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Abstract Dispatching rules are often the method of choice for solving schedul-
ing problems since they are fast, simple, and adaptive approaches. In recent
years genetic programming has increasingly been used to automatically create
dispatching rules for various scheduling problems. Since genetic programming
is a stochastic approach, it needs to be executed several times to ascertain that
good dispatching rules were obtained. This paper analyses whether combining
several dispatching rules into an ensemble leads to performance improvements
over the individual dispatching rules. Two methods for creating ensembles of
dispatching rules, based on the sum and vote methods applied in machine
learning, are used and their effectiveness is analysed with regards to the size
of the ensemble, the genetic programming method used to generate the dis-
patching rules, the size of the evolved dispatching rules, and the method used
for creating the ensembles. The results demonstrate that the generated ensem-
bles achieve significant improvements over individual automatically generated
dispatching rules.

Keywords Genetic programming · Dispatching rules · Unrelated machines
environment · Ensemble learning · Scheduling

1 Introduction

Scheduling is a form of a decision making process in which a set of activities
is allocated to limited resources over a certain period of time [46]. Schedul-
ing problems can be found in many real life domains, such as scheduling in air
traffic control [7], [14]; semiconductor manufacturing [45]; and therapy schedul-
ing in hospitals [44]. Different metaheuristic methods, including genetic algo-
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rithms and ant colony optimisation, can be used to solve various scheduling
problems. These methods, if not coupled with some other approaches (like
the rolling horizon approach), can be applied only in static scheduling envi-
ronments. Therefore, simple heuristics in the form of dispatching rules (DRs)
are often used for solving dynamic scheduling problems, since they can create
schedules in time which is negligible when compared to the execution time of
most metaheuristic algorithms [50].

To eliminate the need of manually creating DRs, genetic programming
(GP) [47], [25] and similar procedures are often used to generate them auto-
matically. GP has demonstrated the ability to generate DRs of good quality
for various scheduling problems, which can even outperform manually designed
DRs in many cases. However, since GP is a stochastic procedure which can
get stuck in local optima and thus produce bad results, it is advisable that
the entire procedure is executed several times to increase the probability of
obtaining a good DR. Therefore, several DRs are usually generated, but only
one of them will be selected to create schedules for new problem instances.

The objective of this paper is to analyse the creation of ensembles of DRs by
simple ensemble combination (SEC). This approach has already demonstrated
to obtain significantly better results than several more sophisticated ensem-
ble learning approaches [51]. Unfortunately, in that study the approach was
briefly analysed, without providing much insight into how different elements
can influence the performance of SEC. Therefore, this paper analyses how
three different factors influence the performance of the generated ensembles.
The first factor is the influence of creating ensembles by using DRs generated
by different GP variant like standard GP, dimensionally aware GP, and gene
expression programming. The second factor is the influence of the size of the
evolved DRs on the ensemble performance. Finally, different ways of selecting
the DRs which will form the ensemble is also analysed. To gain further insights
into the created ensembles, this paper provides an analysis of the composition
of the best constructed ensembles.

The remainder of this paper is organised as follows. Section 2 gives a liter-
ature overview concerned with automatic design of DRs by using GP. Section
3 gives an overview of the unrelated machines scheduling environment, while
Section 4 describes the procedure for creating DRs by using GP, as well as
how several DRs are combined to form an ensemble and perform scheduling
decisions. The results are presented in Section 5. Discussion about the results
is given in Section 6, while a short conclusion and steps for further research
are given in Section 7.

2 State of the art

Since GP can evolve quite complex expressions and rules, it has extensively
been applied in the field of hyper-heuristics [6], [5]. GP has often been used for
automatic creation of new DRs. Dimopoulos and Zalzala [8] were among the
first to use GP to evolve DRs for the single machine environment, and demon-



Creating Dispatching Rules by Simple Ensemble Combination 3

strated that the evolved DRs outperform some standard manually designed
DRs. Miyashita [30] used GP to evolve DRs for the job shop environment. In
his work, Miyashita considered the scheduling problem as a multi-agent prob-
lem, where a single agent denoted one machine. Based on that consideration,
he proposed three models: the homogeneous model, the distinct agent model,
and the mixed agent model. In the homogeneous model the same DR was
evolved for each machine. On the other hand, the distinct agent model evolves
a different DR for each machine. Finally, the mixed agent model combines
the two aforementioned models so that it develops two types of DRs. One DR
would be assigned to machines which represent bottleneck resources, while the
second DR would be assigned to all other machines. Although the mixed agent
model achieved the best results, it requires prior knowledge about the schedul-
ing environment to determine which machines represent bottleneck resources.
Apart from evolving DRs for the single machine and job-shop environments,
Jakobović et al. [20] have also proposed a GP method which extends the mixed
agent model of Miyashita. In their approach they generate three expressions,
two of which represent DRs, while the third represents a decision function.
The decision function is used to determine if a specific machine represents a
bottleneck resource or not, and depending on the result one DR will be used
if the machine represents a bottleneck, and the other if it does not represent a
bottleneck resource. As a consequence, this approach can be used in dynamic
environments, since no prior knowledge about the scheduling environment is
required.

Tay and Ho [49] used GP to design DRs for a multi-objective schedul-
ing problem. They converted the multi-objective optimisation problem into a
single-objective problem by linearly combining all the objectives. Hildebrandt
et al. [16] have performed an extensive analysis of creating DRs for the job-shop
environment, especially concerning the creation of problem instances. Gene ex-
pression programming (GEP) [12], a procedure with similar characteristics as
GP, has also been used to evolve DRs for the single-machine [40] and job-shop
[39] environments. More recently a new adapted GEP representation was pro-
posed to evolve DRs for the job shop scheduling problem, which significantly
improves the results of GEP [52]. Jakobović and Marasović [21] have further
investigated scheduling problems in the single-machine and job-shop environ-
ments. The focus of their work was not only to analyse the influence of GP
parameters on the quality of the obtained DRs, but also to evolve DRs for the
single-machine environment which included additional constraints like set-up
times and precedence constraints. Different solution representations have been
analysed by Nguyen et al. [33], and it was shown that the quality of DRs de-
pends heavily on the representation which is used to design new DRs. Nguyen
et al. [35] proposed a novel procedure for evolving iterative dispatching rules
(IDRs). This procedure, although applicable only in the static scheduling envi-
ronment, can create schedules with much better performances when compared
to standard DRs. Ðurasević et al. [10] compared several GP approaches for
creating DRs in the unrelated machines environment, including GEP, IDRs,
and dimensionally aware GP. The problem of global perspective of DRs has
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been analysed in [17]. In [18] GP was used to evolve DRs for the static two
machine job-shop environment for which an optimal algorithm exists. The
aforementioned paper demonstrated that GP evolved DRs which can create
optimal schedules. GP has also been used to evolve DRs for the order accep-
tance and scheduling (OAS) problem [42], [31], [37]. The study demonstrated
that GP can evolve DRs which create better schedules than those obtained by
some standard heuristics designed for the OAS problem.

Nguyen et al. have analysed the possibility of creating entire scheduling
procedures (SPs), which consist of both DRs and due-date assignment rules
(DDARs) [32], [36]. Both expressions have been evolved simultaneously by
using a multi-objective cooperative coevolution GP procedure, which obtains
better results in comparison to some traditional multi-objective GP methods.
These papers also demonstrated that the generated SPs can outperform SPs
created as combinations of different popular DRs and DDARs. Evolving DRs
for multi-objective scheduling problems was analysed by Nguyen et al. in [34]
and [38]. In those studies a multi-objective problem was considered and several
different multi-objective algorithms were used to create DRs for optimising five
criteria simultaneously. Karunakaran et al. [22] used two multi-objective algo-
rithms to evolve DRs which optimise three criteria simultaneously. Ðurasević
and Jakobović [11] use four multi-objective algorithms to optimise various
multi-objective scheduling problems. Recent papers also started to investigate
feature selection to determine which features are relevant for creating new
DRs [19], [29]. GP was recently used to generating DRs for scheduling prob-
lems which were not considered until now, like the dual-constrained flow shop
scheduling problem [3] and the intercell scheduling problem [27]. A recent
survey conducted by Branke et al. gives a detailed overview of the literature
concerned with automatic creation of DRs by the use of GP [4].

Ensemble learning techniques have of yet rarely been used for creating
ensembles of dispatching rules. Park et al. [43] proposed an ensemble learn-
ing GP procedure which uses cooperative coevolution to evolve ensembles of
DRs. It was demonstrated that the ensemble learning GP procedure generally
produced more robust rules than the single rule GP. Unfortunately, this ap-
proach was applied only for the static scheduling problem. Hart and Sim [15]
proposed a new hyper-heuristic ensemble learning method named NELLI-GP.
This method creates the ensemble in a way that each DR contained in the
ensemble is adjusted for optimising only a certain subset of training instances.
Therefore, the ensemble will consist of DRs where each rule will focus on solv-
ing a different subset of problem instances. Although this approach achieves
good results, it was also applied only on the static job shop scheduling problem.
In [41], Park et al. compare several combination schemes for creating ensembles
for the dynamic job shop environment. The authors also perform a detailed
analysis to investigate the behaviour of the ensemble when using each of the
tested combination schemes. Ðurasević and Jakobović [51] made a compari-
son of several ensemble learning methods on the dynamic unrelated machines
scheduling problem. The aforementioned paper shows that SEC achieved bet-
ter results than more sophisticated ensemble learning methods like BagGP,
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BoostGP, and cooperative coevolution. Unfortunately, SEC was not analysed
extensively in the paper. Therefore, the objective of this paper is to further
study SEC to improve its performance and analyse the composition of ensem-
bles it creates. The main contributions of this paper, when compared to the
one where the method is proposed, are: proposing several methods for con-
structing ensembles (concerned especially on reducing the time complexity of
the approach), a more detailed analysis of how ensemble size influences the
performance, analysing the performance of SEC when applied on DRs gen-
erated with different GP variants, and analysing the generated ensembles to
obtain a better understanding of the method.

3 Scheduling in the Unrelated Machines Environment

In the unrelated machines environment, a number of n jobs compete to be
processed on one of the m available machines. Each job has several attributes
which are considered in the scheduling process. For the unrelated machines
environment, the following attributes are often included: processing time pij ,
which denotes the processing time that is required to process the job with index
j on the machine with the index i; release time rj , which determines the point
in time when job j becomes available; due date dj , which determines a point
in time until which the execution of job j should be completed, otherwise a
certain cost will be incurred; and weight wj , which determines the importance
of job j.

3.1 Scheduling criteria

Throughout the literature many different scheduling criteria have been defined
and optimised [1], [2]. This study will focus on four criteria which have most
often been used in the literature.

After each job is scheduled, the following metrics are calculated:

– Cj - completion time of job j
– Fj - flowtime of job j: Fj = Cj − rj .
– Tj - tardiness of job j: Tj = max{Cj − dj , 0}.

– Uj - flag if a job is tardy or not: Uj =
{

1 : Tj > 0
0 : Tj = 0 .

Based on the previously defined metrics, it is possible define the following
four scheduling criteria which will be optimised in this paper:
– Cmax - maximum completion time of all jobs: Cmax = maxj{Cj},
– Twt - total weighted tardiness: Twt =

∑
j wjTj ,

– Ft - total flowtime: Ft =
∑

j Fj ,
– Nwt - weighted number of tardy jobs: Nwt =

∑
j wjUj .
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3.2 Dynamic scheduling

In this paper it is presumed that scheduling is performed under dynamic con-
ditions. This means that the properties of the jobs are not known in advance,
rather they become known at the moment when the job enters the system
(which is determined by the release times of jobs). DRs are more than ap-
propriate for creating schedules in such environments, due to their speed and
since they only consider the currently available jobs when performing the deci-
sion. They can be used in parallel with the execution of the system, and each
time a job is released into the system they can immediately schedule it on
the next available machine. Therefore, DRs can quickly react to the changing
conditions which can occur in the scheduling environment.

4 Methodology

This section will describe the procedure which was used for automatic creation
of new DRs, and the procedure of combining DRs to create ensembles of DRs.

4.1 Automatic development of DRs

The DR used in this paper consists of two independent parts: a meta-algorithm
and a priority function. The meta-algorithm is used to schedule each job on a
certain machine. It does so by employing a certain priority function which cal-
culates the priority value for each given job and machine. The meta-algorithm
used in this study is defined manually, and its pseudo-code is given in Algo-
rithm 1. Each time a job is released into the system or a machine becomes
idle the meta-algorithm is triggered. By using the priority function the meta-
algorithm calculates priorities for job-machine pairs constructed from all re-
leased but unscheduled jobs and all machines (idle or not). For each job the
meta-algorithm then determines the machine for which the lowest priority
value is obtained. If the selected machine is free, the job is scheduled on it.
On the other hand if the machine is not free, the job is not scheduled, and the
meta-algorithm will try to schedule the job at a later moment in time, with the
possibility of scheduling it on another machine. In this way the meta-algorithm
will not necessarily schedule a job on a machine immediately when it becomes
idle, but rather it can leave the machine free if it determines that it would
be better to schedule the jobs on machines that are currently busy. Thus, it
is important that the priority values for a job are calculated for all machines,
whether they are idle or not. It is important to outline that the meta-algorithm
does not depend on any concrete priority function, which means that many
different priority functions can be used with the given meta-algorithm. As a
consequence the same meta-algorithm can use priority functions which opti-
mise different scheduling objectives.

On the other hand, priority functions are automatically generated by us-
ing GP. Since priority functions are defined as mathematical functions, one of
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Algorithm 1 Meta-algorithm used for GP scheduling

1: while unscheduled jobs are available do
2: wait until a job becomes ready or a job finishes;
3: for all released unscheduled jobs and all machines do
4: obtain the priority πij of job j on machine i;
5: end for
6: for all available jobs do
7: determine the best machine (the one for which
8: the best value of priority πij is achieved);
9: end for
10: while jobs whose best machine is available exist
11: do
12: determine the best priority of all such jobs;
13: schedule the job with the best priority;
14: end while
15: end while

Table 1: Terminal nodes

Node name Description
pt processing time of job j on the machine i (pij)

pmin The minimal job processing time on all machines: min{pij}∀i
pavg The average processing time on all machines

PAT Patience - the amount of time until the machine with the minimal
processing time for the current job will be available

MR Machine ready - the amount of time until the current machine
becomes available

age The time that the job spent in the system: time− rj

Terminals used only for the total weighted tardiness and number of tardy jobs criteria
dd Due date (dj)
SL Positive slack: max{dj − pij − time, 0}
w Weight

the most important steps is to define the building blocks that will be used to
construct them. In the context of GP these building blocks can be grouped
either as terminal or function nodes. Terminal nodes represent system at-
tributes that are used by GP for creating DRs. The list of used terminal nodes
is shown in Table 1. This set was obtained by performing extensive experi-
ments and selecting those terminals which provide useful information. Some
nodes were specifically defined for the unrelated machines environment (PAT
and MR), while others were inspired by some standard DRs (SL). Aside from
the terminal nodes, a set function nodes is also defined. These nodes repre-
sent mathematical operators used to combine terminal nodes into meaningful
expressions. In this study five different operators are used for the set of func-
tion nodes: addition operator, subtraction operator, multiplication operator,

protected division operator /(a, b) =
{

1, if |b| < 0.000001
a
b , else

, and the POS op-

erator POS(a) = max{a, 0}.
Apart from the standard GP procedure, two other models for generating

DRs will also be used: GEP and dimensionally aware GP (DAGP) [24]. These
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methods were included to determine if the procedure used for creating priority
functions can have a significant influence on the quality of the ensemble. GEP
is a procedure which is similar to GP, but unlike in GP the evolved expres-
sion is not represented in the form of a tree, but rather by using an array of
constant size [12]. Because of this, it is easier to implement and design genetic
operators. On the other hand, DAGP is a procedure which embeds semantic
information into the expressions evolved by GP. This is achieved in a way that
each node in the expression contains additional semantic information (in most
cases a unit) and that several semantic rules, which determine how nodes with
different semantic information can be combined, are defined. With these two
elements it is possible to introduce units in the expression and ensure that the
expression does not perform illegal operations on units (like adding seconds
to meters). The advantage of such a procedure is that it can evolve solutions
which are easier to interpret and adhere to all given semantic rules. In our
implementation the initialisation method and genetic operators were adapted
so that all individuals satisfy the semantic rules. However, it is also possible
to allow that certain individuals violate the given rules and that the degree by
which they are violated is reduced by using methods like the culling method
[24] or the penalty method [28].

The parameters used by the described GP procedures are listed in Table
2. If a parameter is not applicable for a specific GP approach, the value in
the cell is denoted with "-". In cases where more than one genetic operator is
defined, the algorithm will randomly select one of the listed operators in each
iteration (all operators have the same probability of being selected). Since it
would be too expensive to perform the parameter optimisation for each crite-
rion which is considered in this paper, the parameter values were optimised
and fine-tuned for the Twt criterion, and the obtained values were applied
when creating DRs for the other criteria as well. The parameters were opti-
mised individually by testing several different values. The population size was
tested with values of 200, 500, 1000, 2000; the termination criteria was tested
with values up to 240 000 iterations; the mutation probability was tested with
values 0.07, 0.1, 0.2, 0.3, 0.5; tree depths of maximum sizes equalling to 3, 5,
7, 11, and 13 were tested; different crossover and mutation operator combi-
nations were also tested (the operator combinations were generated by simple
heuristics which tried to improve the fitness of the GP by adding or removing
certain operators). GEP was tested with head sizes of 6, 8, 10, 12, and 14
nodes, while values of 2, 3, 4, and 5 were tested for the number of genes. For
each value the GP algorithm was executed 50 times and the best DR from
each run was saved. The average of the fitness values achieved by the best
individuals from the 50 runs was calculated, and the parameter value which
achieved the smallest average value was selected. By performing the parame-
ter optimisation procedure it was possible to improve the average value of the
generated DRs by around 3%, but also to reduce the standard deviation of the
obtained solution by more than a half of the value. However, since the param-
eter optimisation procedure is a quite time consuming and lengthy process,
it would be desirable that this step could be avoided. Therefore, it is inter-
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Table 2: Parameters for the GP procedures

Parameter GP DAGP GEP
Population size 1000
Stop criteria maximum number of iterations (80 000)
Selection steady state GP using tournament selection

Tournament size 3
Initialization ramped half-and-half random

Mutation probability 0.3
Maximal tree depth 5 -

Crossover operators subtree, uniform,
context-preserving, size-fair one point

Mutation operators

subtree, Gauss, hoist, node
complement, node

replacement, permutation,
shrink

node replacement

Head size - 6
Gene count - 3
Transposition
operators - IS, RIS, gene transpostion

esting to analyse how the SEC method would perform if it were to use DRs
evolved by GP with the initial unoptimised parameters. For that reason, SEC
will also be applied on DRs obtained by the unoptimised GP procedure to
analyse if parameter optimisation has a significant influence on the ensemble
quality. The parameter values for the unoptimised GP (UGP) procedure are
the same as those shown in Table 2, except for the maximum tree depth which
was equal to 7, and the set of crossover operators which additionally included
the one-point crossover operator. The values for UGP were chosen as a rule
of thumb based on the experience from certain preliminary experiments, prior
to the parameter optimisation.

4.2 Simple ensemble combination of DRs

Although the previously described GP approach can produce new DRs which
outperforms standard manually designed DRs, there is always a need to im-
prove the performance of automatically designed DRs. Unfortunately, achiev-
ing significant improvements in the quality of generated DRs is not trivial.
For example, by increasing the number of iterations GP will usually start to
overfit on the training set, which will result in DRs that generalise poorly on
unseen problem instances. Therefore, GP is usually augmented with different
approaches to improve its performance. Nevertheless, even with such improved
GP it is hard to design a single DR which performs well in all situations. Since
GP is a stochastic optimisation procedure it also needs to be executed several
times to increase the probability of generating a DR of good quality. However,
usually only one of the evolved DRs is used for scheduling, while the other DRs
are discarded although they could contain good characteristics and perform
well in certain situations.

By creating ensembles of DRs it is possible to deal with both of the afore-
mentioned problems to a certain degree. The idea of SEC is to use a set of
evolved DRs and combine them into ensembles which should perform better
than individual DRs by themselves. The ensembles are expected to achieve
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better results since they perform the decision based on all the individual DRs
in the ensemble. This reduces the probability of performing a suboptimal deci-
sion in a certain situation, since it is unlikely that all DRs will perform a poor
decision. As a consequence, the ensembles are also expected to be more stable
than individual DRs, since their decision is performed based on several DRs.
The reason why this ensemble method is considered in this paper instead some
other ensemble learning methods (like bagging or boosting) is due to several
reasons. First of all, the benefit of this approach is that previously generated
DRs can be used, thus reducing the computational effort in comparison to
other methods. This means that ensembles can be constructed extremely fast
if previously generated DRs exist. Even if there is a need to generate new DRs
for ensemble construction, it can be done in a way that each DR is generated
independently, similarly as in bagging but without the need to sample the
problem instances in each iteration. In addition, the SEC method is simple in
the fact that it does not introduce additional complexity in the construction
of the individual DRs, unlike bagging and boosting which require that either
the problem instances are sampled for each DR or that the influence of in-
dividual instances is adapted. Although the SEC method is quite simple, it
demonstrated to perform equally well and even better than other traditional
ensemble learning methods in many cases.

The rest of this section will explain the two key parts of the SEC approach:
how the decisions of all DRs in the ensemble are combined and how the DRs
forming the ensemble are selected.

4.2.1 Combination of DRs

One of the most important things that need to be specified for SEC is the
way in which the ensemble performs its decision based on the DRs which are
contained in the ensemble. To combine the decisions of all DRs into a single
decision two combination methods, based on similar procedures from the ma-
chine learning field [48], are used: sum and vote. The meta-algorithm denoted
in Algorithm 1 uses the results obtained from these combination methods to
determine which job should be scheduled on which machine.

The sum combination method is defined as an ensemble rule which sums
the priority values of all DRs contained in the ensemble. The result of that
sum represents the priority value which will be assigned to a job-machine pair.
This value is then used by the meta-algorithm to schedule jobs on machines
in a way that the job-machine pair which received the lowest priority value
will be selected for scheduling. The obvious advantage of this approach is its
inherent simplicity. However, there is one open issue with this method that
needs to be addressed and explained. The issue is that if the ensemble consists
of DRs which are generated independently, then there is no guarantee that the
priority values obtained from the different DRs will be of the same order of
magnitude. Therefore, it is possible that some DRs in the ensemble would not
have any effect on the decisions of the ensemble, since the contribution of their
priority values would be insignificant when compared to the priority values
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of other DRs. This issue could be solved by normalising the priority values
obtained by each DR. However, this can not be easily done since the range
of priority values which can be obtained by a DR is not known in dynamic
environments. In static environments it would be possible to determine the
range of priority values for each DR, for example by using interval arithmetic
[23]. However, this issue does not influence the ensemble decisions as much as
it would be expected, since it was shown that the priority values of different
DRs are usually of the same order of magnitude, and thus each DR in the
ensemble will have a similar influence on the decision of the ensemble.

In the vote combination method, denoted in Algorithm 2, each DR casts
a vote for the element that received the lowest priority value by that rule.
The element which received the most votes will be selected for scheduling. A
problem with this procedure is that ties can appear more often than with the
sum combination method. To alleviate this problem, voting is not performed
for all machines and jobs immediately, but will be split up in several parts.
In the first part, for the currently considered job each DR will cast a vote for
the machine that received the best priority value for that job. The machine
which received the most votes is assigned to the considered job. If this was the
first job for which a machine was assigned to, the procedure is repeated for
the next unscheduled job which is already released into the system. However,
if there already exists job-machine pair, then the vote method is used again
to determine which of those two pairs is better. In this second step each DR
casts a vote for either job-machine pair, and the one which receives the most
votes is kept, while the other is deleted. This procedure is repeated for all
unscheduled, but released jobs. In the end of the procedure, one job-machine
pair will remain, and if the machine in that pair is free, the job which was
associated to the machine will be scheduled on it. If two pairs receive the
same number of votes, then the one whose job has the earlier release time
will be selected. Naturally, a better way could have been chosen to deal with
ties, for example by using the sum method, but for this study it was decided
to focus on the two simple methods, and to leave the possibilities of their
improvements for further research. An advantage of this method over the sum
combination method is that the magnitudes of priorities are not important,
since each DR casts a vote of the same weight.

4.2.2 Creation of ensembles of DRs

The second important step of SEC is to define how the ensembles of DRs are
created. For that purpose it is mandatory to define the size of the ensemble,
and the procedure for selecting DRs that should form the ensemble.

The size of the ensemble represents an important parameter since both the
quality of the ensemble and the time needed to perform the scheduling decision
will depend on it. Additionally, the execution time of the methods used for
creating the ensembles also depends on the size of the ensemble which needs
to be generated. Therefore, smaller ensembles are preferred to larger ones.
Fortunately, this does not affect the performance of the SEC approach, since
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Algorithm 2 The vote combination method

1: Let bestPair represent the best selected job-machine pair (empty at the beginning)
2: for each unscheduled job which is already released into the system do
3: for each DR in the ensemble do
4: Calculate the priority value by using the selected DR for all machines
5: Determine the machine for which the DR achieved the best value and vote for it
6: end for
7: Select the machine with the most votes
8: Let currentPair denote the job-machine pair chosen in this iteration
9: if bestPair is not empty then
10: for each DR in the ensemble do
11: Make a vote between currentPair and bestPair
12: end for
13: if currentPair received more votes than bestPair then
14: bestPair ← currentPair
15: end if
16: else
17: bestPair ← currentPair
18: end if
19: end for
20: Schedule the job in the bestPair on the machine in the bestPair

in a previous study it was demonstrated that the SEC approach achieves the
best results for the ensemble size of five DRs [51]. The influence of different
ensemble sizes will also be analysed in this paper as well, to gain a better
understanding of its influence on the results.

The most difficult part of SEC is to define a procedure for choosing which
DRs will form the ensemble. Since scheduling is performed in dynamic condi-
tions the ensemble needs to be constructed in advance. Five methods will be
used for constructing ensembles: random selection method, probabilistic selec-
tion method, grow method, grow-destroy method, and instance based method.

The simplest of the applied ensemble construction methods is the random
selection method. This method constructs the ensemble in a way that it ran-
domly selects which DRs should form the ensemble. In this method all DRs
have the same probability of being selected for the ensemble. Unfortunately,
the probability of obtaining a good ensemble by trying out only one combina-
tion of DRs is quite small. Therefore, instead of constructing a single ensemble,
this method constructs a number of ensembles, evaluates them on the train-
ing set, and selects the one which achieved the best value for the optimised
objective. The number of ensembles which will be created and tested is a pa-
rameter of this approach. The complexity and execution time of this approach
will increase as the value of the parameter increases. The disadvantage of this
approach is that the ensemble construction is performed completely randomly,
without using any information about the quality of the ensembles or DRs.

An extension of the previous approach is the probabilistic selection method.
In this method each DR has a different probability of being selected, which
depends on the quality of DRs on the training set. Therefore, better DRs will
have a higher probability of being selected into the ensemble. In the tested
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method the probability of an individual was defined to be proportional to the
value of its fitness. The motivation behind this method is to guide the search
towards those DRs which have a better individual fitness, in hope that better
ensembles will consist out of DRs which individually also perform better.

The grow method is a greedy heuristic which builds the ensemble incremen-
tally. The method starts with a single DR, which can be selected randomly
by its fitness value, or by some other criteria. In each iteration of the method,
the DR which increases the quality of the ensemble the most is added to the
ensemble. This is done until the ensemble reaches its specified size. Unlike the
previous two construction methods, this one behaves deterministically given
that the same initial DR is used. The motivation behind this method is that
it should choose those DRs which increase the overall quality of the ensemble.

The grow-destroy method represents an extension of the grow method. The
first part of the method is the same as in the grow method, however, instead of
building up an ensemble of the specified size e, this method creates an ensemble
twice the size. After this step is done, the method performs e iterations, where
in each iteration the method removes the DR whose removal would result in
the best fitness of the smaller ensemble. As the previous method, this one is
also deterministic given the same starting DR. The motivation for this method
is to allow for the ensemble to grow over the specified size and allow it to collect
more good DRs in the ensemble, but then in the next step to remove those
ensembles which least contribute to the quality of the ensemble.

Finally, the instance based method behaves similarly as the grow method.
However, it does not use the fitness of the ensembles or individuals, but rather
the number of problem instances on which the ensemble achieves the best re-
sults out of all available DRs. In the first step for each problem instance the
minimum objective value, which any of the available DRs achieve, is deter-
mined. The first DR of the ensemble can be chosen randomly, by its fitness, or
some other criteria. The method then iteratively constructs the ensemble by
adding DRs which achieve the best performance on those problem instances
on which the ensemble does not obtain a result which is at least equally good
as the best result obtained for that problem instance. This approach does not
necessarily guide the search towards ensembles which have a better overall
fitness, but rather to those ensembles which perform well on as many prob-
lem instances as possible. Thus, such a selection method should produce an
ensemble which would be suitable for solving a variety of problem instances,
and produce good results on unseen problem instances. Another benefit of this
approach is that at each iteration it evaluates only one ensemble, since DRs
are selected based on their individual performance, and only the ensemble at
the end of each iteration needs to be evaluated to determine on which problem
instances it does not perform well.

When using the grow, grow-destroy, and instance based methods it is possi-
ble that after an insertion of a DR in the ensemble its fitness would deteriorate
in comparison with the smaller ensemble size. In this study such situations are
ignored and the procedures continue to add new rules until the specified size
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is reached. In future research it would be interesting to adapt the approaches
in a way that it also optimises the size of the ensemble.

5 Results

5.1 Benchmark Setup and Evaluation

The effectiveness of the proposed methods will be evaluated using scheduling
problem instances generated based on some methods described in related ref-
erences [26], [9], [20], [13]. In total 120 problem instances were generated, from
which 60 instances are used for the training set, and 60 instances for the test
set. Depending on the problem instance, the number of jobs can be 12, 25,
50, or 100, while the number of machines can be 3, 6, or 10. The total fitness
value of an individual is calculated as a sum of objective values for each indi-
vidual problem instance. More details about the problem instance generation
procedure can be found in the Appendix.

To test the performance of SEC 50 DRs are first evolved by GP using the
training set. The SEC method is then applied on these 50 generated DRs to
construct ensembles of DRs using the same training set. The ensemble is con-
structed by using one of the afore described ensemble construction methods.
Since the random selection and probabilistic selection methods are stochas-
tic, both of those methods were executed 30 times to determine if the results
obtained by those two methods are statistically better than those of the indi-
vidual DRs. The other three construction methods are not stochastic given a
concrete starting DR. Since he performance of the ensemble still depends the
initially selected DR, the method is executed 50 times, each time a using a
different initial DR. The performance of the generated ensembles is evaluated
on the test set. When comparing the results between different SEC variants
the median value of the generated ensembles will be used. On the other hand,
the comparison between the ensembles and the individual DRs used to con-
struct them will be performed differently. Out of the DRs that were generated
by GP the one which performs the best on the training set will be selected
and its performance will be compared with the median value of the ensembles
on the test set. The intuition behind such a comparison is that if several DRs
are already evolved by GP then it should be better to select the one which
achieves the best performance on the training set since it should have a greater
chance of performing well on the test set rather than if a random DR is se-
lected. However, an alternative comparison would be that only a single DRs
is generated by GP and compared to the constructed ensembles. In this way
usually a slightly worse result is obtained then by using the best DR on the
training set, but it is not required to construct as many DRs and thus the
computational effort can be significantly reduced.

Additionally, the Mann-Whitney statistical test is used to determine if
there is a significant difference between the results obtained between different
methods. The results are considered statistically significant if the obtained p
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value is smaller than 0.05. Aside from the results for the generated ensembles,
the tables will also include the result of the DR which achieved the best per-
formance on the training set out of the evolved DRs. This rule will be denoted
as Best DR in the tables and figures. Furthermore, the best ensemble values
for each approach will be denoted in bold, while the results of ensembles in
which the median value is better than the result of the best DR on the training
set are denoted with a grey cell.

5.2 Results for creating ensembles with different ensemble construction
methods

In this section the five proposed methods for the construction of ensembles
will be compared. All the ensemble construction approaches will be tested
only on the Twt criterion, since presenting results for all the criteria would
be too extensive. However, results for the other criteria are included in the
Appendix. The DRs used for creating the ensembles were created by using the
standard GP approach. The random and probabilistic selection methods have
been tested for different values of the number of ensembles they will create
in one run. The number of ensembles they create will be additionally denoted
beside the name of the construction methods in the tables and figures.

Table 3 represents the results achieved by various ensemble construction
methods for the sum combination method, while Figure 1 represents those
results using a box-plot representation. The first thing which can be noticed
is that in all cases the ensembles perform better on the average than the best
individual DRs, and that in some cases the improvement over the individual
DR ranged up to 6%. A further benefit is that most of the ensembles generated
by SEC achieve a better performance than the individual DRs, which can
be seen from the box plots. Except for a few outlier solutions, most of the
results are better than the best DRs. The best improvements over the standard
DRs are usually achieved by ensembles consisting of either five or seven DRs.
Although all the ensemble construction methods achieved better results, the
quality of the ensembles depends both on the size of the constructed ensemble
and the construction method. For the smallest ensemble size the best results
are obtained by the random and probabilistic methods. However, for larger
ensemble sizes the instance based method obtained the best results.

The random selection method performs the best when using ensembles of
sizes 5 and 7. For the ensemble size of 3 the best results are obtained when
creating a larger number of ensembles. The overall best result is obtained for
the ensemble size of 7 and when constructing 500 ensembles, which is signif-
icantly better than any other result obtained by the SEC method. A similar
behaviour can also be observed for the probabilistic selection method. Based
on all the results it can be concluded that both of the aforementioned meth-
ods perform very similarly, since neither achieves better results consistently.
Out of the other three selection methods the instance based method consis-
tently obtained the best results, especially as the ensemble size increases. This
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Table 3: Comparison of the ensemble construction approaches for the sum
combination method

Procedure Ensemble size

3 5 7
min med std min med std min med std

Best DR 16.09 16.09 16.09

Rand 100 15.16 15.58 0.203 15.03 15.38 0.199 15.01 15.37 0.194
Rand 500 15.44 15.68 0.086 15.00 15.52 0.226 14.98 15.29 0.144
Rand 1000 15.17 15.71 0.185 15.22 15.61 0.172 15.09 15.40 0.186
Rand 5000 15.17 15.71 0.234 15.22 15.60 0.243 15.08 15.43 0.228
Rand 10000 15.17 15.41 0.244 15.21 15.50 0.243 15.10 15.38 0.244
Rand 20000 15.17 15.41 0.162 15.05 15.52 0.197 15.06 15.40 0.242
Prob 100 15.27 15.69 0.129 15.12 15.37 0.218 14.96 15.34 0.204
Prob 500 15.26 15.74 0.172 15.15 15.61 0.206 15.02 15.40 0.227
Prob 1000 15.26 15.74 0.124 15.13 15.57 0.197 15.10 15.43 0.198
Prob 5000 15.17 15.56 0.231 15.18 15.47 0.197 15.05 15.41 0.189
Prob 10000 15.17 15.41 0.197 15.15 15.40 0.241 15.00 15.51 0.242
Prob 20000 15.17 15.41 0.132 15.14 15.44 0.286 15.17 15.47 0.251
Grow 14.89 15.73 0.290 15.06 15.52 0.299 15.12 15.30 0.288
Grow-dest 14.89 15.67 0.230 15.10 15.30 0.247 15.10 15.44 0.254
Inst 14.90 15.47 0.324 14.98 15.28 0.307 14.84 15.09 0.350

method has obtained the best result, which is significantly better than the
results obtained by any of the other methods.

Table 4 shows the results achieved for different ensemble construction meth-
ods when using the vote combination method. Figure 2 shows a box-plot rep-
resentation of the results. When the results are compared to the standard DRs
it is evident that except for four experiments the ensembles perform better on
average than the best DR. Similarly as with the vote combination method it
can be seen that most of the constructed ensembles achieve a better perfor-
mance than the best DR. The improvements of ensembles over the individual
DR reach up to 4%. The best improvement is achieved by the probabilistic
selection method when creating 10000 ensembles and for the ensemble size
of three DRs. However, there is no statistical difference between this result
and the results obtained by most of the other ensemble construction methods,
which is due to the fact that most methods achieved quite similar results. The
random selection method achieves the best result for the ensemble size of 7,
being only slightly worse than the probabilistic selection method. However,
the statistical tests show that there is no significant difference between these
two methods. The other three methods achieve a similar performance as the
aforementioned two methods.

By comparing the vote and sum combination methods several conclu-
sions can be drawn. For the smallest ensemble size it is evident that both
combinations methods achieve a very similar performance. As the ensemble
size increases the sum combination method outperforms the vote combination
method for most of the tested GP methods. Statistical results show that in
most cases the sum method was significantly better than the vote combina-
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(a) Comparison of the ensemble construction methods for ensembles of size three

B
es
t
D
R

ra
n
d
-1
00

ra
n
d
-5
00

ra
n
d
-1
00

0

ra
n
d
-5
00

0

ra
n
d
-1
00

00

ra
n
d
-2
00

00

p
ro
b
-1
00

p
ro
b
-5
00

p
ro
b
-1
00

0

p
ro
b
-5
00

0

p
ro
b
-1
00

00

p
ro
b
-2
00

00

gr
ow

gr
ow

-d
es
t

in
st

15

15.5

16

16.5

(b) Comparison of the ensemble construction methods for ensembles of size five
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(c) Comparison of the ensemble construction methods for ensembles of size seven

Fig. 1: Box-plot representation of results for the ensemble construction
approaches and the sum combination method
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(a) Comparison of the ensemble construction methods for ensembles of size three
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(b) Comparison of the ensemble construction methods for ensembles of size five
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(c) Comparison of the ensemble construction methods for ensembles of size seven

Fig. 2: Box-plot representation of results for the ensemble construction
approaches and the vote combination method
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Table 4: Comparison of the ensemble construction approaches for the vote
combination method

Procedure Ensemble size

3 5 7
min med std min med std min med std

Best DR 16.09 16.09 16.09

Rand 100 14.98 15.76 0.341 14.94 15.71 0.294 15.25 15.76 0.347
Rand 500 15.01 15.60 0.238 15.07 15.67 0.348 15.07 15.55 0.330
Rand 1000 15.08 15.65 0.295 15.11 15.73 0.310 15.15 15.68 0.341
Rand 5000 15.11 15.65 0.246 15.18 15.76 0.328 15.16 15.65 0.236
Rand 10000 15.23 15.57 0.280 14.92 15.62 0.266 15.09 15.67 0.342
Rand 20000 15.23 15.64 0.248 15.12 15.71 0.233 15.16 15.67 0.216
Prob 100 15.17 15.65 0.282 15.08 15.66 0.312 14.99 15.66 0.319
Prob 500 14.98 15.66 0.278 15.13 15.66 0.279 15.08 15.60 0.242
Prob 1000 15.11 15.60 0.320 14.96 15.65 0.320 15.13 15.68 0.301
Prob 5000 15.23 15.68 0.149 15.10 15.69 0.282 15.23 15.61 0.330
Prob 10000 15.23 15.46 0.300 15.09 15.75 0.272 15.04 15.61 0.330
Prob 20000 15.23 15.55 0.271 15.10 15.66 0.313 15.16 15.71 0.282
Grow 14.98 15.66 0.374 14.92 15.61 0.329 14.93 15.62 0.332
Grow-dest 15.07 15.63 0.361 14.92 15.63 0.340 14.92 15.62 0.289
Inst 15.15 15.47 0.161 14.91 15.57 0.330 15.10 15.65 0.223

tion method. This just shows that the performance of the sum combination
method improves with the size of the ensemble, while on the other hand the
performance of the vote combination method was mostly constant.

Based on the results denoted in this section it is difficult to select the
most appropriate ensemble construction method. Since the random and prob-
abilistic selection methods achieve a similar performance, out of those two the
random selection method was selected for further experiments, due to the fact
that it is simpler. As for the number of ensembles which the method creates,
the method usually performs the best when creating a smaller number of en-
sembles. Thus it was decided that the random selection method will create
500 ensembles and select the best one. Out of the other three methods the
instance based method clearly outperformed most of the other methods. Al-
though the instance based method obtained better results than the random
selection method in the previous tests, it was still decided to use the random
selection method in subsequent experiments. The reason for this is due to the
fact that additional experiments demonstrated that the instance based method
can be unstable in certain situations. Therefore, in the rest of this paper the
random selection method with 500 constructed ensembles will be used.

5.3 Results for different ensemble sizes

This section will analyse the performance of SEC when constructing ensembles
of different sizes. Table 5 represents the obtained results, while Figure 3 shows
the box-plot representation of those results. The table includes results up to the
ensemble size of 20 since the results started to stagnate for the larger sizes. The
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first thing which can be noticed is that for almost all experiments the ensemble
construction method obtained better average results than the best DR. In
most cases all of the generated ensembles achieved a better performance than
the best DR. This shows that regardless of the ensemble size the generated
ensembles can outperform the best DR. For smaller ensemble sizes, especially
with the vote combination method, the ensembles are only slightly better than
the best DR, however, as the ensemble size increases so does the performance
of the ensembles improve.

When using the sum combination method the results improve quite fast
until a size of around seven DRs is reached, after which the improvements in
the results are minor, and there is no significant improvement in the results
with the increase of the ensemble size. The best median value is obtained
when using an ensemble size of 15. After this ensemble size it is evident that
the performance of the method slowly deteriorates with the increase of the
ensemble size. Thus it seems that for the sum combination method the best
results are obtained when using ensemble sizes between 7 and 19. For the vote
combination method the performance does not improve as fast as for the sum
combination method. Furthermore, the improvements that are obtained for the
larger ensemble sizes are not significantly better than those obtained for some
smaller sizes. When comparing the results obtained by the two combination
methods, it is evident that the sum combination method obtains better re-
sults. Although both methods perform similarly for smaller ensemble sizes, as
the ensemble size increases the sum combination method obtains significantly
better results than the vote combination method.

In the end both construction methods obtained the best results for en-
sembles of size 15. However, statistical tests demonstrated that there is no
significant improvement in the results obtained by this ensemble size and sev-
eral smaller ensemble size. Thus it was decided to use the smallest ensemble
size for which both combination methods do not achieve significantly worse
results than ensembles of size 15. The smallest ensemble size for which this
condition holds is the size 7. In addition to this ensemble size it was also de-
cided to also use two smaller ensemble sizes, those of 3 and 5, to get a better
understanding how the method performs for different ensemble sizes across
different situations. The reason why the paper is focused more on smaller en-
sembles is due to the fact that they can be constructed and evaluated faster.
Fast evaluation is especially important if the ensembles are used under dy-
namic conditions. Furthermore, smaller ensembles are more easier to interpret
and analyse, which can be important for better understanding them. However,
the results demonstrate that using larger sizes should not have a negative effect
on the performance until a certain ensemble size.
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Table 5: The results of the random selection method when constructing
ensembles of different sizes

Sum Vote

min med std min med std

best DR 16.09 16.09

2 15.33 15.68 0.137 15.13 15.76 0.321
3 15.44 15.68 0.086 15.01 15.60 0.238
4 15.21 15.65 0.154 14.97 15.67 0.367
5 15.00 15.52 0.226 15.07 15.67 0.348
6 15.14 15.43 0.175 15.30 15.64 0.270
7 14.98 15.29 0.144 15.07 15.55 0.330
8 14.99 15.38 0.201 15.06 15.57 0.240
9 15.04 15.32 0.258 15.01 15.52 0.185
10 15.00 15.34 0.220 15.01 15.55 0.276
11 15.04 15.30 0.289 14.99 15.58 0.261
12 14.99 15.25 0.147 15.11 15.68 0.265
13 15.04 15.25 0.249 15.30 15.68 0.220
14 15.00 15.34 0.205 15.14 15.53 0.238
15 15.02 15.22 0.166 15.12 15.46 0.220
16 15.09 15.30 0.171 15.15 15.68 0.255
17 15.09 15.29 0.254 15.29 15.66 0.255
18 15.11 15.33 0.176 15.25 16.68 0.226
19 15.07 15.28 0.173 15.16 15.57 0.210
20 15.16 15.44 0.181 15.26 15.54 0.201

5.4 Results for constructing ensembles of DRs evolved by different GP
variants

This section will analyse the influence of using different GP variants (GP, UGP,
GEP, and DAGP) for generating DRs on the quality of ensembles created from
these DRs. Table 6 represents the results achieved by SEC for the different
GP variants, while Figure 4 shows the box-plot representation of the results.

The first thing which can be noticed from the results is that for most ex-
periments SEC achieves better results on average than the best DR. Out of
the two combination methods, the sum method displayed some problems in
certain situations and did not achieve better result than the best DR on aver-
age. On the other hand, the vote combination method obtained better results
on average than the best DR for all experiments. These results demonstrate
that the vote combination is more stable, and thus achieves better results
more consistently. Across the DRs generated by different GP methods SEC
obtained the best improvements for the Twt and Nwt criteria, which can reach
up to 5.6%. For the other two criteria the method did not achieve an equally
good improvement in the results, but it still obtained better results on aver-
age than the best DR. The SEC method also obtains a good distribution of
results compared to the best DRs, which can be seen from the fact that most
of the generated ensembles achieve solutions better than the best DR. This is
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Fig. 3: Box-plot representation of results for different ensemble sizes

especially true for the vote combination method which usually lead to better
distributed solutions.

On all four tested GP variants SEC achieved a similar improvement in the
results, which shows that the method used for generating DRs does not have
a large effect on the performance of ensembles. The figures show that in many
experiments the ensembles obtained by SEC achieve better performance than
the best DR. Out of the tested GP variants, SEC achieved the best median
values for the Twt and Nwt criteria when using DRs generated by DAGP,
while for the other two criteria the best median values were obtained by DRs
generated by GEP. It is interesting that when using UGP SEC did not fare
worse than when using optimised GP, since for theNwt and Cmax criteria there
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Table 6: Results for constructing ensembles of DRs evolved by different GP
approaches

Approach Twt Nwt Ft Cmax

Ensemble
Type Size min med std min med std min med std min med std

Best DR 16.09 8.192 159.4 38.68

3 15.44 15.68 0.203 8.129 8.333 0.129 158.5 159.7 0.357 38.41 38.74 0.178
5 15.00 15.52 0.226 7.824 8.144 0.154 158.0 159.1 0.577 38.50 38.94 0.130sum
7 14.98 15.29 0.144 7.634 8.175 0.275 157.9 159.1 0.456 38.46 38.94 0.149

3 15.01 15.60 0.238 7.665 7.941 0.162 157.8 158.8 0.584 38.36 38.54 0.121
5 15.07 15.67 0.348 7.759 7.931 0.116 157.8 158.7 0.437 38.35 38.52 0.113

GP

vote
7 15.07 15.55 0.330 7.708 7.943 0.100 157.7 158.7 0.503 38.35 38.53 0.115

Best DR 16.01 8.380 161.0 38.75

3 15.72 16.07 0.116 7.773 8.154 0.239 159.2 159.9 0.430 38.50 38.74 0.070
5 14.85 15.82 0.290 7.450 7.954 0.273 159.1 159.7 0.360 38.47 38.59 0.100sum
7 15.27 15.67 0.156 7.843 8.181 0.130 158.7 159.4 0.488 38.47 38.55 0.055

3 14.98 15.82 0.434 7.644 7.871 0.136 158.2 159.2 0.612 38.34 38.67 0.188
5 15.04 15.52 0.244 7.637 7.810 0.172 158.3 159.1 0.387 38.38 38.65 0.122

UGP

vote
7 14.98 15.41 0.279 7.405 7.822 0.186 158.2 159.0 0.435 38.49 38.60 0.096

Best DR 15.57 8.061 159.4 38.69

3 14.66 15.53 0.360 7.473 7.765 0.127 157.6 158.5 0.541 38.48 38.60 0.110
5 14.68 15.34 0.300 7.467 7.694 0.127 157.5 158.7 0.584 38.47 38.63 0.107sum
7 14.68 15.19 0.325 7.531 7.818 0.147 158.2 158.9 0.495 38.45 38.55 0.097

3 15.06 15.36 0.216 7.581 7.938 0.170 157.4 158.7 0.527 38.42 38.58 0.071
5 15.10 15.46 0.191 7.726 7.955 0.114 157.6 158.4 0.512 38.41 38.59 0.097

DAGP

vote
7 15.08 15.45 0.237 7.780 8.004 0.110 157.4 158.5 0.473 38.43 38.60 0.082

Best DR 16.03 7.991 159.5 38.49

3 15.01 15.43 0.547 7.682 8.107 0.125 157.6 158.5 0.547 38.40 38.52 0.079
5 15.32 15.77 0.361 7.750 7.832 0.239 157.6 158.5 0.484 38.46 38.53 0.049sum
7 15.2 15.93 0.444 7.613 7.735 0.129 157.6 158.3 0.639 38.41 38.55 0.061

3 15.18 15.73 0.281 7.698 7.875 0.123 157.3 158.3 0.512 38.40 38.47 0.052
5 15.41 15.85 0.256 7.705 7.882 0.170 157.6 158.8 0.612 38.40 38.47 0.055

GEP

vote
7 15.46 15.73 0.200 7.687 7.900 0.114 157.6 159.1 0.557 38.38 38.49 0.080

was no significant difference, while for the other two criteria SEC obtained
better results when using DRs generated by the optimised GP variant. This
demonstrates that parameter optimisation is not of great importance when
using SEC, since it can still construct ensembles of good quality.

5.5 Results for creating ensembles from DRs of different sizes

This section presents the results achieved by SEC when using DRs generated
by the standard GP with different maximum tree depths. The motivation
behind the tests in this section is to analyse how the size of individual DRs
influences the quality of the entire ensemble. For that purpose DRs created
with maximum tree depths of three, five, and seven will be tested. This means
that the expressions generated by using the depth value of three can have a
maximum number of 15 nodes, by using the depth value of five a maximum
number of 63 nodes, and by using the depth value of seven a maximum number
of 255 nodes. The GP method which uses the maximum tree depth of three is
denoted as GP3, the GP which uses the maximum tree depth of five as GP5,
and the GP which uses the maximum tree depth of seven as GP7.

Table 7 represents the results achieved by the ensembles constructed from
DRs of different maximum sizes, while Figure 5 shows the box-plot represen-



24 Marko Ðurasević, Domagoj Jakobović

G
P

b
es
t
D
R

G
P
-s
-3

G
P
-s
-5

G
P
-s
-7

G
P
-v
-3

G
P
-v
-5

G
P
-v
-7

U
G
P

b
es
t
D
R

U
G
P
-s
-3

U
G
P
-s
-5

U
G
P
-s
-7

U
G
P
-v
-3

U
G
P
-v
-5

U
G
P
-v
-7

D
A
G
P

b
es
t
D
R

D
A
G
P
-s
-3

D
A
G
P
-s
-5

D
A
G
P
-s
-7

D
A
G
P
-v
-3

D
A
G
P
-v
-5

D
A
G
P
-v
-7

G
E
P

b
es
t
D
R

G
E
P
-s
-3

G
E
P
-s
-5

G
E
P
-s
-7

G
E
P
-v
-3

G
E
P
-v
-5

G
E
P
-v
-7

15

16

(a) Comparison for the Twt criterion

G
P

b
es
t
D
R

G
P
-s
-3

G
P
-s
-5

G
P
-s
-7

G
P
-v
-3

G
P
-v
-5

G
P
-v
-7

U
G
P

b
es
t
D
R

U
G
P
-s
-3

U
G
P
-s
-5

U
G
P
-s
-7

U
G
P
-v
-3

U
G
P
-v
-5

U
G
P
-v
-7

D
A
G
P

b
es
t
D
R

D
A
G
P
-s
-3

D
A
G
P
-s
-5

D
A
G
P
-s
-7

D
A
G
P
-v
-3

D
A
G
P
-v
-5

D
A
G
P
-v
-7

G
E
P

b
es
t
D
R

G
E
P
-s
-3

G
E
P
-s
-5

G
E
P
-s
-7

G
E
P
-v
-3

G
E
P
-v
-5

G
E
P
-v
-7

7.5

8

8.5

(b) Comparison for the Nwt criterion

G
P

b
es
t
D
R

G
P
-s
-3

G
P
-s
-5

G
P
-s
-7

G
P
-v
-3

G
P
-v
-5

G
P
-v
-7

U
G
P

b
es
t
D
R

U
G
P
-s
-3

U
G
P
-s
-5

U
G
P
-s
-7

U
G
P
-v
-3

U
G
P
-v
-5

U
G
P
-v
-7

D
A
G
P

b
es
t
D
R

D
A
G
P
-s
-3

D
A
G
P
-s
-5

D
A
G
P
-s
-7

D
A
G
P
-v
-3

D
A
G
P
-v
-5

D
A
G
P
-v
-7

G
E
P

b
es
t
D
R

G
E
P
-s
-3

G
E
P
-s
-5

G
E
P
-s
-7

G
E
P
-v
-3

G
E
P
-v
-5

G
E
P
-v
-7

158

159

160

161

(c) Comparison for the Ft criterion

G
P

b
es
t
D
R

G
P
-s
-3

G
P
-s
-5

G
P
-s
-7

G
P
-v
-3

G
P
-v
-5

G
P
-v
-7

U
G
P

b
es
t
D
R

U
G
P
-s
-3

U
G
P
-s
-5

U
G
P
-s
-7

U
G
P
-v
-3

U
G
P
-v
-5

U
G
P
-v
-7

D
A
G
P

b
es
t
D
R

D
A
G
P
-s
-3

D
A
G
P
-s
-5

D
A
G
P
-s
-7

D
A
G
P
-v
-3

D
A
G
P
-v
-5

D
A
G
P
-v
-7

G
E
P

b
es
t
D
R

G
E
P
-s
-3

G
E
P
-s
-5

G
E
P
-s
-7

G
E
P
-v
-3

G
E
P
-v
-5

G
E
P
-v
-7

38.4

38.6

38.8

39

(d) Comparison for the Cmax criterion

Fig. 4: Box plot representation of results for constructing ensembles of DRs
evolved by different GP approaches



Creating Dispatching Rules by Simple Ensemble Combination 25

Table 7: Results for constructing ensembles of DRs of different sizes

Approach Twt Nwt Ft Cmax

Ensemble
Type Size min med std min med std min med std min med std

Best DR 16.26 8.010 160.2 38.68

3 15.25 15.45 0.260 7.921 7.950 0.092 158.7 159.4 0.661 38.48 38.69 0.108
5 15.09 15.82 0.152 7.835 7.956 0.071 158.7 159.1 0.418 38.37 38.62 0.137sum
7 15.12 15.58 0.184 7.876 7.982 0.135 158.7 159.0 0.188 38.46 38.55 0.108

3 15.45 16.23 0.249 7.873 8.047 0.128 159.1 159.9 0.406 38.45 38.51 0.105
5 15.76 15.83 0.192 7.765 7.990 0.131 158.9 159.6 0.414 38.42 38.70 0.116

GP3

vote
7 15.41 15.99 0.235 7.765 7.990 0.131 159.0 159.4 0.290 38.42 38.69 0.110

Best DR 16.09 8.192 159.4 38.68

3 15.44 15.68 0.203 8.129 8.333 0.129 158.5 159.7 0.357 38.41 38.74 0.178
5 15.00 15.52 0.226 7.824 8.144 0.154 158.0 159.1 0.577 38.50 38.94 0.130sum
7 14.98 15.29 0.144 7.634 8.175 0.275 157.9 159.1 0.456 38.46 38.94 0.149

3 15.01 15.60 0.238 7.665 7.941 0.162 157.8 158.8 0.584 38.36 38.54 0.121
5 15.07 15.67 0.348 7.759 7.931 0.116 157.8 158.7 0.437 38.35 38.52 0.113

GP

vote
7 15.07 15.55 0.330 7.708 7.943 0.100 157.7 158.7 0.503 38.35 38.53 0.115

Best DR 16.01 8.134 158.7 39.34

3 15.30 16.15 2.214 7.858 8.067 0.129 158.7 159.7 0.850 38.41 38.54 0.211
5 15.13 15.95 0.841 7.917 8.129 0.081 158.6 159.4 0.823 38.40 38.86 0.206sum
7 15.40 16.00 0.286 7.698 8.162 0.181 158.4 159.6 0.897 38.39 38.88 0.185

3 15.15 15.91 0.529 7.476 7.795 0.169 158.5 159.1 0.319 38.33 38.49 0.208
5 15.08 15.63 0.329 7.531 7.804 0.140 158.6 159.3 0.399 38.30 38.69 0.162

GP7

vote
7 15.11 15.45 0.249 7.624 7.775 0.122 158.7 159.1 0.312 38.44 38.63 0.111

tation of the results. The table shows that in most experiments the ensembles
obtained better results on average than the best DR. The performance the
sum combination method was again quite volatile since in many cases, espe-
cially for the larger DR sizes, SEC did not obtain better results than the best
DR. With the vote combination method SEC achieved better results on av-
erage than the best DR in almost all experiments. For the smallest DR sizes,
generated by GP3, the sum combination method usually obtained better me-
dian values of the results. However, for larger DR sizes the vote combination
method clearly achieved better results. As for the performance of the ensem-
bles, the best median values for all criteria, except Nwt, were obtained when
using DRs generated by the maximum tree depth of 5. For Nwt the best re-
sults were obtained by using the largest tree depth. Therefore the tree depth
of 5 seems to be appropriate for constructing ensembles, since it offers the best
results across most of the criteria.

5.6 Results for different DR collections

This section will test how different DR collections generated by GP influence
the performance of the SEC method. To test this, GP was used to generate
30 sets each consisting out of 50 DRs. For each of these sets the best DR on
the training set is determined and then executed on the test set to evaluate
its performance. After that the SEC method is executed on each of these sets
to generate 30 ensembles for each set. For each set the median value of the 30
generated ensembles is calculated and collected. The 30 values of the selected
individual DRs are then compared with the 30 median values which were
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Fig. 5: Comparison between ensembles of DRs of different maximum sizes
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Table 8: Performance of SEC on different sets of DRs

Method min med std

Individual DRs 15.27 16.02 0.887

Ensemble
Combination Size min med max

sum
3 15.26 15.65 0.313
5 15.34 15.84 0.273
7 15.19 15.84 0.343

vote
3 15.23 15.67 0.165
5 15.44 15.60 0.111
7 15.36 15.53 0.134

obtained when generating ensembles. In that way it is possible to determine
whether generating ensembles with SEC provides a benefit over generating
many DRs and selecting the one which performs best on the training set.
Since these tests require a significant amount of GP runs to be performed, the
analysis was performed only for the Twt criterion.

Table 8 demonstrates the performance of the individual DRs and ensembles
constructed on 30 different DR sets. The table shows that for all the tested
parameters the ensembles obtained a better median value than the best indi-
vidual DRs. The statistical tests demonstrate that the SEC method obtained
significantly better results than the best individual DRs for all the tested pa-
rameters. This is even better evident from the box-plot in Figure 6, where it is
evident that the results of the ensembles are much less dispersed that those of
the individual DRs. Thus the ensembles are more likely to to produce better
results than it would be the case when the DR which achieved the best per-
formance on the test set would be used. Out of the two combination methods
the vote method performed better since it obtained a smaller median value
and less dispersed results. The obtained results demonstrate that even over a
large number of DR collections the SEC method constructs ensembles which
on average perform significantly better than the best DR on the training set
would be selected from the available DRs. This justifies using SEC to construct
ensembles rather than simply selecting the best DR on the training set.

6 Discussion

6.1 Influence of ensemble construction methods on the ensemble performance

The ensemble construction method represents one of the most important parts
of SEC, therefore it is expected to have a large influence on the performance
of the constructed ensembles. The results presented in the last section show
that there is indeed some difference between the construction methods in their
performance, however, no single method achieves the overall best performance
and can be considered superior to the others. Apart from the quality of the
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Fig. 6: Performance of SEC on different sets of DRs

evolved ensembles, different construction methods also differ in the number of
ensembles they create during their execution.

Random selection is the simplest of the tested methods, which obtained
overall good results. In the focus of this method was the analysis of the num-
ber of ensembles which it constructs in each run. Although it might seem
that the method should perform best when a larger number of ensembles is
constructed, the results show that this is not necessarily the case. For the
smallest ensemble size (that of 3) the method obtained better results when a
larger number of ensembles was constructed. However, with larger ensemble
sizes the best results were usually obtained when either 100 or 500 ensembles
were created. The reason for such behaviour is due to the fact that larger en-
sembles are more adaptable, and thus if many combinations are tried out it is
likely that the method will choose an ensemble that is more appropriate for
solving the instances in the training set, rather than having a good generalisa-
tion property. Therefore, this method should be used with a smaller number of
constructed ensembles, usually of a few hundreds. This is an important conclu-
sion since it shows that without a significant loss in performance the random
combination method can create a smaller number of ensembles than it was sug-
gested in the previous study. The probabilistic selection method was defined
in an attempt to improve the performance of the random selection method
by giving a greater selection probability to DRs with better individual qual-
ity. However, this method usually delivered results which were similar to the
random selection method. Thus it seems as if the individual quality of DRs
does not provide relevant information for constructing ensembles. Since the
obtained results show no improvement, but the method is more complex due
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to calculation of the probabilities for the DRs, it is evident that the random
selection method can be regarded as a better choice.

The motivation for the other three proposed methods is to guide the search
towards good ensembles, but instead of using the individual fitness, the influ-
ence of the selected DR on the entire ensemble is used. For most experiments
all three methods achieved results that were close to those obtained by the
random selection method that constructs a smaller number of ensembles. The
grow and grow-destroy methods achieved in most cases similar results and
thus neither of these two methods can be considered as superior. On the other
hand the instance based method achieved the best results out of these three
methods, achieving significantly better results than the other two methods in
several occasions. In some cases the instance based method managed to signifi-
cantly outperform the random selection method, which demonstrates that it is
a powerful construction strategy. However, some experiments revealed several
issues with this construction method. The most important drawback of this
method is that not only did it not achieve better results for the Cmax crite-
rion, it usually obtained results that were significantly worse than those of the
individual DRs. For the other three criteria the method achieved significantly
better results than individual DRs in less occasions than the random selection
method, which just supports the fact that the instance based method is less
stable. The method achieved results which were sometimes even better than
those of the random selection method which means that the selection strategy
employed by the instance based method certainly has potential.

The computation complexity of the selection methods can also be an im-
portant factor when selecting which one will be used. The complexity of the
random and probabilistic selection methods can easily be controlled by the
number of ensembles they construct. Since the best results were obtained when
creating a smaller number of ensembles, SEC can construct the ensembles in
a short amount of time. The grow, grow-destroy, and instance based meth-
ods also evaluate a small number of ensembles, which means that they will
execute quickly. For example the grow method will evaluate 329 ensembles
for the ensemble of size seven, while the grow-destroy method will evaluate
686 ensembles. The instance based method will evaluate even less ensembles,
concretely only 6. An additional important thing is that since these methods
build the ensembles incrementally, in earlier iterations the ensembles which are
constructed are smaller and evaluated faster. Therefore, the execution time of
these methods is comparable to the execution time of the random selection
method when creating 100 and 500 ensembles, depending on the size of the
constructed ensemble. The instance based method can be regarded as the most
efficient one, since it does not evaluate the constructed ensembles at all, while
the other methods mostly have a similar complexity.
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6.2 Influence of GP variants on the ensemble performance

The results obtained by SEC when applied on DRs generated by different
GP methods provide some interesting details. First of all it is evident that
the method achieves good results on DRs generated by all the different GP
variants, especially when the vote combination method was used. This shows
that SEC performs well regardless of the method used to generate the DRs.
Furthermore, the results show that the maximum improvement that can be
obtained by the ensemble over the individual DRs is very similar for the differ-
ent methods. For example, the maximum improvement for the Twt criterion
for the four tested GP variants was between 2.4% and 5%. Therefore, SEC
provided a constant improvement in the results over the various GP methods.

An interesting behaviour can be observed when comparing the results ob-
tained when using GP and UGP. It is evident that SEC performed extremely
well even when using DRs generated by UGP, for which the parameters were
not optimised. Although DRs generated by UGP had a similar median value
to GP, the results were much more dispersed, and more outlier values were
obtained. However, this did not negatively influence SEC, since it achieved
results that were quite similar as the results obtained when using DRs gener-
ated by GP. Furthermore, for both DRs generated by both GP variants SEC
generated ensembles with similar dispersion, thus the more dispersed DRs of
UGP did not have any negative influence on the ensembles. These results show
that for the SEC method the parameters of GP do not necessarily need to be
thoroughly optimised, and that the SEC method will still obtain good results.
This can substantially decrease the time required to obtain results.

When all things are considered, it can be concluded that the SEC method
performs well across all DRs generated by different GP variants. Since the
differences between the different methods are not large, it can not be concluded
that the SEC method would prefer DRs constructed by any GP variant.

6.3 Influence of the maximum DR depth on the ensemble performance

SEC obtained good results for all the tested DR sizes. Therefore, it seems
that using larger or smaller DRs does not largely affect the performance of the
generated ensembles. As it is evident from the results, the ensembles performed
best for most of the criteria when constructed out of DRs with the maximum
tree depth of 5. For the smaller and larger DR sizes the ensemble was again
able to obtain better results for most of the experiments, but mostly not to
such a great extent. Thus, it seems that SEC prefers the use of moderately
sized DRs, since too small rules seem too limited, while the larger ones seem
to be a bit unstable.
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6.4 Influence of the ensemble size and ensemble combination method

The size of the ensemble and ensemble combination method both constitute
important parameters that influence the performance of the constructed en-
sembles. The SEC method was tested with ensemble sizes up to 20 DRs. The
results show that both the vote and sum combination method achieved the
best median value for the ensemble size 15. However, after a more detailed
analysis of the results it was noticed that the results for the larger ensemble
sizes did not significantly differ from the results which were obtained by the
ensembles of size 7 for both combination methods. Since the smaller ensem-
bles can be constructed and evaluated much faster, the ensemble size of 7 was
used. Additionally, smaller ensembles are easier to interpret and analyse. In
the tests performed for the different GP variants it was noticed that in several
cases the ensembles of smaller sizes obtained significantly better results than
larger ensembles. This just demonstrates that for different situations different
ensemble sizes are appropriate and that no single ensemble size is the best.
The vote method demonstrated to work well with all three tested ensemble
sizes, which means that any of them could be used to obtain significantly bet-
ter results. For the sum combination method the larger ensemble sizes seem
to lead to better results.

Out of the two tested ensemble combination methods the vote combination
method has shown to be much more stable since in most cases it obtained sig-
nificantly better results then the sum combination method. On the other hand,
the sum combination method was in several occasions unable to achieve better
results on average in comparison to those obtained by the best DR. The reason
for this is probably due to the fact that it is more difficult to find DRs which
interact well for the sum combination method, since different DRs can have
various influences in the ensemble. In the vote combination method all DRs
have the same influence, since they cast a vote, so it is easier to construct well
working ensembles. Nevertheless, SEC constructed several ensembles with the
sum combination method that achieved some of the best results. This simply
shows that the sum combination method is equally expressive and powerful
as the vote combination method. However, since it has clearly shown to be
more stable and reliable, the vote combination method should be preferred
with SEC.

6.5 Analysis of ensembles

In this section the structure of the ensembles will be analysed with regards to
DRs that most often constitute the ensembles. This analysis should provide a
deeper insight if there is any regularity in the DRs which are chosen to form
the ensembles and if this information could somehow be used in the ensemble
construction process. For this purpose the ensembles created for optimising
the Twt criterion, using DRs generated by GP, will be analysed. Ensembles of
seven will be used for the analysis.
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Table 9: Most commonly contained DRs in the best ensembles combined by
the sum combination method

Method DR indices

0 1 2 3 4 8 9 10 11 14 15 20 24 33 46

Random 4 8 7 9 5 2 5 10 8 4 17 0 0 3 10
Probabilistic 6 8 14 3 6 4 11 6 5 5 12 1 0 1 8
Grow 48 24 11 5 35 6 19 7 33 4 30 4 3 1 7
Grow-destroy 5 26 11 15 8 27 20 12 19 8 30 0 6 7 9
Instance based 1 1 1 50 1 1 1 1 1 50 9 50 50 50 1

Fitness 14.49 14.49 14.55 14.38 14.76 14.63 14.61 14.63 14.46 14.42 14.40 14.30 14.36 14.39 14.64

6.5.1 Analysis of the frequency of DRs in the ensembles generated by SEC

Table 9 gives an overview of fifteen DRs that most commonly appeared in the
best ensemble constructed in each algorithm run with the sum combination
method. For the random and probabilistic selection methods 30 runs were per-
formed, while 50 runs were performed for the remaining three methods. Each
cell in the table represents the number of times that the DR with the given
index appeared in the best constructed ensemble, for a concrete construction
method. For each ensemble construction method, the three DRs which most
often appeared in the best ensembles are denoted with a grey cell. The fit-
ness values in the tables denote the fitness of the DRs on the training set.
The table shows that the different combination methods have a preference for
different DRs. DR 15 seems to be the only rule which is often used by all of
the combination methods. An interesting thing that the table shows is that
the instance based method is biased towards the DRs it will use. This is ev-
ident from the fact that it uses 5 DRs in all of the ensembles it constructed,
and it shows that the instance based method was very biased towards using
DRs with a better individual fitness. The other methods commonly include
DRs of a poorer individual quality, which means that they do not necessarily
prefer better DRs. Surprisingly, even the probabilistic selection method was
not strongly inclined towards using DRs of better individual quality. This just
seems to support the fact that DRs which individually perform good do not
perform well within an ensemble. A further fact supporting this conclusion is
that the best individual DR, the one denoted with the index 20, is seldom
included in ensembles constructed by any method except the instance based
method.

Table 10 represents the prevalence of DRs in the best ensembles constructed
with all the construction methods, and by using the vote combination method.
The instance based method is again inclined towards using same DRs in most
of the ensembles. The other methods use more distinct DRs to construct good
ensembles. The reason for that is most likely due to the fact that a single bad
DR in the ensemble will have a less significant influence on the performance
of the ensemble when using the vote combination method, than it would be
the case with the sum method. A further interesting fact is that DRs which
are most commonly selected by the methods when using the vote combination
method usually have a worse individual quality than those selected when us-
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Table 10: Most commonly contained DRs in the best ensembles combined by
the vote combination method

Method DR indices

4 6 7 11 12 15 22 30 32 38 39 40 46 47 48

Random 7 7 3 7 10 3 10 1 8 11 9 2 4 12 7
Probabilistic 3 0 10 10 6 10 5 3 5 8 10 0 6 6 8
Grow 12 8 6 11 13 5 10 11 15 4 14 10 14 12 12
Grow-destroy 8 4 6 11 15 7 7 9 15 7 19 12 9 17 12
Instance based 1 45 1 47 1 50 1 48 4 1 1 1 1 1 1

Fitness 14.76 14.77 14.48 14.46 14.68 14.40 14.51 14.42 14.63 14.87 14.81 14.68 14.64 14.54 14.56

Table 11: Performance of the ensembles constructed out of the most
commonly use DRs

Sum Vote
Ensemble size 3 5 7 3 5 7

Random 15.57 15.56 15.34 15.74 15.73 15.48
Probabilistic 15.43 15.45 15.37 15.20 15.53 15.35
Grow 16.49 15.27 15.39 16.58 15.28 15.51
Grow-destroy 15.74 15.27 15.58 15.58 16.20 16.05
Instance based 15.01 15.37 15.10 15.23 16.08 15.84

ing the sum combination method. Therefore the vote combination method is
even less inclined towards using good individual DRs to form the ensembles.
The combination method has a significant influence on which DRs are most
appropriate for creating ensembles, which is evident from the fact that only
rules 4, 11, 15, and 46 appear in both tables and thus are most often used by
both methods.

One interesting thing that can additionally be tested is to see whether the
information about how often the individual DRs are used in ensembles could
provide to be useful when constructing new ensembles. To test this assump-
tion the three, five, and seven most commonly used DRs by all the methods
were combined into ensembles and evaluated on the test set. The obtained re-
sults are presented in Table 11. The obtained results for the sum combination
method show that the information about the frequency of DRs can be useful to
construct ensembles of good quality. For example, all except one constructed
ensemble achieves a better performance than the individual DRs on average.
Furthermore, the ensembles tested in this table also often achieved a better or
equal performance as the corresponding construction method on average.

6.5.2 Analysis of ensembles generated by SEC

Table 12 represents the performance of the best ensemble of size seven con-
structed by the random selection method with the sum combination method.
The table also denotes the performance of individual DRs which form the en-
semble. The analysis will be performed on the test set. Ten instances which
seemed to best describe the behaviour of the ensemble on the entire problem
set were selected and outlined in the table. The best results of the individual
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Table 12: Performance analysis of the best ensemble generated by SEC and
combined with the sum combination method

Problem instance index Individual DR Ensemble

1 9 10 12 30 42 49

3 0.279 0.283 0.268 0.273 0.310 0.849 0.330 0.283
5 0.237 0.237 0.237 0.237 0.246 0.237 0.237 0.168
8 0.537 0.602 0.594 0.516 0.576 0.695 0.523 0.523
17 0.709 0.909 0.733 0.840 1.024 0.858 0.892 0.638
27 0.015 0.100 0.100 0.015 0.015 0.100 0.100 0.015
29 0.266 0.182 0.182 0.182 0.223 0.182 0.223 0.182
33 0.003 0.003 0.003 0.003 0.000 0.003 0.003 0.003
38 0.331 0.364 0.370 0.433 0.418 0.352 0.370 0.354
53 0.915 0.699 0.698 0.698 0.607 0.699 0.708 0.699
57 0.544 0.412 0.452 0.434 0.386 0.418 0.455 0.411

Total fitness on all instances 15.92 15.39 15.50 15.29 15.67 16.47 15.95 14.98

Fitness on the training set 14.49 14.61 14.63 14.68 14.42 14.43 14.81 14.53

DRs for each problem instance are denoted with a grey cell, while the results
for which the ensemble performs at least as well as the best individual DR
are denoted in bold. The results show that for certain problem instances the
ensembles performed equally well or even better than the best individual DR
in the ensemble. For the other instances it is evident that the ensemble did
not obtain better results than the best individual DR. However, the ensemble
always achieves a performance which is closer to the performance of the bet-
ter individual DRs. Out of the individual DRs none of those contained in the
ensemble perform well across all the problem instances. Thus, by performing
well across all the instances the ensemble can perform better than individual
DRs.

By analysing the performance of individual DRs that form the ensemble it
is evident that the ensemble consists out of DRs with different qualities. On
the training set all DRs perform rather well, which is expected since they were
evolved on it. In this case the ensemble performed similar as the individual
DRs. However, on the test set the performance of certain DRs is quite bad
when compared to the performance of the ensemble. Thus the strength of the
ensemble becomes evident when it is applied on new problem instances.

Table 13 represents the performance of the ensemble, and the individual
DRs out of which it consists of, on several selected problem instances which
were also used for analysing the vote combination method. The behaviour of
the ensemble is similar as it was with the sum combination method. The en-
semble again achieves a performance equal to the best DRs, while on other
instances it usually perform similar to the better individuals DRs in the en-
semble. The constructed ensemble performs better than any of the individual
DRs on either of the two problem sets.
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Table 13: Performance analysis of the best ensemble generated by SEC and
combined with the vote combination method

Problem instance index Individual DR Ensemble

5 9 19 29 32 39 46

3 0.438 0.283 0.505 0.283 0.329 0.268 0.260 0.283
5 0.199 0.237 0.237 0.191 0.191 0.237 0.191 0.191
8 0.581 0.602 0.644 0.605 0.856 0.582 0.759 0.601
17 0.833 0.909 0.845 0.723 1.047 0.817 0.903 0.730
27 0.100 0.100 0.100 0.015 0.046 0.100 0.100 0.015
29 0.223 0.182 0.182 0.182 0.182 0.182 0.223 0.182
33 0.000 0.003 0.003 0.003 0.003 0.003 0.000 0.003
38 0.334 0.364 0.370 0.397 0.347 0.432 0.529 0.370
53 0.774 0.699 0.699 0.732 0.765 0.850 0.681 0.699
57 0.369 0.412 0.433 0.408 0.364 0.449 0.440 0.409

Total fitness on all instances 15.49 15.39 16.09 16.33 16.44 15.68 16.02 15.07

Fitness on the training set 14.48 14.61 14.57 14.71 14.63 14.81 14.64 14.46

7 Conclusion

In this paper the performance of the SEC method, which creates ensembles
of automatically generated DRs, has been analysed with regards to different
ensemble creation methods, ensemble parameters, approaches used to generate
DRs and ensembles. The main objective of this paper was to obtain further in-
sights of SEC and to validate whether it performs well in different situations.
Five methods for constructing ensembles were tested in the paper, and the
obtained results show that the more complicated ensemble construction meth-
ods do not necessarily lead to significantly better results. Furthermore, it was
demonstrated that the construction methods can perform well even if a small
number of ensembles are created during construction. This is an important
conclusion since it allows that the computation complexity of the construction
methods can be significantly reduced without any significant deterioration in
the results. Further experiments demonstrated that the method works well on
DRs which are generated by different GP variants. Finally, the results demon-
strate that SEC works better with the vote combination method, since in that
case it more consistently achieved good results. All things considered, it can be
concluded that SEC can generate ensembles which improve the performance
of DRs generated by different methods on several scheduling criteria. However
this does come come with a drawback that they require a considerably larger
amount of time to be constructed than a single DR.

Although this paper closely examined SEC, there are still areas which could
be examined further. For example, it would be interesting to adapt this ap-
proach in static scheduling environments, so that the approach can quickly
construct ensembles which will perform well for the given problem instances.
Additionally, even though this paper has analysed several ensemble construc-
tion methods, it is possible to define new ensemble construction methods which
could create even better ensembles in less time. Finally, it would also be in-
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teresting to analyse how this approach would perform on different scheduling
problems, or even other types of combinatorial optimisation problems.
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Appendix

A Problem instance details

The scheduling problem which is solved in this paper can be classified as
Rm|rj |γ, where γ represents one of the four scheduling criteria that are con-
sidered. In the unrelated machines scheduling problem each job needs to be
scheduled on a single machine. When the job is scheduled on a certain machine,
the machine needs to execute this job until it is finished before it can start
executing another job (thus preemption is not permitted). At each moment in
the each machine can execute at most one job. However, all machines work in
parallel, which means that each of them is executing the job assigned to it,
independently from the other machines. The unrelated machines environment
is a single stage environment which means that each job needs to be executed
on only a single machine to be completed. Furthermore, the specificness of
this environment is that each job has a different execution time on each of
the machines, thus selecting the appropriate machine for each job constitutes
an important part in this problem. Except for the release times, no additional
constraints, like breakdowns or set-up times, are considered in these problems.
However, the propose SEC method should work with any of those without any
changes, if the DRs are adapted for these additional changes. The way in which
the problem instances are generated, the system will have a high utilisation
most of the time during its execution.

The processing times of jobs are generated from the interval

pij ∈ [0, 100],

by using one of the following three probabilistic distributions: uniform, normal
(Gaussian), and quasi-bimodal. Which of the aforementioned three distribu-
tions will be used for generating the processing times is chosen randomly for
each job (with all three distributions having the same probability of being
chosen). The motivation behind the use of three distributions for generating
processing times is to make the evolved priority functions more resilient, since
in real conditions jobs could be received from different sources. All job weights
are generated uniformly from the interval

wTj
∈< 0, 1].
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The release times of jobs are generated by a uniform distribution from the
interval

rj ∈
[
0, p̂2

]
,

where p̂ is defined as

p̂ =
∑n

j=1
∑m

i=1 pij

m2 ,

and pij denotes the processing time of job j on machine i, while m denotes
the total number of machines. The due dates of jobs are also defined using a
uniform distribution from the interval

dj ∈
[
rj + (p̂− rj) ∗

(
1− T − R

2

)
, rj + (p̂− rj) ∗

(
1− T + R

2

)]
,

where T represents the due date tightness parameter, while R represents the
due date range parameter. The due date range parameter defines the dispersion
of the due date values, while the due date tightness adjusts the amount of jobs
that will be late. While generating the problem set, both of those parameters
assumed values of 0.2, 0.4, 0.6, 0.8, and 1 in various combinations.

Because some problem instances have significantly different characteristics,
and will therefore also have significantly different objective values. This leads
to a problem in which smaller instances have little or no influence in the total
fitness value, and thus the GP procedure would focus less on optimising these
instances. To avoid this problem all the objective values were normalised in
order for the problem instances with different characteristics to have similar
objective values. Therefore, the normalised objective functions for the problem
instance with the index i are defined as follows:

– for the weighted tardiness criterion fi =
∑n

j=1
wjTj

nw̄p̄

– for the weighted number of tardy jobs criterion fi =
∑n

j=1
wjUj

nw̄

– for the flowtime criterion fi =
∑n

j=1
Fj

np̄

– for the makespan criterion fi = max{Cj}
np̄ ,

where n denotes the number of jobs in the problem instance, w̄ the average
weight of the jobs and p̄ the average job processing duration. The total ob-
jective function is then calculated as the sum of the objective functions of the
individual problem instances.

B Results for the ensemble construction methods on different
criteria

In this section the results of the ensemble construction methods will be pre-
sented on the remaining three scheduling criteria. Table 14 represents the re-
sults obtained the ensemble construction methods for the Nwt criterion when
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Table 14: Performance of the ensemble construction methods on the Nwt
criterion with the sum combination method

Procedure Ensemble size

3 5 7
Min Med Std Min Med Std Min Med Std

Best DR 8.192 8.192 8.192 8.192

Rand 100 7.731 8.307 0.307 7.724 8.205 0.225 7.546 8.099 0.275
Rand 500 8.129 8.333 0.127 7.824 8.144 0.154 7.634 8.175 0.300
Rand 1000 8.213 8.333 0.074 7.750 8.257 0.211 7.649 8.175 0.249
Rand 5000 8.246 8.328 0.053 7.867 8.252 0.126 7.594 8.128 0.164
Rand 10000 8.246 8.308 0.048 7.756 8.251 0.142 7.877 8.166 0.110
Rand 20000 8.246 8.328 0.041 7.992 8.338 0.103 7.888 8.127 0.106
Prob 100 7.730 8.080 0.330 7.798 8.218 0.304 7.701 8.235 0.176
Prob 500 8.139 8.330 0.088 7.813 8.172 0.161 7.733 8.055 0.222
Prob 1000 8.246 8.333 0.066 7.720 8.116 0.216 7.803 8.140 0.208
Prob 5000 8.246 8.328 0.046 7.708 8.249 0.159 7.794 8.160 0.109
Prob 10000 8.246 8.328 0.032 8.042 8.230 0.126 7.796 8.135 0.122
Prob 20000 8.246 8.328 0.040 8.125 8.323 0.093 7.995 8.176 0.083
Grow 7.734 8.278 0.211 7.571 8.277 0.227 7.571 8.256 0.235
Grow-dest 7.734 8.352 0.230 7.571 8.256 0.235 7.645 8.230 0.240
Inst 7.868 8.100 0.203 7.777 8.052 0.152 7.606 8.011 0.162

using the sum combination method. The box plot representation of these re-
sults is given in Figure 7. The results denote that the instance based method
is the only one which consistently performed better on average than the best
DR. The other methods performed well only when the ensemble size of 7 DRs
was used, while in other cases the average results that were obtained were
worse than the best DR. The box plots show that for the smallest ensemble
size the performance of the ensembles is usually much worse than that of the
best individual DRs. However, for the largest ensemble size it is evident that
for certain experiments most of the ensembles perform better than the best
DR.

Table 15 denotes the same results using the vote combination method.
Figure 8 represents the results presented by using box-plots. In this case all
the ensemble combination methods obtained average results which are better
than the result obtained by the best DR. The results are quite similar, and
between most of them there is no statistically significant difference. The box
plot shows that most of the ensembles which were generated by SEC actually
achieve a better performance than the best individual DR.

Table 16 represents the results obtained for the Ft criterion when using the
sum combination method. The box-plot representations of the results are pre-
sented in Figure 9. The table shows some interesting results for this criterion.
Namely, the results depend heavily on the size of the constructed ensemble.
For the two smaller ensemble sizes the SEC method was unable to obtain
better results on average than those obtained by the best DR. However, for
the ensemble size 7 almost all tested ensemble construction methods obtained
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(a) Comparison of the ensemble construction methods for ensembles of size three
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(b) Comparison of the ensemble construction methods for ensembles of size five
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(c) Comparison of the ensemble construction methods for ensembles of size seven

Fig. 7: Box-plot representation of results for the ensemble construction
approaches and the sum combination method on the Nwt criterion
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(a) Comparison of the ensemble construction methods for ensembles of size three
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(b) Comparison of the ensemble construction methods for ensembles of size five
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(c) Comparison of the ensemble construction methods for ensembles of size seven

Fig. 8: Box-plot representation of results for the ensemble construction
approaches and the vote combination method on the Nwt criterion
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Table 15: Performance of the ensemble construction methods on the Nwt
criterion with the vote combination method

Procedure Ensemble size

3 5 7
min med std min med std min med std

Best DR 8.192 8.192 8.192 8.192

Rand 100 7.662 7.988 0.178 7.680 7.939 0.134 7.751 7.953 0.112
Rand 500 7.665 7.941 0.162 7.759 7.931 0.116 7.708 7.943 0.100
Rand 1000 7.708 7.995 0.122 7.755 7.975 0.114 7.749 7.968 0.109
Rand 5000 7.629 7.978 0.200 7.816 7.975 0.102 7.745 7.945 0.128
Rand 10000 7.665 7.939 0.206 7.751 7.942 0.122 7.636 7.942 0.123
Rand 20000 7.665 8.069 0.230 7.630 7.937 0.108 7.749 7.948 0.113
Prob 100 7.649 7.959 0.156 7.720 7.889 0.149 7.747 7.927 0.116
Prob 500 7.747 7.943 0.094 7.743 7.916 0.106 7.681 7.998 0.146
Prob 1000 7.629 7.994 0.185 7.761 7.952 0.113 7.736 7.941 0.106
Prob 5000 7.665 7.980 0.205 7.717 7.920 0.101 7.838 7.969 0.096
Prob 10000 7.665 7.986 0.219 7.602 8.007 0.128 7.743 7.959 0.102
Prob 20000 7.665 7.980 0.231 7.768 7.958 0.134 7.706 7.972 0.106
Grow 7.745 8.042 0.169 7.691 7.987 0.180 7.707 7.993 0.131
Grow-dest 7.778 8.001 0.142 7.632 7.976 0.152 7.637 7.945 0.130
Inst 7.736 8.010 0.145 7.734 8.016 0.092 7.813 8.018 0.085

better results than the best DR. The best construction method seems to be
the random selection method in this case.

Table 17 shows the results obtained when optimising the Ft criterion and
using the vote combination method. The box-plots of the results are presented
in Figure 10. Similarly as with the Nwt criterion, all of the results obtained by
the ensemble combination methods are better than those obtained by the best
DR. The box-plots denote that the different ensemble combination methods
achieve results with no significant difference between them. The constructed
ensembles were once again batter in most cases than the best individual DR.

Table 18 shows the results obtained with the sum combination method
when optimising the Cmax criterion. Figure 11 shows the box-plot represen-
tation of the results. Most of the results obtained by the SEC method are
not better than those obtained by individual DRs. Only in very few cases the
ensembles were actually better on average than the best DR.

Table 19 shows the results obtained when optimising the Cmax criterion and
when using the vote combination method. Figure 12 represent the results in
box-plots. All ensemble combination methods obtain better results on average
than the individual DRs. The only exception is the instance based method
which constantly achieved quite bad results in comparison with the individual
DRs. The differences between the different ensemble construction methods
are usually small and not significantly different. The box plots show that for
ensemble sizes 5 and 7 the SEC method has once again proven to achieve
better results when it is used with the vote combination method. In addition,
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Table 16: Performance of the ensemble construction methods on the Ft
criterion with the sum combination method

Procedure Ensemble size

3 5 7
min med std min med std min med std

Best DR 159.4 159.4 159.4

Rand 100 158.0 159.7 0.423 158.2 159.1 0.387 157.9 159.0 0.425
Rand 500 158.5 159.7 0.357 158.0 159.1 0.577 157.9 159.1 0.456
Rand 1000 158.8 159.6 0.278 158.2 159.3 0.420 158.2 159.1 0.477
Rand 5000 158.8 159.5 0.344 158.0 159.4 0.436 158.2 158.8 0.486
Rand 10000 158.8 159.5 0.304 158.2 159.3 0.471 158.0 158.9 0.420
Rand 20000 158.8 159.5 0.216 158.4 158.8 0.453 157.9 158.7 0.419
Prob 100 158.0 159.7 0.537 158.2 159.1 0.445 158.0 159.1 0.449
Prob 500 158.5 159.6 0.362 158.2 159.2 0.319 158.1 158.8 0.341
Prob 1000 158.8 159.6 0.251 158.3 159.3 0.367 158.0 158.8 0.499
Prob 5000 158.8 159.5 0.251 157.9 159.0 0.493 158.2 158.8 0.417
Prob 10000 159.4 159.5 0.049 158.3 159.2 0.461 158.1 158.8 0.387
Prob 20000 159.5 159.5 0.033 157.9 159.4 0.591 158.2 159.0 0.624
Grow 158.0 159.5 0.709 158.0 159.4 0.759 157.8 159.3 0.785
Grow-dest 158.0 159.5 0.700 158.4 159.5 0.656 158.1 158.9 0.722
Inst 157.8 159.5 0.963 158.2 158.9 0.868 158.4 159.2 0.559

Table 17: Performance of the ensemble construction methods on the Ft
criterion with the vote combination method

Procedure Ensemble size

3 5 7
min med std min med std min med std

Best DR 159.4 159.4 159.4

Rand 100 157.5 158.8 0.663 158.1 158.9 0.449 157.9 158.7 0.446
Rand 500 157.8 158.8 0.584 157.8 158.7 0.437 157.7 158.7 0.503
Rand 1000 158.0 158.8 0.459 157.5 158.7 0.595 157.3 158.6 0.508
Rand 5000 157.9 159.0 0.633 157.6 159.1 0.727 156.8 158.8 0.861
Rand 10000 158.3 158.6 0.310 157.6 158.8 0.568 157.5 158.6 0.507
Rand 20000 158.3 158.7 0.279 158.1 158.7 0.472 158.0 158.6 0.394
Prob 100 157.6 158.7 0.540 157.8 158.8 0.471 157.8 158.7 0.430
Prob 500 158.0 158.7 0.511 157.9 158.7 0.528 157.7 158.5 0.448
Prob 1000 158.0 158.7 0.686 158.0 158.7 0.515 157.8 158.6 0.444
Prob 5000 158.4 158.7 0.268 157.9 158.9 0.482 158.1 158.6 0.375
Prob 10000 158.6 158.7 0.052 158.0 158.7 0.280 157.2 158.6 0.578
Prob 20000 158.6 158.7 0.045 158.2 159.1 0.352 157.7 158.6 0.500
Grow 157.5 158.9 0.764 157.7 158.8 0.584 157.4 158.6 0.591
Grow-dest 157.6 158.9 0.768 157.5 158.8 0.517 157.6 158.5 0.555
Inst 157.7 159.1 0.793 157.6 158.6 0.430 157.8 158.4 0.437
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(a) Comparison of the ensemble construction methods for ensembles of size three
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(b) Comparison of the ensemble construction methods for ensembles of size five
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(c) Comparison of the ensemble construction methods for ensembles of size seven

Fig. 9: Box-plot representation of results for the ensemble construction
approaches and the sum combination method on the Ft criterion
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(a) Comparison of the ensemble construction methods for ensembles of size three
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(b) Comparison of the ensemble construction methods for ensembles of size five
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(c) Comparison of the ensemble construction methods for ensembles of size seven

Fig. 10: Box-plot representation of results for the ensemble construction
approaches and the vote combination method on the Ft criterion
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(a) Comparison of the ensemble construction methods for ensembles of size three
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(b) Comparison of the ensemble construction methods for ensembles of size five
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(c) Comparison of the ensemble construction methods for ensembles of size seven

Fig. 11: Box-plot representation of results for the ensemble construction
approaches and the sum combination method on the Cmax criterion



Creating Dispatching Rules by Simple Ensemble Combination 49

Table 18: Performance of the ensemble construction methods on the Cmax

criterion with the sum combination method

Procedure Ensemble size

3 5 7
min med std min med std min med std

Best DR 38.68 38.68 38.68

Rand 100 38.41 38.94 0.156 38.50 38.95 0.133 38.51 38.93 0.153
Rand 500 38.41 38.74 0.178 38.50 38.94 0.130 38.46 38.94 0.149
Rand 1000 38.58 38.63 0.149 38.39 38.95 0.151 38.56 38.90 0.148
Rand 5000 38.41 38.74 0.103 38.41 38.84 0.180 38.53 38.72 0.166
Rand 10000 38.41 38.74 0.082 38.34 38.71 0.166 38.54 38.65 0.114
Rand 20000 38.41 38.74 0.059 38.41 38.63 0.158 38.42 38.63 0.116
Prob 100 38.41 38.84 0.182 38.50 38.93 0.166 38.51 38.93 0.141
Prob 500 38.41 38.74 0.187 38.62 38.94 0.083 38.54 38.93 0.152
Prob 1000 38.41 38.63 0.111 38.59 38.94 0.108 38.56 38.93 0.149
Prob 5000 38.41 38.74 0.085 38.34 38.76 0.189 38.43 38.78 0.166
Prob 10000 38.41 38.74 0.122 38.35 38.68 0.154 38.51 38.70 0.141
Prob 20000 38.41 38.74 0.059 38.36 38.63 0.119 38.39 38.64 0.130
Grow 38.50 38.83 0.174 38.50 38.92 0.183 38.50 38.93 0.178
Grow-dest 38.49 38.94 0.181 38.50 38.92 0.174 38.50 38.93 0.182
Inst 38.50 39.14 0.259 38.52 39.00 0.205 38.59 38.93 0.110

the box-plots also show that most of the constructed ensembles achieve a better
performance than the best individual DR.
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(a) Comparison of the ensemble construction methods for ensembles of size three
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(b) Comparison of the ensemble construction methods for ensembles of size five
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(c) Comparison of the ensemble construction methods for ensembles of size seven

Fig. 12: Box-plot representation of results for the ensemble construction
approaches and the vote combination method on the Cmax criterion
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Table 19: Performance of the ensemble construction methods on the Cmax

criterion with the vote combination method

Procedure Ensemble size

3 5 7
min med std min med std min med std

Best DR 38.68 38.68 38.68

Rand 100 38.39 38.53 0.090 38.35 38.52 0.100 38.39 38.55 0.117
Rand 500 38.36 38.54 0.121 38.35 38.52 0.113 38.35 38.53 0.115
Rand 1000 38.31 38.54 0.122 38.35 38.51 0.114 38.32 38.54 0.098
Rand 5000 38.46 38.63 0.116 38.29 38.49 0.066 38.40 38.53 0.074
Rand 10000 38.49 38.63 0.114 38.45 38.54 0.056 38.41 38.52 0.059
Rand 20000 38.49 38.64 0.110 38.29 38.53 0.080 38.40 38.53 0.061
Prob 100 38.35 38.60 0.103 38.38 38.50 0.097 38.35 38.52 0.099
Prob 500 38.36 38.56 0.104 38.35 38.50 0.100 38.34 38.50 0.077
Prob 1000 38.36 38.56 0.096 38.36 38.52 0.080 38.36 38.53 0.093
Prob 5000 38.48 38.63 0.102 38.36 38.52 0.090 38.45 38.53 0.055
Prob 10000 38.48 38.63 0.122 38.25 38.52 0.107 38.32 38.52 0.073
Prob 20000 38.48 38.64 0.118 38.35 38.55 0.106 38.35 38.55 0.060
Grow 38.31 38.59 0.169 38.35 38.56 0.138 38.30 38.53 0.128
Grow-dest 38.38 38.56 0.132 38.36 38.53 0.085 38.20 38.53 0.105
Inst 38.87 39.06 0.072 38.84 38.90 0.064 38.78 38.86 0.033


