryan, C., Medernach, D., & Krawiec, K. (2015). An inte-
grated approach to stage 1 breast cancer detection. In Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation GECCO 15
(pp- 1199-1206). New York, NY, USA: ACM. URL: http://doi.acm.org/
10.1145/2739480.2754761. doi:10.1145/2739480.2754761.

31


https://doi.org/10.1016/s0360-8352(99)00136-9
https://doi.org/10.1016/s0360-8352(99)00136-9
http://dx.doi.org/10.1016/s0360-8352(99)00136-9
http://dx.doi.org/10.1016/s0360-8352(99)00136-9
http://ieeexplore.ieee.org/document/806209/
http://dx.doi.org/10.1109/CCA.1999.806209
https://doi.org/10.1080/00207540601137199
https://doi.org/10.1080/00207540601137199
http://dx.doi.org/10.1080/00207540601137199
http://link.springer.com/10.1007/s00170-013-5221-5
http://link.springer.com/10.1007/s00170-013-5221-5
http://dx.doi.org/10.1007/s00170-013-5221-5
http://ieeexplore.ieee.org/document/850651/
http://dx.doi.org/10.1109/4235.850651
http://dx.doi.org/10.1109/4235.850651
https://doi.org/10.1007/s10710-017-9310-3
https://doi.org/10.1007/s10710-017-9310-3
http://dx.doi.org/10.1007/s10710-017-9310-3
https://doi.org/10.1016/s0377-2217(03)00095-x
https://doi.org/10.1016/s0377-2217(03)00095-x
http://dx.doi.org/10.1016/s0377-2217(03)00095-x
http://doi.acm.org/10.1145/2739480.2754761
http://doi.acm.org/10.1145/2739480.2754761
http://dx.doi.org/10.1145/2739480.2754761

Gandomi, A. H., & Yang, X.-S. (2014). Chaotic bat algorithm. Journal of Com-
putational Science, 5, 224 — 232. doithttps://doi.org/10.1016/j.jocs.
2013.10.002. Empowering Science through Computing + Biolnspired Com-
puting.

Gao, J., Gen, M., Sun, L., & Zhao, X. (2007). A hybrid of genetic algorithm and
bottleneck shifting for multiobjective flexible job shop scheduling problems.
Computers & Industrial Engineering, 53, 149-162. URL: https://doi.org/
10.1016/j.cie.2007.04.010. doii10.1016/j.cie.2007.04.010.

Geem, Z. W., Kim, J. H., & Loganathan, G. (2001). A new heuristic optimiza-
tion algorithm: Harmony search. SIMULATION, 76, 60-68. doi:10.1177/
003754970107600201.

Gogna, A., & Tayal, A. (2013). Metaheuristics: review and
application. Journal of Fxperimental €  Theoretical Artificial
Intelligence, 25, 503-526. URL: https://doi.org/10.1080/
0952813X.2013.782347. d0i:10.1080/0952813X.2013.782347.
arXiv:https://doi.org/10.1080/0952813X.2013.782347.

Han, Y., Gong, D., Li, J., & Zhang, Y. (2016). Solving the blocking flow shop
scheduling problem with makespan using a modified fruit fly optimisation
algorithm. International Journal of Production Research, 54, 6782-6797.
d0i:10.1080/00207543.2016.1177671.

Hansen, J. V. (2004). Genetic search methods in air traffic con-
trol. Computers € Operations Research, 31, 445-459. URL: http:
//1linkinghub.elsevier.com/retrieve/pii/S0305054802002289. doi:10.
1016/S0305-0548(02) 00228-9.

Hart, E., Ross, P., & Corne, D. (2005). Evolutionary Scheduling: A
Review.  Genetic Programming and FEvolvable Machines, 6, 191-220.
URL: http://link.springer.com/10.1007/s10710-005-7580-7. doi:10.
1007/s10710-005-7580-7.

Hou, E., Ansari, N., & Ren, H. (1994). A genetic algorithm for multiprocessor
scheduling. IEEFE Transactions on Parallel and Distributed Systems, 5, 113—
120. URL: https://doi.org/10.1109/71.265940. doii10.1109/71.265940.

Ishibuchi, H., Yoshida, T., & Murata, T. (2003). Balance between genetic
search and local search in memetic algorithms for multiobjective permu-
tation flowshop scheduling. IEEE Transactions on FEvolutionary Compu-
tation, 7, 204-223. URL: https://doi.org/10.1109/tevc.2003.810752.
d0i:10.1109/tevc.2003.810752.

Kaboli, H. R., Fallahpour, A., Kazemi, N., Selvaraj, J., & Abd Rahim, N.
(2016a). An expression-driven approach for long-term electric power con-
sumption forecasting. American Journal of Data Mining and Knowledge Dis-
covery, z, No. z, 1-13.

32


http://dx.doi.org/https://doi.org/10.1016/j.jocs.2013.10.002
http://dx.doi.org/https://doi.org/10.1016/j.jocs.2013.10.002
https://doi.org/10.1016/j.cie.2007.04.010
https://doi.org/10.1016/j.cie.2007.04.010
http://dx.doi.org/10.1016/j.cie.2007.04.010
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1177/003754970107600201
https://doi.org/10.1080/0952813X.2013.782347
https://doi.org/10.1080/0952813X.2013.782347
http://dx.doi.org/10.1080/0952813X.2013.782347
http://arxiv.org/abs/https://doi.org/10.1080/0952813X.2013.782347
http://dx.doi.org/10.1080/00207543.2016.1177671
http://linkinghub.elsevier.com/retrieve/pii/S0305054802002289
http://linkinghub.elsevier.com/retrieve/pii/S0305054802002289
http://dx.doi.org/10.1016/S0305-0548(02)00228-9
http://dx.doi.org/10.1016/S0305-0548(02)00228-9
http://link.springer.com/10.1007/s10710-005-7580-7
http://dx.doi.org/10.1007/s10710-005-7580-7
http://dx.doi.org/10.1007/s10710-005-7580-7
https://doi.org/10.1109/71.265940
http://dx.doi.org/10.1109/71.265940
https://doi.org/10.1109/tevc.2003.810752
http://dx.doi.org/10.1109/tevc.2003.810752

Kaboli, S. H. A., & Alqallaf, A. K. (2019). Solving non-convex economic load dis-
patch problem via artificial cooperative search algorithm. Fxpert Systems with
Applications, 128, 14 — 27. doithttps://doi.org/10.1016/j.eswa.2019.
02.002.

Kaboli, S. H. A., Fallahpour, A., Selvaraj, J., & Rahim, N. (2017a).
Long-term electrical energy consumption formulating and forecast-
ing via optimized gene expression programming. Energy, 126,
144 — 164. URL: http://www.sciencedirect.com/science/article/
pii/S0360544217303675. doithttps://doi.org/10.1016/j.energy.2017.
03.009.

Kaboli, S. H. A., Selvaraj, J., & Rahim, N. (2016b). Long-term electric energy
consumption forecasting via artificial cooperative search algorithm. FEnergy,
115, 857 — 871. doichttps://doi.org/10.1016/j.energy.2016.09.015.

Kaboli, S. H. A., Selvaraj, J., & Rahim, N. (2017b). Rain-fall optimization
algorithm: A population based algorithm for solving constrained optimization
problems. Journal of Computational Science, 19, 31 — 42. doithttps://doi.
org/10.1016/7.jocs.2016.12.010.

Kazimipour, B., Li, X., & Qin, A. K. (2013). Initialization methods for large
scale global optimization. In 2013 IEEE Congress on Evolutionary Compu-
tation (pp. 2750-2757). doij10.1109/CEC.2013.6557902.

Kazimipour, B., Li, X., & Qin, A. K. (2014). A review of population initial-
ization techniques for evolutionary algorithms. In 2014 IEEE Congress on
FEvolutionary Computation (CEC) (pp. 2585-2592). doi:10.1109/CEC.2014.
6900618

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceed-
ings of ICNN’95 - International Conference on Neural Networks (pp. 1942
1948 vol.4). volume 4. doi:10.1109/ICNN.1995.488968.

Kofler, M., Wagner, S., Beham, A., Kronberger, G., & Affenzeller, M. (2009).
Priority Rule Generation with a Genetic Algorithm to Minimize Sequence
Dependent Setup Costs. In R. Moreno-Diaz, F. Pichler, & A. Quesada-
Arencibia (Eds.), Computer Aided Systems Theory - EUROCAST 2009: 12th
International Conference, Las Palmas de Gran Canaria, Spain, February
15-20, 2009, Revised Selected Papers (pp. 817-824). Berlin, Heidelberg:
Springer Berlin Heidelberg. URL: http://link.springer.com/10.1007/
978-3-642-04772-5_105. doi:10.1007/978-3-642-04772-5\_105.

Krawiec, K., & Pawlak, M. (2015). Genetic programming with alterna-
tive search drivers for detection of retinal blood vessels. doi:10.1007/
978-3-319-16549-3_45|

Kuczapski, A., Micea, M., Maniu, L., & Cretu, V. (2010). Efficient generation
of near optimal initial populations to enhance genetic algorithms for job-shop
scheduling, . 39, 32-37.

33


http://dx.doi.org/https://doi.org/10.1016/j.eswa.2019.02.002
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2019.02.002
http://www.sciencedirect.com/science/article/pii/S0360544217303675
http://www.sciencedirect.com/science/article/pii/S0360544217303675
http://dx.doi.org/https://doi.org/10.1016/j.energy.2017.03.009
http://dx.doi.org/https://doi.org/10.1016/j.energy.2017.03.009
http://dx.doi.org/https://doi.org/10.1016/j.energy.2016.09.015
http://dx.doi.org/https://doi.org/10.1016/j.jocs.2016.12.010
http://dx.doi.org/https://doi.org/10.1016/j.jocs.2016.12.010
http://dx.doi.org/10.1109/CEC.2013.6557902
http://dx.doi.org/10.1109/CEC.2014.6900618
http://dx.doi.org/10.1109/CEC.2014.6900618
http://dx.doi.org/10.1109/ICNN.1995.488968
http://link.springer.com/10.1007/978-3-642-04772-5_105
http://link.springer.com/10.1007/978-3-642-04772-5_105
http://dx.doi.org/10.1007/978-3-642-04772-5_105
http://dx.doi.org/10.1007/978-3-319-16549-3_45
http://dx.doi.org/10.1007/978-3-319-16549-3_45

Lee, J-H., Yu, J.-M., & Lee, D.-H. (2013). A tabu search algorithm for un-
related parallel machine scheduling with sequence- and machine-dependent
setups: minimizing total tardiness. The International Journal of Advanced
Manufacturing Technology, 69, 2081-2089. URL: http://link.springer.
com/10.1007/s00170-013-5192-6. doii10.1007/s00170-013-5192-6.

Lee, Y. H., Bhaskaran, K., & Pinedo, M. (1997). A heuristic to minimize
the total weighted tardiness with sequence-dependent setups. IIE Transac-
tions, 29, 45-52. URL: http://www.tandfonline.com/doi/abs/10.1080/
07408179708966311. doii10.1080/07408179708966311.

Li, J., Pardalos, P. M., Sun, H., Pei, J., & Zhang, Y. (2015). Iterated local search
embedded adaptive neighborhood selection approach for the multi-depot vehi-
cle routing problem with simultaneous deliveries and pickups. Fxpert Systems
with Applications, 42, 3551 — 3561. doithttps://doi.org/10.1016/j.eswa.
2014.12.004.

Lin, C.-W., Lin, Y.-K., & Hsieh, H.-T. (2013). Ant colony optimization for
unrelated parallel machine scheduling. The International Journal of Advanced
Manufacturing Technology, 67, 35-45. URL: http://link.springer.com/
10.1007/s00170-013-4766-7. do0i;10.1007/s00170-013-4766-7.

Maheswaran, M., Ali, S., Siegel, H. J., Hensgen, D., & Freund, R. F.
(1999). Dynamic Mapping of a Class of Independent Tasks onto Hetero-
geneous Computing Systems. Journal of Parallel and Distributed Comput-
ing, 59, 107-131. URL: http://linkinghub.elsevier.com/retrieve/pii/
S0743731599915812. do0i;10.1006/jpdc.1999.1581,

Modiri-Delshad, M., Kaboli, S. H. A., Taslimi-Renani, E., & Rahim, N. A.
(2016). Backtracking search algorithm for solving economic dispatch problems
with valve-point effects and multiple fuel options. Energy, 116, 637 — 649.
doithttps://doi.org/10.1016/j.energy.2016.09. 140.

Mohamad Izdin Hlal, A., K. Ramachandaramurthya, V., Sanjeevikumar, P.,
Pouryekta, A., Kaboli, H. R., & bin Tuan Abdullah, T. A. R. (2019). Nsga-
ii and mopso based optimization for sizing of hybrid pv / wind / battery
energy storage system. International Journal of Power Electronics and Drive
Systems, 10, 463-478. doii10.11591/ijpeds.v10nl.pp463-478.

Nguyen, S., Mei, Y., & Zhang, M. (2017). Genetic programming for pro-
duction scheduling: a survey with a unified framework. Complex € In-
telligent Systems, 3, 41-66. URL: http://link.springer.com/10.1007/
s40747-017-0036-%. doi;10.1007/s40747-017-0036-x

Petrovic, S., & Castro, E. (2011). A genetic algorithm for radiotherapy pre-
treatment scheduling. In C. Di Chio, A. Brabazon, G. A. Di Caro, R. Drech-
sler, M. Farooq, J. Grahl, G. Greenfield, C. Prins, J. Romero, G. Squillero,
E. Tarantino, A. G. B. Tettamanzi, N. Urquhart, & A. S. Uyar (Eds.), Appli-
cations of Evolutionary Computation: FEvoApplications 2011: EvoCOMNET,

34


http://link.springer.com/10.1007/s00170-013-5192-6
http://link.springer.com/10.1007/s00170-013-5192-6
http://dx.doi.org/10.1007/s00170-013-5192-6
http://www.tandfonline.com/doi/abs/10.1080/07408179708966311
http://www.tandfonline.com/doi/abs/10.1080/07408179708966311
http://dx.doi.org/10.1080/07408179708966311
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2014.12.004
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2014.12.004
http://link.springer.com/10.1007/s00170-013-4766-7
http://link.springer.com/10.1007/s00170-013-4766-7
http://dx.doi.org/10.1007/s00170-013-4766-7
http://linkinghub.elsevier.com/retrieve/pii/S0743731599915812
http://linkinghub.elsevier.com/retrieve/pii/S0743731599915812
http://dx.doi.org/10.1006/jpdc.1999.1581
http://dx.doi.org/https://doi.org/10.1016/j.energy.2016.09.140
http://dx.doi.org/10.11591/ijpeds.v10n1.pp463-478
http://link.springer.com/10.1007/s40747-017-0036-x
http://link.springer.com/10.1007/s40747-017-0036-x
http://dx.doi.org/10.1007/s40747-017-0036-x

EvoFIN, EvoHOT, EvoMUSART, EvoSTIM, and EvoTRANSLOG, Torino,
Ttaly, April 27-29, 2011, Proceedings, Part II (pp. 454-463). Berlin, Heidel-
berg: Springer Berlin Heidelberg.

Pfund, M. E., Mason, S. J., & Fowler, J. W. (2006). Semiconduc-
tor Manufacturing Scheduling and Dispatching. In Handbook of Pro-
duction Scheduling (pp. 213-241). Boston: Kluwer Academic Publish-
ers. URL: http://link.springer.com/10.1007/0-387-33117-4_9. doi:10.
1007/0-387-33117-4\_9.

Picek, S., Cupic, M., & Rotim, L. (2016). A new cost function for evolution of s-
boxes. Evolutionary Computation, 24, 695-718. doij10.1162/EVC0_a_00191.

Picek, S., Jakobovic, D., Miller, J. F., Batina, L., & Cupic, M. (2016). Cryp-
tographic boolean functions: One output, many design criteria. Applied Soft
Computing, 40, 635 — 653. doichttps://doi.org/10.1016/j.asoc.2015.
10.066.

Pinedo, M. L. (2012). Scheduling:  Theory, algorithms, and systems:
Fourth edition volume 9781461423614. Boston, MA: Springer US.
URL: http://link.springer.com/10.1007/978-1-4614-2361-4. doi:10.
1007/978-1-4614-2361-4| arXiv:arXiv:1011.1669v3.

Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. (2007a). A novel
population initialization method for accelerating evolutionary algorithms.
Computers and Mathematics with Applications, 53, 1605 — 1614. URL: http:
//www.sciencedirect.com/science/article/pii/S0898122107001344.
doithttps://doi.org/10.1016/j.camwa.2006.07.013.

Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. A. (2007b). A novel popu-
lation initialization method for accelerating evolutionary algorithms. Comput.
Math. Appl., 58, 1605-1614. URL: http://dx.doi.org/10.1016/j.camwa.
2006.07.013} doii10.1016/j.camwa.2006.07.013.

Sarathambekai, S., & Umamaheswari, K. (2017). Intelligent discrete parti-
cle swarm optimization for multiprocessor task scheduling problem. Jour-
nal of Algorithms & Computational Technology, 11, 58-67. doij10.1177/
1748301816665521.

Sebtahmadi, S. S., Azad, H. B., Kaboli, S. H. A., Islam, M. D., & Mekhilef,
S. (2018). A pso-dq current control scheme for performance enhancement
of z-source matrix converter to drive im fed by abnormal voltage. IEEE
Transactions on Power Electronics, 33, 1666-1681.

Singh, S., & Chana, I. (2016). A survey on resource scheduling in cloud
computing: Issues and challenges. Journal of Grid Computing, 14, 217-
264. URL: https://doi.org/10.1007/s10723-015-9359-2. doij10.1007/
s10723-015-9359-2.

35


http://link.springer.com/10.1007/0-387-33117-4_9
http://dx.doi.org/10.1007/0-387-33117-4_9
http://dx.doi.org/10.1007/0-387-33117-4_9
http://dx.doi.org/10.1162/EVCO_a_00191
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2015.10.066
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2015.10.066
http://link.springer.com/10.1007/978-1-4614-2361-4
http://dx.doi.org/10.1007/978-1-4614-2361-4
http://dx.doi.org/10.1007/978-1-4614-2361-4
http://arxiv.org/abs/arXiv:1011.1669v3
http://www.sciencedirect.com/science/article/pii/S0898122107001344
http://www.sciencedirect.com/science/article/pii/S0898122107001344
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2006.07.013
http://dx.doi.org/10.1016/j.camwa.2006.07.013
http://dx.doi.org/10.1016/j.camwa.2006.07.013
http://dx.doi.org/10.1016/j.camwa.2006.07.013
http://dx.doi.org/10.1177/1748301816665521
http://dx.doi.org/10.1177/1748301816665521
https://doi.org/10.1007/s10723-015-9359-2
http://dx.doi.org/10.1007/s10723-015-9359-2
http://dx.doi.org/10.1007/s10723-015-9359-2

Soler-Dominguez, A., Juan, A. A.; & Kizys, R. (2017). A survey on financial
applications of metaheuristics. ACM Comput. Surv., 50, 15:1-15:23. URL:
http://doi.acm.org/10.1145/3054133. doij10.1145/3054133.

Durasevié, M., & Jakobovié, D. (2016). Comparison of solution repre-
sentations for scheduling in the unrelated machines environment. In
2016 39th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO) (pp. 1336-1342).
IEEE. URL: http://ieeexplore.ieee.org/document/7522347/. doi:10.
1109/MIPRO.2016.7522347.

Purasevié, M., & Jakobovié, D. (2018). A survey of dispatch-
ing rules for the dynamic unrelated machines environment. Ez-
pert Systems with Applications, 113, 555 — 569. URL: http:

//www.sciencedirect.com/science/article/pii/S0957417418304159.
doithttps://doi.org/10.1016/j.eswa.2018.06.053.

DPurasevié, M., Jakobovié, D., & Knezevié, K. (2016). Adaptive scheduling
on unrelated machines with genetic programming. Applied Soft Comput-
ing, 48, 419-430. URL: http://linkinghub.elsevier.com/retrieve/pii/
S51568494616303519. do0i:10.1016/j.asoc.2016.07.025

Vallada, E., & Ruiz, R. (2011). A genetic algorithm for the unrelated par-
allel machine scheduling problem with sequence dependent setup times.
European Journal of Operational Research, 211, 612-622. URL: http:
//linkinghub.elsevier.com/retrieve/pii/S0377221711000142. doij10.
1016/j.ejor.2011.01.011,

Vigneswari, T., & Mohamed, D. M. A. M. (2014). Performance analysis of
initialization methods for optimizing artificial bee colony grid scheduling.

Wang, L., Siegel, H. J., Roychowdhury, V. P., & Maciejewski, A. A. (1997).
Task matching and scheduling in heterogeneous computing environments us-
ing a genetic-algorithm-based approach. Journal of Parallel and Distributed
Computing, 47, 8-22. URL: https://doi.org/10.1006/jpdc.1997.1392.
doii10.1006/jpdc.1997.1392

Xhafa, F., & Abraham, A. (2008). Meta-heuristics for grid scheduling prob-
lems. In F. Xhafa, & A. Abraham (Eds.), Metaheuristics for Scheduling in
Distributed Computing Environments (pp. 1-37). Berlin, Heidelberg: Springer
Berlin Heidelberg.

Xiong, J., Tan, X., Yang, K.-w., Xing, L.-n., & Chen, Y.-w. (2012). A
hybrid multiobjective evolutionary approach for flexible job-shop schedul-
ing problems. Mathematical Problems in Engineering, 2012. URL: http:
//dx.doi.org/10.1155/2012/478981. doi;10.1155/2012/478981

Yang, S., Guohui, Z., Liang, G., & Kun, Y. (2009). A novel initialization
method for solving flexible job-shop scheduling problem. In 2009 International

36


http://doi.acm.org/10.1145/3054133
http://dx.doi.org/10.1145/3054133
http://ieeexplore.ieee.org/document/7522347/
http://dx.doi.org/10.1109/MIPRO.2016.7522347
http://dx.doi.org/10.1109/MIPRO.2016.7522347
http://www.sciencedirect.com/science/article/pii/S0957417418304159
http://www.sciencedirect.com/science/article/pii/S0957417418304159
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2018.06.053
http://linkinghub.elsevier.com/retrieve/pii/S1568494616303519
http://linkinghub.elsevier.com/retrieve/pii/S1568494616303519
http://dx.doi.org/10.1016/j.asoc.2016.07.025
http://linkinghub.elsevier.com/retrieve/pii/S0377221711000142
http://linkinghub.elsevier.com/retrieve/pii/S0377221711000142
http://dx.doi.org/10.1016/j.ejor.2011.01.011
http://dx.doi.org/10.1016/j.ejor.2011.01.011
https://doi.org/10.1006/jpdc.1997.1392
http://dx.doi.org/10.1006/jpdc.1997.1392
http://dx.doi.org/10.1155/2012/478981
http://dx.doi.org/10.1155/2012/478981
http://dx.doi.org/10.1155/2012/478981

Conference on Computers Industrial Engineering (pp. 68-73). doi:10.1109/
ICCIE.2009.5223891.

Zhan, Z.-H., Liu, X.-F., Gong, Y.-J., Zhang, J., Chung, H. S.-H., & Li, Y.
(2015). Cloud computing resource scheduling and a survey of its evolutionary
approaches. ACM Computing Surveys, 47, 1-33. URL: https://doi.org/
10.1145/2788397. doi;10.1145/2788397.

Zhou, H., Feng, Y., & Han, L. (2001). The hybrid heuristic genetic al-
gorithm for job shop scheduling. Computers & Industrial Engineering,
40, 191-200. URL: https://doi.org/10.1016/s0360-8352(01)00017-1.
doi;10.1016/s0360-8352(01) 00017-1/

37


http://dx.doi.org/10.1109/ICCIE.2009.5223891
http://dx.doi.org/10.1109/ICCIE.2009.5223891
https://doi.org/10.1145/2788397
https://doi.org/10.1145/2788397
http://dx.doi.org/10.1145/2788397
https://doi.org/10.1016/s0360-8352(01)00017-1
http://dx.doi.org/10.1016/s0360-8352(01)00017-1

	Symbols
	Introduction
	Background
	Scheduling
	Genetic algorithm
	Dispatching rules

	Population initialisation by dispatching rules
	Experimental setup
	Results
	Performance comparison of the initialisation strategies
	Fitness dynamics during the GA execution

	Discussion
	Conclusion

