
Noname manuscript No.
(will be inserted by the editor)

Automatic design of dispatching rules for static scheduling
conditions

Marko Ðurasević · Domagoj Jakobović

Received: date / Accepted: date

Abstract Dispatching rules (DRs) represent heuristic methods designed for solving
various scheduling problems. Since it is hard to manually design new DRs, genetic
programming is used to design them automatically. Most DRs are designed in a way
that they can be applied under dynamic conditions. On the other hand, static problems
are usually solved using various metaheuristic methods. However, situations exist in
which metaheuristics might not be the best choice for static problems. Such situa-
tions can occur when the schedule needs to be constructed quickly so that the system
starts executing as soon as possible, or when it is feasible that certain changes happen
during the execution of the system. For these cases DRs are more suitable, since they
execute faster and can adapt to possible changes in the system. However, as most
research is focused on developing DRs for dynamic conditions, they would perform
poorly under static conditions, since they would not use all the information that is
available. Therefore, there is the need to enable automatic development of DRs suit-
able for static and off-line conditions. The objective of this paper is to analyse several
methods by which automatically generated DRs can be adapted for static and off-line
scheduling conditions. In addition to look-ahead and iterative DRs which were stud-
ied previously, this paper proposes new terminal nodes, as well as the application of
the rollout algorithm to adapt DRs for static conditions. The performance and exe-
cution time of all methods is compared with the results achieved by automatically
generated DRs for dynamic conditions and genetic algorithms. The tested methods
obtain a wide range of results, and prove to be competitive both in their performance
and execution speed with other approaches. As such, they are a viable alternative to
metaheuristics since they can be used in situations where metaheuristics could not,
but can offer either a better execution time or even competitive results.

Marko Ðurasević
Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, 10000, Croatia
E-mail: marko.duraevic@fer.hr

Domagoj Jakobović
Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, 10000, Croatia

2 Marko Ðurasević, Domagoj Jakobović

Keywords Genetic programming · dispatching rules · look-ahead · rollout heuristic ·
iterative dispatching rules · unrelated machines environment · static conditions

1 Introduction

Scheduling represents an important decision making process which has found its ap-
plication in various areas, like scheduling planes on runways [10,20], scheduling in
manufacturing and assembly lines [11], scheduling in wafer fabrication [55,60] and
production plants [31], scheduling resources in clouds [61], staff scheduling [14],
multiprocessor scheduling [24], or scheduling for radiotherapy pre-treatment [52].
The goal of scheduling is to perform a mapping between available activities and a
set of resources, to obtain a schedule which optimises certain user defined criteria
[58]. Since most scheduling problem instances are NP-hard, various heuristic algo-
rithms are most often used to find solutions to scheduling problems. These heuris-
tic algorithms are divided into two groups, improvement heuristics and constructive
heuristics.

Improvement heuristics start with a complete schedule and improve its quality by
performing different modifications. Various evolutionary and population based meta-
heuristics belong to this category, like genetic algorithms, particle swarm optimisa-
tion, etc. Metaheuristic methods have become immensely popular for solving various
kinds of real world optimisation problems like river flow forecast [68], adaptation
of parameters in biodiesel production [44], big flood management [16], discharge
prediction in hydropower [7], hydrological time series forecasting [66], evaporation
prediction [42], application in cryptography [56,57], and many others [19]. These
metaheuristic algorithms can easily be adapted for solving different kinds of schedul-
ing problems, and have therefore been extensively used for solving various schedul-
ing problems [8,9,69,26,21,17,37,34]. Since these heuristics start with an existing
schedule, it is necessary to have all the relevant information about the scheduling
problem available prior to the execution of the system, meaning it is presumed that
scheduling is performed under static or off-line conditions. Additionally, because of
the relatively long execution time of these heuristics, they need to be executed before
the start of the system.

Constructive heuristics start with an empty schedule, which is incrementally con-
structed. They mostly appear in the form of dispatching rules (DRs) [38,6,67]. When
creating schedules, DRs start with an empty schedule and each time a scheduling de-
cision needs to be performed, they use the currently available information from the
system to determine which job should be scheduled on which machine at the current
moment in time. Thus, DRs can quickly react to the changing conditions in the en-
vironment and be applied under dynamic conditions. However, manually designing
DRs for different conditions and criteria is time consuming.

To deal with the problem of manually designing new DRs, recent studies propose
the application of different evolutionary computation methods to create new DRs for
various scheduling problems. The most widely used method for the creation of new
DRs is genetic programming (GP) [32,59], which achieved good results for many
problems [33]. By using GP new DRs can be created for a wide variety of different

Automatic design of dispatching rules for static scheduling conditions 3

scheduling conditions and criteria [41,18,27,50,28]. Automatically generated DRs
achieve a better performance than most manually designed DRs. In recent years a
lot of research has been performed in different areas of automatic design of DRs,
such as designing DRs for optimising multi-objective problems [47,49,39,29,63],
creating ensembles of DRs [51,22,62], comparing different methods for designing
DRs [46,4,65], etc. Aside from GP, other machine learning methods [25] or data
mining techniques [36] were used to design DRs. In the case of the unrelated ma-
chines environment, recent research focused on parameter optimisation and testing
various methods for the evolution of DRs [65], optimising multiple objectives simul-
taneously with different multi and many ovjective methods [63], and using ensemble
learning algorithms to improve the performance of DRs [62,64]. Unfortunately most
of the previously mentioned works were focused almost exclusively on dynamic con-
ditions, and no customisations were done to adapt DRs to static conditions (except
for iterative DRs in [65]). Therefore, the adaptation of DRs to static conditions is still
an open issues in the unrelated machines environment, but also in other environments
as well. Two recent surveys give an overview of previously conducted research in the
field od automatic design of DRs [5,45].

A lot of recent research is focused on dynamic scheduling problems, where in-
formation about the problem becomes available during the execution of the system.
However, static problems in which the entire schedule has to be constructed before
the execution of the system, or off-line problems in which the information is available
prior to the execution of the system but the schedule can be constructed during its ex-
ecution are still widely researched. This is due to the fact that for certain real world
problems, like aeroplane scheduling, staff scheduling, or therapy treatment schedul-
ing all the information is available up front and the schedules can be constructed
beforehand [14,52]. Although in those cases standard metaheuristics are commonly
used to deal with such problems, there are occasions in which they cannot not be
applied. For example, in off-line dynamic scheduling, although the data is available
beforehand, the schedule still needs to be executed in parallel with the execution of
the system [53]. An example of this situation can be in systems where all the infor-
mation about the scheduling problem becomes available at the start of the system,
and therefore the schedule needs to be created as soon as possible in order to start
the execution of jobs [1]. In this situations metaheuristic improvement algorithms are
not applicable, since they need to create the entire schedule before it can be executed
on the system. Thus the system would be required to wait before the metaheuristic
method executes and then execute its schedule. Furthermore, even if static schedul-
ing is considered, it is still possible that certain changes appear during the execution
of the system (new jobs that are released into the system, changes in job process-
ing times, late arrivals of certain jobs, machine breakdowns and similar) [43]. Those
cases are also difficult for metaheuristic methods, since they construct the schedule
up front, and thus if any changes happen in the system, the schedule constructed by
the improvement metaheuristics is invalid. Thus, the metaheuristics methods would
need to be executed from the start, or some correction methods would need to be
executed on the existing schedule to amend the problems which would arise from
changes that happen in the system.

4 Marko Ðurasević, Domagoj Jakobović

As a consequence metaheuristics might not always be the method of choice in sit-
uations when all the information about the scheduling problem is known beforehand.
In some cases DRs would still be a better choice, since they can construct schedules in
a much lower time and also due to the fact that they do not construct the entire sched-
ule immediately, but rather only select the next job to be executed. By default these
methods solve all the previous problems that were denoted for improvement meta-
heuristic methods. However, the disadvantage of DRs is that by default they do not
use any static information, and thus construct the schedule only with a limited view
on the problem. As such, they cannot compete with any improvement methods, and
achieve poor results. As a result, efforts were made to adapt DRs for static scheduling
conditions, so that they can use the additional information for creating better sched-
ules [67]. However, the problems associated with DRs still remain, since it is difficult
to manually design new DRs for static conditions as well. Although, several stud-
ies have also dealt with the problem of automatically evolving DRs that are adapted
for solving static scheduling problem, the research in this area is still sparse. Hilde-
brannt et al. [23] have used GP to generate DRs which use look-ahead to consider
jobs that have not yet been released into the system. Although the method achieved
the best results it demonstrated a quite large sensitivity and dispersal of the obtained
results. Nguyen et al. [48] proposed a GP procedure for the generation of iterative
DRs (IDRs), which create the schedule several times, extracting certain information
from previously generated schedules to create better schedules in subsequent itera-
tions. Ðurasević et al. [65] applied IDRs in the unrelated machines environment, and
demonstrated that the method achieves better results than DRs designed for dynamic
conditions.

Although the previous studies apply methods for adapting DRs to static schedul-
ing conditions, many questions still remain open. For example, the tested methods are
not compared to each other or to any improvement metaheuristic to demonstrate their
speed and performance. Therefore, it might not be clear what the benefits of these
methods compared to improvement heuristics really are, and whether the results ob-
tained by such DRs can even compare to those of improvement metaheuristics. Fur-
thermore, there are also alternative ways to adapt DRs for static conditions which
have not been considered in previous studies, like the application of specialised static
terminal nodes or the rollout algorithm. As a consequence, there is not enough infor-
mation available to determine advantages and disadvantages of such methods and if
the results that can be obtained by each the methods are satisfactory.

The focus of this paper is to analyse the existing methods that can be used for
adapting automatically designed DRs for scheduling under static conditions. To achieve
this, four methods are selected and adjusted for adapting automatically designed DRs
for static conditions. Out of these the rollout algorithm is for the first time proposed
to solve scheduling problems with automatically designed DRs, whereas the other
three methods were adapted to the unrelated machines environment. Furthermore, all
the methods have been combined with each other, to analyse whether it is possible to
obtain improved results with their combinations. The selected methods are tested on
a set of scheduling problem instances and the quality of the obtained results as well as
the time requited to construct the schedule are compared. Furthermore, the results of
the tested methods are also compared to a manually designed DR for static problems,

Automatic design of dispatching rules for static scheduling conditions 5

the Apparent Tardiness Cost (ATC) rule, and to a genetic algorithm. In that way it is
possible to rank all methods with regards to their solution quality and execution time,
which allows the user to select the appropriate method which offers the required trade
off between the execution speed and solution quality. Finally, the solution construc-
tion process of all four methods is compared to obtain a deeper insight in the way that
each method performs the decisions and denote situations which can be problematic
for certain methods. Therefore, the key objectives of this study can be summarized
as:

1. Four methods for adaptation of automatically designed DRs for solving static and
off-line scheduling problems, out of which the rollout algorithm is adapted for
the first time to solve scheduling problems in unison with automatically designed
DRs

2. Comparison of the four tested methods and their combinations with each other, a
manually designed static DR and an improvement metaheuristic

3. Analysis of the advantages and disadvantages of each method, as well as the
decision process performed by each of them.

The rest of this paper is organised as follows. Section 2 gives an overview of the
unrelated machines environment which will be used for performing the experiments,
and the GP procedure that will be used to automatically generate new DRs. Section
3 provides a description of the different methods which will be used to adapt DRs
for scheduling under static conditions. The benchmark setup is described in Section
4. In Section 5 the results obtained by the tested methods will be presented. A short
analysis of the different methods will be presented in Section 6, while Section 7
concludes this study and gives a short outlook on future research directions.

2 Background

2.1 Scheduling in the unrelated machines environment

The unrelated machines environment consists of n jobs which need to be sched-
uled on any of the m available machines. Each machine has a different processing
speed for each job, meaning that the processing speeds can vary freely across all ma-
chines. This paper focuses on solving the scheduling problem defined as Rm|r j|Twt
using the α|β |γ notation of scheduling problems [58], where the α field represents
the machine environment, the β field denotes additional constraints placed upon
the scheduling problem, and the γ field denotes the criteria which are optimised.
In the considered problem r j denotes that for each job a release time is defined,
which determines the moment when the job enters the system. The Twt criterion
represents the total weighted tardiness of the schedule, which is defined as Twt =
∑ j w j(max{C j − d j,0}), where w j represents the weight (importance) of job j, C j
the point in time when job j finished with its execution, and d j the due date which
determines the point in time until when job j should finish with its execution. Addi-
tionally, for each machine and job a processing time pi j is defined, which determines
the amount of time needed for machine i to process job j. The scheduling process

6 Marko Ðurasević, Domagoj Jakobović

will be performed under static conditions, where all the information about jobs and
their characteristics is known beforehand.

2.2 Generating DRs with GP

DRs which are evolved by GP usually consist of two parts: the schedule generation
scheme (SGS) and the priority function (PF). The PF determines a priority value for a
certain job-machine pair, which is calculated based on certain properties of jobs and
machines. These priority values are used by the SGS to determine which job should
be scheduled on which machine and in what order. Algorithm 1 represents the SGS
which is used to generate schedules for the unrelated machines environment under
dynamic conditions. The procedure first waits until at least one job and one machine
are available. Then the priority values are calculated for scheduling each available
job (those which are released, but not yet scheduled) on each of the machines (even
those which are executing another job). Based on the calculated priority values, for
each job the best machine, the one for which the job achieves the best priority value,
is determined. Out of all jobs whose best machine is available, the one with the best
priority value is selected and scheduled on the appropriate machine. This part is re-
peated until there are no more jobs whose best machine is available. If there is no
job whose best machine is available, then the scheduling decision is postponed to a
later moment in time, when another job or machine becomes available. The entire
procedure is repeated until there are no more jobs to be scheduled.

Algorithm 1 Schedule generation scheme used by DRs generated by GP

1: while unscheduled jobs are available do
2: Wait until at least one job and one machine are available
3: for all available jobs and all machines do
4: Obtain the priority πi j of scheduling job j on machine i
5: end for
6: for all available jobs do
7: Determine the best machine (the one for which the best value of priority

πi j
8: is achieved).
9: end for

10: while jobs whose best machine is available exist do
11: Determine the best priority of all such jobs
12: Schedule the job with the best priority on the corresponding machine
13: end while
14: end while

Unlike the SGS, which is defined manually, the PFs are generated automatically
by using GP. The objective of GP is to evolve a PF which is appropriate for optimising
a certain scheduling criterion, and which can be used by the aforementioned SGS. To

Automatic design of dispatching rules for static scheduling conditions 7

do so the primitive set of nodes needs to be defined. The initial terminal set that
is used by GP is given in Table 1. The time variable, used in some terminal node
definitions, represents the current time of the system when the value of the nodes
is calculated. The set of function nodes includes the binary addition, subtraction,
multiplication, secure division (returns 1 if divisor is close to zero) operators, and the
unary operator POS(a) = max(a,0). Although other function nodes (like minimum,
maximum, absolute values, if-else branches) can be used by GP to evolve the PF, it
was shown that no significant improvements can be achieved by using them [65]. The
PF is represented in the form of a tree in which the inner nodes represent functions,
and leaf nodes represent the system parameters from Table 1. These trees are then
modified by using various crossover and mutation operators outlined in the appendix.

Aside from GP, many other soft computing methods can be used to design new
DRs, like neural networks. Although neural networks have demonstrated to achieve
a similar results as DRs evolved by GP, their disadvantage lies in the fact that DRs
evolved by neural networks cannot be interpreted as easily as can symbolic expres-
sions that are evolved by GP [4]. Aside from neural networks, there are also many
methods that are similar to GP, and just use different solution representations or intro-
duce additional constraints to those expressions like Gene Expression Programming
(GEP) [15], Dimensionally Aware GP (DAGP) [30], Cartesian GP (CGP) [40]. Some
of these methods have also been tested for the evolution of DRs, and it was found
that they all achieve similar results with GP achieving slightly better results than
other methods [65]. Therefore, using methods with alternative representations can
have a slight influence on the achieved results, but in general these methods should
be capable of obtaining good DRs as well.

Table 1: Terminal nodes used by GP

Node Description

pt processing time of job j on the machine i (pi j)
pmin the minimal job processing time on all machines: mini(pi j)
pavg the average processing time on all machines
PAT time until the machine with the minimal processing time for the current

job is available
MR the amount of time until the current machine becomes available
age the time that the job spent in the system: time− r j
dd due date (d j)
SL positive slack: max(d j− pi j− time,0)
w weight of the job

8 Marko Ðurasević, Domagoj Jakobović

3 DR based methods for static scheduling

3.1 Terminal nodes with static information

An easy way of generating DRs for static conditions is to define additional terminal
nodes which provide static information about the system. With these terminals GP
can design PFs that use information about the future of the system when making
scheduling decisions. The additional static terminals are presented in Table 2. The
first seven terminals do not depend on the choice of which job would be scheduled
next. This means that at the current decision point these terminals will have the same
value for all considered jobs. However, some of the terminals depend on the currently
considered machine, which means that they will have different values for them. These
terminals represent general information about the future of the system, like the time
until the next job arrives or the slack of the next job released into the system.

The remaining terminals represent how the scheduling of one job could affect the
future of the system. The first four terminals in this group (NREL, NRELM, SLAVGD
and MLOADD) extract information about jobs which would be released during the
execution of job j. The other twelve terminals approximate how much the scheduling
of job j influences the tardiness of jobs which become available during the execu-
tion of job j. The first six terminals (from FUTLATES until WLATEL) approximate
the tardiness of jobs which become available during the execution of the currently
considered job j. The other six terminals approximate the difference between the tar-
diness of job j, if it would be delayed and other jobs would be scheduled before it,
and the tardiness of other jobs which become available during the execution of job j,
if job j would be executed immediately.

Table 2: List of static terminal nodes

Node name Node description

NSHORT Number of unreleased jobs which have the shortest processing time for
a machine

SLNXT Slack of the next job that is released into the system
SLNXTM Slack of the next job that is released into the system, and has the shortest

processing time for the given machine
SLAVG Average slack of jobs with the shortest processing time for the given

machine
TTAR Time until the next job arrives into the system
TTARM Time until the next job, which has the shortest processing time for the

given machine, arrives into the system
MLOAD Sum of processing times of unreleased jobs, which have the shortest

processing time for the given machine
NREL Number of jobs which become available during the execution of the

selected job
NRELM Number of jobs which become available during the execution of the se-

lected job, and have the shortest processing time for the given machine

Automatic design of dispatching rules for static scheduling conditions 9

SLAVGD Slack of jobs which become available during the execution of the se-
lected job, and have the shortest processing time for the given machine

MLOADD Sum of processing times of jobs which become available during the
execution of the selected job, and which have the shortest processing
time for the given machine

FUTLATES Approximation of the weighted tardiness of the job which has the fastest
execution time for the considered machine, and is released first during
the execution of job j. The approximation is performed as if the con-
sidered job would be executed immediately after the completion of job
j

WLATES Approximation of the unit penalty of the job which has the fastest exe-
cution time for the considered machine, and is released first during the
execution of job j. The approximation is performed as if the considered
job would be executed immediately after the completion of job j

FUTLATE Approximation of the weighted tardiness of all jobs which become
available during the execution of job j, and have the smallest processing
time for the given machine. The approximation is performed as if each
of the jobs would be executed right after the completion of job j

WLATE Approximation of the weighted number of tardy jobs, of all jobs which
become available during the execution of job j, and have the smallest
processing time for the given machine. The approximation is performed
as if each of the jobs would be executed right after the completion of
job j

FUTLATEL Approximation of the weighted tardiness of all jobs which become
available during the execution of job j, and have the smallest processing
time for the given machine. The approximation is performed as if each
of the jobs would be executed sequentially after the completion of job j

WLATEL Approximation of the weighted number of tardy jobs, of all jobs which
become available during the execution of job j, and have the smallest
processing time for the given machine. The approximation is performed
as if each of the jobs would be executed sequentially after the comple-
tion of job j

FLDS Difference between the approximation of the weighted tardiness of job
j and the value of the FUTLATES terminal. The weighted tardiness is
approximated as if job j is executed after the job that has the fastest
execution time for the considered machine, and is released first during
the execution of job j, finishes with its execution

WLDS Difference between the approximation of the tardiness weight of job j
and the value of the WLATES terminal. The tardiness weight is approx-
imated as if job j is executed after the job that has the fastest execution
time for the considered machine, and is released first during the execu-
tion of job j, finishes with its execution

10 Marko Ðurasević, Domagoj Jakobović

FLD Difference between the approximation of the weighted tardiness of job
j and the value of the FUTLATE terminal. The approximation is per-
formed as if job j is executed after all the jobs with the fastest execu-
tion time for the considered machine, which become available during
the execution of job j, finish with their execution

WLD Difference between the approximation of the tardiness weight of job j
and the value of the WLATE terminal. The approximation is performed
as if job j is executed after all jobs with the fastest execution time for
the considered machine, which become available during the execution
of job j, finish with their execution

FLDL Difference between the approximation of the weighted tardiness of job
j and the value of the FUTLATEL terminal. The approximation is per-
formed as if job j is executed after all jobs with the fastest execution
time for the considered machine, which become available during the
execution of job j, finish with their execution

WLDL Difference between the approximation of the tardiness weight of job j
and the value of the WLATEL terminal. The approximation is performed
as if job j is executed after all jobs with the fastest execution time for
the considered machine, which become available during the execution
of job j, finish with their execution

The terminals FUTLATES, FUTLATEL, and FUTLATE approximate the tardiness
of jobs that would first be released into the system during the execution of the cur-
rently considered job j. The FUTLATES terminal approximates the tardiness of the
next job which would be released into the system during the execution of job j and
executes the fastest on machine m on which job j is executing. This is done in a way
that the tardiness of this job is calculated as if it would be scheduled on machine
m after job j finished with its execution. The FUTLATE terminal considers all jobs
which would be released during the execution of job j, and which have the fastest
processing time on machine m. The tardiness of all these jobs is approximated as if
each job would be executed on machine m after completion of job j, independently of
each other. Since this is a quite optimistic approximation, the FUTLATEL represents
a more pessimistic approximation. This terminal calculates the tardiness as if all the
jobs were scheduled sequentially on machine m, in order of their release times, after
job j finishes with its execution. The terminals WLATES, WLATE and WLATEL per-
form the approximation of the weighted number of tardy jobs in the same manner as
FUTLATES, FUTLATE, and FUTLATEL, respectively.

The previously described terminals approximate only the tardiness of jobs that
would be released during the execution of job j, but do not take into account the
tardiness of job j if its execution would be delayed. Thus, six additional terminals
are defined. The FLDS terminal approximates the tardiness of job j in a way that it
delays its execution until the job which would be first released into the system during
the execution of job j, and has the smallest processing time on machine m, finishes
with its execution. The value of the FUTLATE terminal is additionally subtracted to
determine which decision would lead to a greater tardiness. The WLDS terminal uses
the same concept, just for approximating the weighted number of tardy jobs, and

Automatic design of dispatching rules for static scheduling conditions 11

subtracting its value with the value of the WLATES terminal. For the FLD and FLDL
terminals, the approximation of the tardiness of job j is performed somewhat differ-
ently. For those two terminals, the tardiness of job j is approximated as if job j would
be executed after all jobs which were released during its execution and have the small-
est processing time on machine m, would be executed sequentially on the considered
machine m. For the FLD terminal, the approximation is additionally decreased by
the the FUTLATE terminal, while for the FLDL terminal the approximated tardiness
value is subtracted by the FUTLATEL terminal. The last two terminals, WLD and
WLDL, also use the same concepts as FLD and FLDL to approximate the number of
tardy jobs, and subtract the approximation by the WLATE and WLATEL terminals,
respectively.

3.2 Look-ahead

In the dynamic scheduling environment, DRs use the PF to calculate the priorities
only of those jobs which were already released into the system. Since in the static
scheduling environment the information about all jobs is known in advance, DRs can
be extended so that they calculate the priorities for jobs which are not yet released
into the system. This property is called look-ahead. When using look-ahead the SGS
is similar to the one in Algorithm 1, with the only difference being that in line 3
the algorithm will iterate through all jobs for which the following condition is true:
r j < (time+(max j(r j)− time)∗α). The look-ahead factor α determines the amount
of unreleased jobs that will be considered when calculating the priority values, and
which will be denoted as the look-ahead horizon. The look-ahead parameter is sen-
sitive to the size of the problem instance, meaning that more unreleased jobs will be
considered in each iteration if there are more jobs in the scheduling problem. Instead
of using the look-ahead factor, a fixed number of unreleased jobs, which should be
considered in each iteration, can be used. This has the advantage that regardless of
the problem size the same number of jobs will always be considered. Furthermore,
jobs which are not yet released will not be scheduled until they are actually released
into the system. Thus, there is a possibility that in meantime another job is scheduled
on the machine for which previously an unreleased job achieved the largest priority.
When using look-ahead, a new terminal node AR is introduced, which determines the
amount of time until the job is released into the system. Without this terminal DRs
could not take into account when the jobs become ready, and would be unable to pri-
oritise jobs which are released sooner. Look-ahead allows the SGS to introduce idle
times into the schedule, if it determines that in the near future a job of high priority
will be released.

3.3 Iterative dispatching rules

Iterative dispatching rules (IDRs) construct the schedule several times, and each time
a new schedule is constructed they use information from previously generated sched-
ules to improve the newly constructed schedules [48]. The schedule is reconstructed

12 Marko Ðurasević, Domagoj Jakobović

until the fitness of the newly constructed schedule stops improving. The motivation
behind this approach is that by using information from previously created schedules,
IDRs could correct mistakes made in previous iterations. The steps of the SGS used
by IDRs are shown in Algorithm 2. The procedure does not return the schedule which
was created in the last iteration, but the previous one, since that schedule achieved the
best result. For better understandability, the algorithm is also presented in Figure 1
as a flowchart. Since this method recreates the schedule several times, it is only ap-
plicable under static conditions, and cannot be used for dynamic off-line scheduling,
unlike the other described methods.

Algorithm 2 Schedule generation scheme used by IDRs

1: Let R represent the set of parameters extracted from the previous schedule which
are used by the PF, and let R0 represent their initial values

2: R← R0
3: Fitness∗← ∞

4: Let S represent the current schedule (empty at the beginning), and bestS the best
created schedule

5: do
6: bestS← S
7: Generate the schedule using the standard schedule generation scheme and the

PF π

8: S← generated schedule
9: Fitness∗← Fitness

10: Fitness← fitness value of the generated schedule S
11: Calculate new values for schedule dependant nodes, based on the constructed

schedule S, and store the calculated values in R
12: while (Fitness∗ > Fitness)
13: Return bestS as the result

Create schedule S using
priority function using

parameters R
π

No

YesFit(S)<Fit(bestS)

Return bestS

bestS=S
Calculate parameters R

from S

Initialise
parameters R to
default values

Fig. 1: Flowchart of creating schedules with IDRs

In order for the PF to use information about previously built schedules, additional
nodes are defined, the values of which are calculated based on the schedule created
previously by the IDR, and are updated every time a new schedule is created. Table
3 represents additional nodes which use information from previously created sched-
ules, four of which (NLATE, LATENESS, INDLATE, ISLATE) are taken from a previ-

Automatic design of dispatching rules for static scheduling conditions 13

Table 3: Additional nodes used by IDRs

Node name Node description

NLATE number of tardy jobs in the previous schedule
LATENESS total lateness of the entire previously built schedule
INDLATE lateness of a concrete job in the previous schedule
TARDINESS total weighted tardiness of the entire previously built schedule
INDTARD tardiness of a concrete job in the previous schedule
INDWTARD weighted tardiness of a concrete job in the previous schedule
ISLATE if the job was late in the previous schedule executes the left branch,

otherwise the right branch
JOBFINISH completion time of a concrete job in the previous schedule
FLOWTIME flowtime of a concrete job in the previous schedule

ous study [65]. All nodes represent terminals, apart from the ISLATE node, which is a
function that executes one branch if the currently considered job was late in the previ-
ous schedule, and the other branch if not. The aim of this node is to create PFs where
one part of the function is appropriate for scheduling jobs which were late in the pre-
vious schedule, making it possible to apply a different scheduling strategy for those
jobs. The NLATE, LATENESS, and TARDINESS nodes provide information about the
entire previously built schedule, in the form of the total number of tardy jobs, total
lateness of the schedule, and total weighted tardiness of the schedule. Nodes IND-
LATE, INDWTARD, and INDTARD provide information about the lateness, weighted
tardiness, and tardiness of a job in the previous schedule. By using these nodes the
PF can put more emphasis on jobs which were tardy in the previous schedule. Fi-
nally, nodes JOBFINISH and FLOWTIME provide information about the completion
time and flowtime of jobs in the previous schedule. Although these nodes do not
provide any due date related information, they are included to analyse whether they
provide useful information for IDRs. An additional thing which needs to be defined
for these nodes are the initial values used in the first iteration, when there is no pre-
vious schedule from which the information could be extracted. In that case, all nodes
are initialised to large values which cannot be achieved by any schedule constructed
by the SGS, while for the ISLAT E node all jobs are denoted as late.

3.4 Rollout algorithm

The rollout algorithm is an approach that can improve the results of different heuris-
tic methods [3,2]. The algorithm balances between exhaustive and heuristic search
to perform better than heuristic methods, but to obtain solutions faster than exhaus-
tive search. The algorithm considers all possible decisions at each decision moment.
However, to determine the best decision, it does not perform an exhaustive search,
but uses a heuristic method to construct the rest of the solution for each possible
decision. The algorithm performs the decision which leads to the best solution after
applying the heuristic. In that way the algorithm has a better overview on the problem

14 Marko Ðurasević, Domagoj Jakobović

in comparison with the heuristic methods on their own. These steps are repeated for
each decision moment until the solution is constructed.

The rollout algorithm can be combined with DRs so that at each decision mo-
ment and for each possible decision at that point the rollout algorithm uses a DR to
construct the rest of the schedule. After constructing a schedule for each decision,
the algorithm performs the decision for which the DR obtained the best schedule. Al-
gorithm 3 denotes the steps of the rollout algorithm for solving scheduling problems
with DRs. In the first part the algorithm tries out all possible scheduling decisions
at the current moment in time, and uses a predefined DR to construct the rest of the
schedule from that decision onwards. Applying the rollout algorithm in this way will
lead to bad solutions, since it creates schedules in which jobs are scheduled immedi-
ately on a machine if it is free. On the other hand, DRs can introduce idle times on
machines even if there are available jobs. Therefore, DRs can construct a schedule
approximation that cannot be obtained by the rollout algorithm, since it does not in-
troduce idle times in the schedule. Instead of improving the fitness of solutions during
the execution of the rollout algorithm, the fitness will oscillate and will sometimes be
worse than the one obtained by the DR. To solve this problem, if the fitness of the best
decision in the current iteration would be worse than that of the best decision in the
previous iteration, instead of performing the selected decision the rollout algorithm
will use the DR to determine which job should be scheduled next, and at what time.
Thus, if the rollout algorithm will in itself not be able to perform the best decision, it
will delegate this task to the underlying DR, which can then introduce idle times into
the schedule.

The execution time of the rollout algorithm can be improved if not all jobs are
considered at each decision moment. For example, jobs that are released far in the
future will have a small probability of being scheduled at the current decision mo-
ment. Thus, it makes sense to consider a smaller number of unreleased jobs that have
a closer release time. For that purpose either a rollout factor γ or the number of unre-
leased jobs which will be considered, can be defined. The set of jobs that is considered
in each iteration will be denoted as the rollout horizon.

3.5 Combination of static methods

The benefit of the previous four methods is that they can be combined in various ways.
All the methods can easily be combined with each other except for two cases. The first
case is when combining static terminals with look-ahead. The problem here is that
static terminals are calculated based on all unreleased jobs, however, in look-ahead
the priorities are calculated even for some unreleased jobs. This would mean that the
properties of unreleased jobs which are considered by the DRs would be used in the
calculation of static terminal nodes. Therefore, it could be better to calculate static
terminals based only on jobs which are currently outside the look-ahead horizon.
Both static terminal calculation methods will be tested to determine their influence
on the quality of the look-ahead method.

The second problematic case is when combining IDRs with the rollout algorithm.
The problem arises from the fact that IDRs need to reconstruct the entire schedule,

Automatic design of dispatching rules for static scheduling conditions 15

Algorithm 3 Rollout algorithm for scheduling with DRs

1: time← 0
2: previousFitness← ∞

3: bestFitness← ∞

4: while unscheduled jobs are available do
5: Set time to the next point in time where there is at least one released job and

one available machine
6: for each unscheduled job j where r j < (time+(max j(r j)− time)∗ γ) do
7: for each machine m do
8: Use a DR to construct the rest of the schedule when job j would be

scheduled on machine m.
9: Let f itness denote the fitness of the constructed schedule.

10: if f itness < bestFitness then
11: bestFitness← f itness
12: Let bestPair denote the selected job-machine pair
13: end if
14: end for
15: end for
16: if previousFitness > bestFitness then
17: previousFitness← bestFitness
18: Schedule the job from bestPair on the machine from bestPair
19: else
20: Execute the DR to perform the next scheduling decision
21: end if
22: end while

meaning that the schedule constructed by the rollout algorithm would be lost and
a schedule of inferior quality would probably be constructed. This could be fixed
by not recreating the entire schedule with IDRs, but only those parts which were
not constructed by the rollout algorithm. However, because IDRs use information
from previously generated schedules, the performance of IDRs is highly dependent
on them. This leads to a great instability of the approach, since in each iteration the
approximation of IDRs would be very different. Thus, the entire rollout algorithm
would perform poorly since the IDRs would not properly guide the algorithm. As a
consequence, the combination of the rollout algorithm and IDRs will not be consid-
ered.

4 Benchmark setup

To test the performance of the afore described methods, a set of 120 problem in-
stances was generated similar as in many other studies dealing with this problem
[13,12,35,54]. These problem instances were divided into two independent prob-
lem sets, the training set and test set, each consisting out of 60 problem instances.
The training set was used by GP to design a new DR, while the test set was used to

16 Marko Ðurasević, Domagoj Jakobović

evaluate the performance of the evolved DRs. In each iteration the same training set
was used and the rules were evolved for the entire set. Both problem sets contained
problem instances of various sizes, consisting of 12, 25, 50, and 100 jobs, and 3, 6,
and 10 machines. Details about problem instances generation are given in the ap-
pendix and can be downloaded from: http://gp.zemris.fer.hr/scheduling/
probleminstances.zip.

Since the performance of GP depends on the selected parameter values, all pa-
rameters underwent an in depth optimisation as described in a previous study [65].
More details about the parameter tuning and selected parameter values can be found
in the appendix. In the appendix only the part concerning the general GP parameters,
whereas the parameters that are specific for each of the considered methods have also
been optimised, and the results are presented in more detail in the next section. For
the benchmark results to be statistically significant, each experiment was executed
at least 30 times, while preserving the best solution from each run. The resulting
best solutions from these runs were used to calculate quantitative information such
as the median of the fitness, as well as the minimum and the maximum fitness value.
The Mann-Whitney statistical test was used to determine if there is a statistically sig-
nificant difference between the results obtained by two different experiments. The
difference between two results will be considered significant if a p value smaller than
0.05 was achieved. Additionally, Spearman’s rho test will be performed in several
cases to analyse if there is a correlation between two variables.

5 Results

This section gives an overview of the results achieved for the four selected methods
and their combinations. The first four sections will analyse the performance of a
single approach with regards to different parameter choices. The fifth section will
compare the results obtained by these approaches and their combinations to those
obtained by the ATC rule and genetic algorithm.

5.1 Results for DRs with static terminals

In this section the results of using additional static terminal nodes will be presented.
All the proposed static nodes will be used in addition to the terminal nodes from
Table 1. Since 23 static nodes were proposed, it is hardly possible to test all node
combinations to obtain the best one. For that reason, two greedy heuristics are used
to guide the selection of static nodes, the constructive and destructive heuristic. The
constructive heuristic will start with a set of terminal nodes from Table 1, and add
only those static terminal nodes which happen to increase the performance of the
generated DRs. On the other hand, the destructive heuristic starts with a set containing
all nodes, and removes those static nodes whose removal from the set leads to the
largest improvement of the automatically generated DRs.

By using the two aforementioned greedy heuristics for selecting static terminal
nodes, more than 500 experiments and node combinations were tested. Since the

http://gp.zemris.fer.hr/scheduling/problem instances.zip
http://gp.zemris.fer.hr/scheduling/problem instances.zip

Automatic design of dispatching rules for static scheduling conditions 17

Table 4: Results achieved by using additional static terminal nodes

Static terminals min med max

1 FLD, FLDS, FUTLATE, FUTLATEL, FUTLATES,
MLOADD, NREL, NSHORT, SLAVGD, SLNEXT,
SLNEXTM, TTARM, WLATE, WLATEL, WLATES,
WLD, WLDL, WLDS

12.20 13.83 15.37

2 FLD, FLDS, FUTLATE, MLOADD, NREL,
NSHORT, SLAVGD, SLNEXT, SLNEXTM,
TTARM, WLATE, WLATEL, WLATES, WLD,
WLDS

12.27 13.21 15.10

3 FLD, FUTLATE, MLOADD, NREL, SLAVGD,
SLNEXT, WLATES, WLD

12.08 13.30 14.62

4 FLD, FUTLATE, MLOADD, NREL, NSHORT,
SLNEXT, WLATES, WLD

12.08 13.42 16.06

5 FUTLATES, NREL, SLAVGD, SLNEXT, WLD 12.06 13.30 16.59

number of tested combinations of static nodes is vast, only the 5 combinations which
achieved the best minimum values on the test set are selected and presented in Table
4. The best obtained values are denoted in bold. The best overall DR was generated
when using the static terminal node combination denoted with index 5. From the ta-
ble it is evident that the best minimum values are mostly achieved by experiments
which use smaller terminal node sets, such as those used by experiments 3, 4, and
5. In all terminal node sets different terminal node types were used, which leads to
the conclusion that better results are achieved by simultaneously using nodes which
provide different kind of information to the DR. Nodes NREL, SLNEXT, and WLD
were used in all five experiments, thus outlining that they might be the most infor-
mative of the nodes which were proposed. From the node definitions, ti can be seen
that each of these three nodes provides quite different information, from the simple
number of jobs that become available during the execution of the current job, to the
slack of the next job and the approximation of tardy jobs. On the other hand, nodes
FLD, FUTLATE, MLOADD, SLNEXT, and WLATES were used in four experiments.
Here it is evident that most of them provide approximations of the tardiness during
the execution of the next job. Thus, these tardiness approximations seem to be infor-
mative to the generated DRs. Figure 2 shows the box plot representation of the results
obtained from different static terminal combinations. The box plot shows that by us-
ing the static terminal nodes GP obtains dispersed results. For all the static terminal
node combinations similar minimum values are obtained, meaning that most of the
tested node combinations have a similar expressiveness.

5.2 Results for DRs with look-ahead

This section will present the results achieved by using look-ahead in automatically
designed DRs. Look-ahead will be tested with both the look-ahead factor and a fixed

18 Marko Ðurasević, Domagoj Jakobović

1 2 3 4 5
12

13

14

15

16

Fig. 2: Box plot representation of results for DRs with static terminal nodes

Table 5: Results for DRs with look-ahead using only nodes for dynamic scheduling

Look-ahead
factor

min med max Number
of jobs

min med max

0.03 11.88 13.45 15.56 3 11.24 12.25 15.06
0.05 12.20 13.53 15.16 5 11.31 12.06 14.32

0.1 12.12 12.78 14.55 10 10.82 11.83 14.60
0.2 11.67 12.44 13.89 20 10.96 11.83 13.60
0.5 11.30 11.99 14.86 50 11.17 11.69 15.30

1 11.17 12.02 15.35 100 11.02 11.64 13.53

number of jobs in the look-ahead horizon, to determine how this parameter influences
the overall procedure.

Table 5 represents the results achieved by DRs which additionally use look-ahead.
In this case, DRs will use PFs generated by using the terminal set consisting only
of nodes used for the dynamic scheduling environment, and the AR node. The table
shows that the size of the look-ahead horizon significantly influences the performance
of the method. When using the look-ahead factor the results gradually improve as the
value of the factor is increased up until 0.5, since with that value the DRs already
seem to have a good overview on the problem. The same behaviour can be noticed
when using the fixed number of look-ahead jobs, however, the increase in the perfor-
mance is not that drastic as when using the look-ahead factor. An additional interest-
ing behaviour is that the increase in the number of jobs in the look-ahead horizon will
not always lead to better results. This is evident by comparing results achieved when
using 10 and 20, or 50, and 100 jobs in the look-ahead horizon, since the median val-
ues in those experiments are similar. Thus, it is possible to conclude that already by
considering only a small number of jobs in the look-ahead horizon the performance
of DRs can be increased significantly. However, the results also show that it is not
necessary to consider too many jobs in the future, which is due to the fact that jobs
that are too far in the future anyhow have a small probability of being scheduled at
the current time.

The results display that DRs achieve better performance when using a fixed num-
ber of jobs in the look-ahead horizon, than when using the look-ahead factor. The

Automatic design of dispatching rules for static scheduling conditions 19

main reason for such behaviour is that by using a constant number of jobs in the hori-
zon the procedure is more stable since it will always consider the same number of
unreleased jobs. On the other hand, when using the look-ahead factor, the number of
unreleased jobs which are considered depends not only on the number of jobs in the
problem instance, but also on the distribution of the release times of jobs. The reason
for this is that the look-ahead factor is used only to define a time window, and jobs
that are released during that time window belong to the look-ahead horizon. How-
ever, it is possible that in certain time windows no jobs are released, and therefore
no unreleased jobs would be considered. For example, if 10 jobs in the look-ahead
horizon are used, this means that the DR will always considered additional 10 jobs
that are not yet released. However, if the look-ahead factor of 0.1 is used, this does
not means that 10% of jobs will be considered at each moment, but rather that next
10% of the total time interval will be considered. However, the number of jobs that
are released during that period can vary during system execution. In some cases it
can happen that not even one job is released, thus the DR will not have any benefits
from it and will at that moment work as normal DRs without look-ahead. Therefore,
the behaviour of DRs that use the look-ahead factor can be more volatile than when
using a fixed number of jobs in the look-ahead horizon. Because of this variability
the performance of DRs is not as good as when using a constant number of jobs in
the look-ahead horizon.

Figure 3 shows the box plot representation of the results. The figure demonstrates
that designing DRs with look-ahead can lead to the appearance of outliers, but this
does not significantly affect the performance of the methods. Additionally, the figure
depicts that the solution distributions for look-ahead factors of 0.5 and 1, and for
certain numbers of jobs in the look-ahead horizon (from 10 to 100) are quite similar
with smaller variations in the values of the median and minimum values. This means
that it is possible to use smaller values of the parameters without a great deterioration
in the results. Based on all the observations it is evident that the look-ahead method
should preferably be used with a fixed number of jobs in the look-ahead horizon.

l
0.
03

l
0.
05

l
0.
1

l
0.
2

l
0.
5

l
1

n
3

n
5

n
10

n
20

n
50

n
10
0

11

12

13

14

15

Fig. 3: Box plot representation of results for dispatching rules with lookahead

20 Marko Ðurasević, Domagoj Jakobović

Table 6: Results for IDRs by using various IDR nodes

IDR terminals min med max

1 INDTARD 12.09 13.19 14.77
2 INDWTARD 12.09 13.07 14.40
3 INDWTARD, NLATE 11.87 13.08 13.94
4 INDTARD, INDWTARD, NLATE 11.82 13.18 14.39
5 INDWTARD, NLATE, INDTARD, INDLATE,

LATE, TARDINESS
12.06 13.21 14.51

5.3 Results for IDRs

In this section the results for IDRs with different combinations of IDR nodes will
be presented. Because testing all possible combinations of those nodes would be too
time consuming, the same destructive and constructive heuristics, which were used
for creating the sets of static terminal nodes, will also be used here to create sets of
IDR nodes. In total around 80 combinations of IDR nodes were tested, however, only
the five best were selected and are presented in this section.

Table 6 represents the results achieved by the five best combinations of IDR nodes
on the test set obtained by the constructive and destructive heuristics. It is evident that
for IDRs to work well not many additional nodes are needed, but rather it is important
to select those which hold useful information. The experiments show that for optimis-
ing the Twt criterion the best results are achieved when using nodes which contain
information about the tardiness of the jobs. IDRs usually achieved the best results
when using the INDTARD, INDWTARD and NLATE nodes. The first two nodes are
important since they denote the tardiness and weighted tardiness for each of the jobs,
while the third node gives a notion about the number of jobs which were late in the
previous schedule. Nodes that do not contain tardiness information, like FLOWTIME
or JOBFINISH, are not useful, which can be seen from the fact that they do not
appear at all in the five best IDR node combinations. Furthermore, the results also
demonstrate that by using the LATENESS and TARDINESS nodes, which represent
the tardiness and lateness of the entire schedule, IDRs usually do not achieve good
results. This can be seen from the fact that by including these nodes the results start to
deteriorate. Therefore, nodes which provide information about the tardiness of indi-
vidual jobs lead to a much better performance of IDRs. This makes sense since nodes
that provide information about the individual tardiness or lateness of jobs can help
the DR to identify critical jobs, whereas the information about the total tardiness or
lateness of the schedule can not be used for that purpose. Figure 4 shows the box plot
representation of IDRs for the different combinations of IDR nodes.

5.4 Results for the rollout algorithm

In this section the results for the rollout algorithm by using DRs generated by DGP
will be presented. Table 7 denotes the results achieved by the rollout algorithm. It can

Automatic design of dispatching rules for static scheduling conditions 21

1 2 3 4 5

12

13

14

Fig. 4: Box plot representation of results for IDRs

be noticed that the performance of the rollout algorithm depends heavily on whether
the rollout factor or number of jobs in the rollout horizon is be used. The rollout
algorithm achieved much better performance when a constant number of jobs in the
rollout horizon was used. An additional thing which can be observed is that after a
certain value for the number of jobs in the rollout horizon the results do not improve
further, which means that considering more jobs is not beneficial.

Table 7: Results for the rollout algorithm when using DRs generated by DGP

Rollout
factor

min med max Number
of jobs

min med max

0 10.51 10.87 11.21 0 10.51 10.87 11.21
0.03 10.07 10.63 10.98 3 9.956 10.37 10.65
0.05 10.16 10.56 11.07 5 9.883 10.24 11.18

0.1 10.07 10.41 10.77 10 9.956 10.22 11.09
0.2 9.956 10.36 10.79 20 9.790 10.08 10.88
0.5 10.05 10.27 11.12 50 9.790 10.08 10.88

1 9.790 10.08 10.88 100 9.790 10.08 10.88

Figure 5 shows the box plot representation of the results. The figure illustrates
how different values of the rollout parameters influence the performance of the rollout
algorithm. The experiments which use the rollout factor are denoted with "r" and the
value of the parameter, while the experiments which use a fixed number of jobs in
the rollout horizon are denoted with "n" and the value of the parameter. The figure
denotes that good results are achieved even by small values for the number of jobs in
the rollout horizon, and that those results slowly improve as the value of the parameter
rises, up until the value of 20, after which no improvement is achieved. On the other
hand, when using smaller values for the rollout factor, the results that are quite bad,
and only for larger values does the rollout algorithm achieve good results. Based on
the outlined results it can be concluded that the rollout should preferably be used with
a constant number of jobs in the rollout horizon. Furthermore, there is no need to use
a large value for the number of jobs in the rollout horizon, because it will usually not

22 Marko Ðurasević, Domagoj Jakobović

lead to significant improvements beyond a certain point, which can nicely be seen
when the fixed number of jobs is used with the rollout algorithm is used. Namely,
the number of jobs in the rollout horizon larger or equal to 20 there is no difference
in the obtained results. The reason is that jobs which are released much later in time
are hardly going to be scheduled at the current moment in time, since other jobs can
be scheduled and executed in the meantime. Waiting for jobs which are released too
much in the future would just lead to a poor schedule and significantly increase the
tardiness of the entire schedule.

r
0

r
0.
03

r
0.
05

r
0.
1

r
0.
2

r
0.
5

r
1

n
0

n
3

n
5

n
10

n
20

n
50

n
10

0

10

10.5

11

Fig. 5: Box plot representation of results for the rollout algorithm

5.5 Comparison of all static scheduling methods

In this section the best results from all the methods will be compared with each other.
Since experiments from different methods will be used, a proper nomenclature needs
to be defined. If static terminal nodes were used, this will be denoted with "S" and
the index of the combination of static nodes (from Table 4) that was used. The ex-
periments which use look-ahead will be denoted with "L", with "l" denoting that the
look-ahead factor is used, and "n" that a constant number of jobs in the look-ahead
horizon is used. The value of the look-ahead parameter will be denoted immediately
after the "l" or "n" flag. If the static terminal nodes are used together with look-ahead,
then the flag "u" will be used to denote that the static terminals are calculated based
on all unreleased jobs, while the "ul" flag will denote that the static terminals are cal-
culated based on all unreleased jobs outside the look-ahead horizon. The use of IDRs
will be denoted with "I", after which the index of the applied IDR node combination
(from Table 6) will be denoted. The experiments which use the rollout algorithm will
be denoted with "R", followed by either "r", if the rollout factor is used, or "n", if the
number of jobs in the rollout-horizon is used. The value of the rollout parameter will
follow immediately after the "r" or "n" flag.

To measure the performance of the tested approaches, their results will be com-
pared to several other values and methods. The value denoted as baseline represents
the union of the best solutions for each problem instance in the test set, which were
obtained by various methods (including all methods mentioned in this paper). Al-
though this does not represent the true lower bound for the problem, it should be

Automatic design of dispatching rules for static scheduling conditions 23

close to it since a wide variety of algorithms and optimisation methods could not
obtain better results. The results obtained by automatically designed DRs generated
by GP, but without using any static information, are also included and denoted as
DGP. They will serve for outlining the improvements that each static method can
obtain in comparison when no static information is used. Furthermore, the results
achieved by the static version of the ATC rule [67] are also included. This ver-
sion of the ATC rule will calculate the priorities of jobs using the following PF:
πi, j =

wT
pi j

exp
[
−max(d j−pi, j−max(r j ,time),0)

k1 p̄

]
exp
[
−max(r j−time,0)

k2 p̄

]
, where time denotes

the current time of the system, p̄ the average processing time of all jobs waiting to be
scheduled, k1 and k2 the scaling parameters. The parameters which were used by the
ATC rule were 0.7 for k1 and 0.2 for k2, since for those values the rule achieved the
best results on the training set.

The results will also be compared to two genetic algorithms, floating point GA
(GA-FP) and permutation GA (GA-PERM), with the difference being in the encod-
ing of the solutions. The reason why genetic algorithms were selected is because in
several preliminary experiments they obtained among the best results in comparison
with several other methods. GA-FP encodes the solutions as an array of n numbers
between 0 and 1. These numbers determine the order in which the jobs should be
scheduled. In addition, they are also used to determine the machine on which each
job should be scheduled in a way that the interval from 0 to 1 is split into m subin-
tervals, and depending to which subinterval the value of the job belongs it will be
scheduled on the corresponding machine. The GA-PERM algorithm represents the
solution as a permutation of n numbers. This permutation array denotes the sequence
in which the jobs have to be scheduled, but do not determine the allocation of jobs
to machines. This is determined by a heuristic which schedules the current job on
the machine on which it would finish with its execution the soonest. The reason why
both algorithm were included is because GA-FP represents the most computationally
efficient representation with regards to the evaluation of the fitness function, while
GA-PERM achieves the best possible results, although with a higher execution time.
More details about the genetic algorithms and the parameter values can be found in
the appendix.

Table 8 contains the best results of all methods and their combinations, as well as
the average values of execution times in seconds calculated based on all experiment
runs. The results are additionally represented using box plots in Figure 6. It should be
stressed out that the table and figure denote only the few bes results for all the methods
and their combinations. However, for each combination of methods the parameters
were optimised similarly as it was denoted in the last sections for each parameter
individually. Therefore, it is ensured that the results for each method, and combina-
tion of methods are representable. DRs with static terminal nodes (indices 6 and 7)
achieve the worst results among all the tested methods. Although the two results de-
noted in the table achieve significantly better results than DGP, the improvement in
performance is too small to justify their use, since the increased complexity did not
have a large effect on the results. Furthermore, it is evident that they are also inferior
to the ATC rule, which signalises that they are not very competitive. The same holds
for IDRs (indices 12 and 14). They achieve significantly better results than DGP and

24 Marko Ðurasević, Domagoj Jakobović

also perform better than DRs with static terminal nodes, but still fall behind the ATC
rule. Thus, these two methods do not seem to bring any merit on their own, since
the ATC method outperforms both of them. The look-ahead method (indices 8 and
9) achieved more competitive results. It does not only significantly outperform DGP,
DRs with static nodes, and IDRs, but performs much better than the ATC rule. Al-
though it might seem that the look-ahead methods is a bit unstable due to the fact that
it obtains several outliers, it is still evident that most of the obtained results are better
than the best solution found by DGP. A further benefit of this method is that it results
in only a slight increase in the execution time compared to DGP. The results are still
far away from the baseline by around 20%. When comparing the results achieved
by look-ahead with GA-PERM, which achieved the best results, it can be seen that
although DRs with look-ahead achieve around 18% worse results, they construct the
schedule 4000 times faster.

The combinations of static nodes with look-ahead (indices 10, 11, and 12) and
static nodes with IDRs (index 15) do not bring any benefits, or improve the results
only slightly. Look-ahead and IDRs seem to already have a good overview on the
problem, so the additional information that is provided to them by static terminal
nodes does not improve the results. However, combining IDRs with look-ahead (in-
dices 16 and 17) does significantly improve the performance when compared to both
methods individually. This demonstrates that these two methods complement each
other well, with look-ahead providing information about the future in the current
schedule, and IDRs providing information about previously created schedules which
can serve to correct certain mistakes which would be done only by using look-ahead.
Thus, look-ahead will ensure that in each iteration a better schedule is constructed,
whereas the iterative part will ensure that in the next iteration the DRs fixes possible
problems in the schedule. The downside is that the combination is to a certain extent
slower than DRs with look-ahead. However, this is still negligible when compared
to the execution time of the GAs, since the method is still around 2000 times faster
and achieves results which are worse of those obtained by GA-PERM by around
14% on average. Due to the fast execution speed of this method, it would also be
possible to try out all the generated DRs and select the best solution. In this case
the method would obtain results which are only by 9% worse, but it would still be 70
times faster. Adding static terminal nodes to the combination of IDRs and look-ahead
(indices 18 and 19) did not improve the obtained results, making this combination re-
dundant. Again, this is due to the reason that IDRs and look-ahead already have a
good overview of the entire problem.

Out of the tested GP methods the rollout algorithm obtains the best results, which
comes at the price that the execution times are significantly larger in comparison to
the other three methods. By using the rollout algorithm with dynamic DRs (indices
20 and 21) it is already evident that the method achieves results which are signifi-
cantly better than those obtained by any of the other static DR methods. The methods
in this case are even comparable with the results obtained by GP-FP, although still
falling behind GA-PERM by around 5%. Combining rollout with DRs with static
nodes (index 22) does not improve the results and only prolongs the execution time.
This is expected since the rollout algorithm relies on a good DR to create a good
approximation of the remaining schedule. Since DRs with static terminals have not

Automatic design of dispatching rules for static scheduling conditions 25

Table 8: Results for the execution times of the different methods

Index Method min med max execution time

1 Baseline 9.419 -
2 DGP 12.96 13.60 14.62 0.091
3 ATC 12.45 12.45 12.45 1.899
4 GA-FP 9.917 10.27 10.90 339.1
5 GA-PERM 9.521 9.584 9.695 681.0

6 S-2 12.27 13.21 15.10 0.105
7 S-5 12.06 13.30 16.59 0.105
8 L-n-10 10.82 11.83 14.60 0.113
9 L-n-100 11.02 11.64 13.53 0.159
10 L-n-10 S-u-5 11.22 12.46 14.21 0.144
11 L-n-10 S-ul-5 10.90 12.24 14.11 0.144
12 L-n-20 S-ul-5 11.10 11.64 14.54 0.156
13 I-3 11.87 13.08 13.94 0.155
14 I-4 11.82 13.18 14.39 0.155
15 I-4 S-5 12.11 12.88 14.31 0.180
16 I-4 L-n-5 10.75 11.17 14.41 0.207
17 I-4 L-n-100 10.53 11.10 12.44 0.321
18 I-4 L-n-10 S-ul-5 10.77 11.42 14.29 0.350
19 I-4 L-n-100 S-ul-5 10.52 11.85 13.07 0.456
20 R-n-3 9.956 10.37 10.65 101.0
21 R-n-20 9.790 10.08 10.88 375.5
22 R-n-20 S-5 9.769 10.08 10.74 495.6
23 R-n-10 L-n-10 9.713 9.914 10.62 204.9
24 R-n-20 L-n-10 9.744 9.903 10.74 356.3
25 R-n-3 L-n-100 9.773 10.05 10.69 98.11
26 R-n-10 L-n-20 S-u-5 9.731 9.999 10.94 352.9
27 R-n-3 L-n-50 S-u-5 9.965 10.27 11.11 179.3
28 R-n-3 L-n-20 S-ul-5 9.810 10.10 10.64 175.9
29 R-n-10 L-n-20 S-ul-5 9.674 9.898 10.25 372.8
30 R-n-10 L-n-100 S-ul-5 9.750 9.917 10.27 1603

achieved a good improvement over dynamic DRs on their own, they are also unable
to improve the performance of the rollout algorithm. However, by combining rollout
with DRs that use look-ahead (indices 23, 24, 25) leads not only to improvement in
the results, but also smaller execution time. The rollout algorithm can now be applied
with a smaller number of jobs in the rollout horizon and still achieve similar results as
when a larger horizon would be used with dynamic DRs. For example, in experiment
25 the rollout algorithm still achieves results that are worse than those of GA-PERM
by 4.6%, but is 7 times faster. In this case the method would be inferior to the baseline
by only around 6% on the average.

26 Marko Ðurasević, Domagoj Jakobović

B
a
selin

e

D
G
P

A
T
C

G
A
-F

P

G
A
-P

E
R
M

S
-1
4

S
-2
1

L
-l-1

0

L
-n
-1
0
0

L
-n
-1
0
S
-u
-2
1

L
-n
-1
0
S
-u
l-2

1

L
-n
-2
0
S
-u
l-2

1

I-3

I-4

I-4
S
-2
1

I-4
L
-n
-5

I-4
L
-n
-1
0
0

I-4
L
-n
-1
0
S
-u
l-2

1

I-4
L
-n
-1
0
0
S
-u
l-2

1

R
-n
-3

R
-n
-2
0

R
-n
-2
0
S
-2
1

R
-n
-1
0
L
-n
-1
0

R
-n
-2
0
L
-n
-1
0

R
-n
-3

L
-n
-1
0
0

R
-n
-1
0
L
-n
-2
0
S
-u
-2
1

R
-n
-3

L
-n
-5
0
S
-u
-2
1

R
-n
-3

L
-n
-2
0
S
-u
l-2

1

R
-n
-1
0
L
-n
-2
0
S
-u
l-2

1

R
-n
-1
0
L
-n
-1
0
0
S
-u
l-2

1

9

10

11

12

13

14

15

16

17

Fig. 6: Box plot representation of the results for all methods

Although one could think that by decreasing the execution time of GA-PERM
it could be made more competitive to the rollout algorithm, this is not the case. For
example, if GA-PERM is given roughly the same time as the rollout required for
experiment 25, it achieved a result of around 11.71. This shows that the algorithm
has a quite slow convergence, and that it cannot compete with the rollout algorithm
when speed is also considered. By additionally using static terminal nodes it is pos-
sible to further increase the performance of the rollout algorithm (indices 26 to 30),
but again with an increase in the execution times. However, with these combinations
the rollout algorithm obtains its best results (index 29). In that case the rollout algo-
rithm is still inferior to GA-PERM by 4% on the average, but the best result which
rollout obtained was only 1.6% worse than the best solution found by GA-PERM,
and 2.6% worse than the baseline solution. This proves that the rollout algorithm is
expressive enough to obtain high quality solutions similar to results of GAs or other
metaheuristic methods.

To better present the correlation of the execution times and the obtained results,
Figure 7 represents the dependence of the achieved minimum and median values
with the execution times. Each point is denoted with the index of the experiment it
represents from Table 8. Furthermore, the points which represent the Pareto front of
solutions are denoted in red, while the rest of solutions are represented with blue
points. Since the execution times for different methods have vastly different values,
a logarithmic scale was used for the axis which represents the execution times. The
figure shows how the different approaches are grouped together based on their perfor-
mance and execution times. The shortest execution times, but also the worst results,
are achieved by DRs evolved by DGP which is denoted with the index 2. The group
of results which use static terminal nodes, look-ahead, IDRs, or any combinations of
those methods are represented by points with indices from 6 to 19. These methods
can be seen to cover quite a large part of the values for the Twt criterion, with only

Automatic design of dispatching rules for static scheduling conditions 27

small differences in the execution times. Therefore, by slight increase of the execu-
tion time, large variation in the achieved results can be obtained. The static ATC rule
(index 3) achieved better results than DGP, but due to its slow execution time it is not
competitive to the other methods. The second group of results, those achieved by the
rollout algorithm and combinations of it with other methods, are denoted by indices
from 20 to 30. The results of these methods are centred around the result achieved
by the GAs (indices 4 and 5). This group of results shows to cover a small range
of the values for the Twt criterion, but a large part of the execution times achieved
by the procedures. This means that to improve the results even by a small extent, it
is required to significantly prolong the execution times. Nevertheless, in some cases
the rollout algorithm can achieve results close to those of GA-PERM, but in a much
shorter time.

9.5 10 10.5 11 11.5 12 12.5 13

10−1

100

101

102

103

2

3

4

5

6
7

8
9
1011 12 1314

151617

18
19

20

21
22

23
24

25

26

2728

29

30

Minimum Twt value

E
xe
cu
ti
on

ti
m
e
(s
ec
on
d
s)

9.5 10 10.5 11 11.5 12 12.5 13

10−1

100

101

102

103

2

3

4
5

67
8

9 1011
12

13
14

151617

18
19

20

21
22

23
24

25

26

2728

29

30

Median Twt value

E
xe
cu
ti
on

ti
m
e
(s
ec
on
d
s)

Fig. 7: Dependency between the execution times and fitness achieved by the methods

Based on the presented results, several conclusions can be drawn. Static terminal
nodes, look-ahead, IDRs, and various combinations of those methods have achieved
better results than DGP, with only a small increase in the execution time, which was
at most 5 times larger than that of DGP. Out of these methods static terminals and
IDRs achieve inferior results than look-ahead, and also the static ATC. Thus, these
are not methods which should be used by themselves. However, the combination of
IDRs and look-ahead leads to better results that are still relatively far from the base-
line, but can be obtained in an almost negligible amount of time. This makes these
methods preferable if the execution time is as important as the quality of the schedule.
Additionally, because of their small execution times, it is possible to execute several
DRs for a certain problem, and select the best obtained solution. On the other hand,
the rollout algorithm achieved the best results, however, with much larger execution
times. By combining the rollout algorithm with look-ahead and static terminal nodes
it was possible to improve its results and decrease its execution time. Such combina-
tions achieved results which are to a smaller extent worse than the baseline and the
GA-PERM methods, with an execution time that is several times smaller. This makes
the rollout algorithm a better choice if the quality of the obtained results is of primary

28 Marko Ðurasević, Domagoj Jakobović

F
L
D

F
L
D
L

F
L
D
S

F
U
T
L
A
T
E

F
U
T
L
A
T
E
L

F
U
T
L
A
T
E
S

M
L
O
A
D

M
L
O
A
D
D

N
R
E
L

N
R
E
L
M

N
S
H
O
R
T

S
L
A
V
G
D

S
L
A
V
G
M

S
L
N
E
X
T

S
L
N
E
X
T
M

T
T
A
R

T
T
A
R
M

W
L
A
T
E

W
L
A
T
E
L

W
L
A
T
E
S

W
L
D

W
L
D
L

W
L
D
S

0

5

10

15

20

25

30

35

40

Static terminal node

N
u
m
b
er

of
o
cc
u
re
n
ce
s
of

te
rm

in
al

n
o
d
es

Fig. 8: Frequency of static terminal nodes

F
L
O
W

T
IM

E

IN
D
L
A
T
E

IN
D
T
A
R
D

IN
D
W

T
A
R
D

J
O
B
F
IN

IS
H

L
A
T
E

L
A
T
E
N
E
S
S

N
L
A
T
E

T
A
R
D
IN

E
S
S

0

5

10

15

20

25

30

35

40

IDR node

N
u
m
b
er

o
f
o
cc
u
re
n
ce
s
of

ID
R

n
o
d
es

Fig. 9: Frequency of IDR nodes in the DRs

importance, and the execution time is of less concern. Furthermore, unlike the GAs,
this method could also be applied for dynamic off-line scheduling, which makes it
applicable for a larger class of problems.

6 Analysis of static scheduling methods

6.1 Analysis of DRs with static terminal nodes

In this section the frequency with which the static terminal nodes appear in the indi-
viduals will be analysed. Thirty DRs which achieved the best performance on the test
set were selected, and the occurrence frequency of each static node in those individ-
uals was calculated.

Figure 8 shows a histogram which represents the number of occurrences of each
static node. The FUT LAT E node appears by far most frequently in the DRs, which
would mean that it is the most informative of the nodes. The FUT LAT ES node also
appears quite often, which denotes that the information about the possible tardiness
of jobs which would be released during the execution of the current job is useful to
the DRs. The other nodes which also take into account the possible tardiness of the
current job if it would not be scheduled right away were used seldom. This leads to
the conclusion that the more simple approximations are already informative enough.
The nodes which approximate the weighted number of tardy jobs, if the current job
would not be scheduled, also appear quite often in the individuals. Therefore, nodes
which try to approximate the tardiness of jobs appear most often and seem to be the
most informative.

6.2 Analysis of IDRs

The occurrence frequency of IDR nodes will be analysed in the same way, meaning
that the 30 IDRs, which achieved the best results on the test set, were collected and
the number of occurrences of each IDR node was calculated. Figure 9 represents the
histogram of the occurrence number of each IDR node. The INDWTARD terminal

Automatic design of dispatching rules for static scheduling conditions 29

appears most often, and seems to be useful since it directly supplies the information
about the weighted tardiness of a job in the previous schedule. The LATE function
node also appears very often, meaning that allowing for parts of the DR to specialise
for tardy jobs, while others specialise for jobs which are not tardy, provides to be ben-
eficial for the performance of the IDRs. The NLATE node is also frequently used, thus
the IDRs seem to benefit from the information on how many jobs were tardy in the
previous schedule. The INDLATE and INDTARD nodes are used to a certain extent
less than the previously mentioned nodes. The reason for this seems to be the absence
of the job weight in their calculation. Finally, the TARDINESS node appears in even
less occasions, meaning that the information about the total weighted tardiness of the
previous schedule is not important to the IDRs. Based on the these observations the
INDWTARD, INDTARD, INDLATE, NLATE, and LATE nodes seem to contain the
most useful information for the IDRs.

For the IDRs it is also interesting to analyse the number of times IDRs recreate
the schedule. This analysis will use the same 30 best IDRs which were used for the
previous analysis. When all problem instances and all IDRs are considered the IDRs
created the schedule 2.465 times on average. The last schedule which is created by the
IDR, but not returned as the result, was also included in the calculations. The value
shows that IDRs usually create the schedule two or three times. By analysing the
number of created schedules for each problem instance independently, it was shown
that for the easier instances the IDRs can find the best schedule immediately in the
first iteration. However, the IDRs still need to validate that they cannot improve the
schedule, which in the end means that for the easier problem instances they will create
the schedule two times. For more difficult problem instances the schedule is usually
created three or four times, with the maximum number of created schedules being
seven. This shows that the IDRs do not have the tendency to recreate the schedule
many times, but that they are rather capable of performing all improvements in only a
few iterations. During the analysis it was also observed that a few of the better IDRs
usually recreated the schedule only a few times, therefore it was tested whether there
is a correlation between the fitness of the IDRs and the number of times IDRs recreate
the schedule. To test the correlation between those two variables, the Spearman’s rho
test was performed, and the values of ρ = −0.097 and p = 0.612 were obtained.
Based on these two values it is not possible to conclude whether a correlation between
those two variables exists.

6.3 Analysis of the rollout algorithm

For the rollout algorithm it will be analysed whether there is a connection between
the quality of the results produced by the rollout algorithm and the quality of the DR
which was used for the approximations. The rollout algorithm with dynamic DRs was
used to test this, and the values ρ = 0.487 and p = 0.00034 were obtained. Therefore
it can be seen that there is a positive correlation between the quality of the rollout
algorithm and the DR it uses. However, the correlation is not quite strong to accept
it as a general rule. This can be also seen from the results, since several better results
for the rollout algorithm are achieved when better DRs are being used, however there

30 Marko Ðurasević, Domagoj Jakobović

Table 9: Details about the problem instance used for analysis

Job j index 0 1 2 3 4 5 6 7 8 9 10 11

r j 15 98 1 25 47 31 59 42 56 3 21 19
dd j 15 104 43 76 96 70 84 78 102 64 27 43
w j 0.9 0.07 0.87 0.06 0.06 0.26 0.78 0.94 0.63 0.33 0.49 0.95
p0 j 73 62 47 58 65 38 12 33 92 99 1 18
p1 j 35 64 89 31 75 82 93 24 62 70 80 15
p2 j 45 5 9 24 47 19 92 62 31 92 18 96

are also cases where the rollout algorithm achieves quite good results even if the DR
it uses performs poorly by itself.

6.4 Comparison of schedules generated by different methods

To illustrate the behaviour of the different methods, the schedules they create for
a simple scheduling problem instance will be analysed. Details about the problem
instance used for the analysis are presented in Table 9.

The schedules created by the dynamic DR and various static DR methods are
presented in Figure 10. Subfigure 10a represents the schedule which is created by the
best DR which was created by DGP. From the schedule it can be seen that the DR
makes two bad decisions, which lead to an increased value of the total weighted tar-
diness criterion. The first bad decision is that job j11 was scheduled before j10. Since
the execution time of job j10 would be only one time unit, it would be better to first
execute this job and delay the execution of job j11 until job j10 is finished. Unfortu-
nately, job j11 is released prior to job j10, and the DR has no means of detecting that
very soon a new job will be released, which should have a higher priority of being
scheduled. Thus, job j10 will have to wait until job j11 finishes with its execution, so
that it can execute on machine M0. This will consequentially lead to a larger tardiness
value. The second bad decision can be observed at the end of the schedule, where
the DR scheduled job j4 on machine M2. This job could have been scheduled at an
earlier time on M0 to reduce the tardiness. However, the DR chose to schedule job j4
on the machine for which it has the minimum processing time, and keep the machine
M0 free in case that other jobs would arrive into the system. In the end, the schedule
generated by the dynamic DR achieves the total weighted tardiness value of 0.596.

Subfigure 10b represents the schedule created by a selected DR with static termi-
nal nodes. The figure shows that the DR with static terminal nodes fixes only one of
the bad decisions which were performed by the dynamic DR. This DR performed a
better decision at the end of the schedule, by scheduling job j4 on machine M0 rather
than on machine M2. The total weighted tardiness of this schedule is 0.590.

The selected IDR created the schedule three times. The first created schedule is
presented in Subfigure 10a. The figure shows that the schedule constructed by this
IDR is the same as the one created by the dynamic DR. It is expected that in the
first iteration the IDR will perform equally well or worse than the dynamic DR, since
the IDR did not yet have access to any additional static information. Subfigure 10b

Automatic design of dispatching rules for static scheduling conditions 31

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 11 10 7 6

M1 9 3

M2 2 0 5 8 1 4

(a) Schedule generated by the best dynamic DR, and the IDR in the first iteration
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 11 10 7 6 4

M1 9 3

M2 2 0 5 8 1

(b) Schedule generated by a DR with static terminal nodes, and the IDR in the second
iteration

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 10 11 6 4

M1 0 7 9

M2 2 5 3 8 1

(c) Schedule generated by the best DR with look-ahead
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 10 11 7 6

M1 0 9

M2 2 3 5 8 1 4

(d) Schedule generated by the rollout algorithm

Fig. 10: Schedules generated by the static DR methods

denotes the schedule which was created in the second iteration by the IDR. The figure
shows that the IDR created the same schedule as the DR with static terminal nodes. It
seems that the IDR was able to capture the tardiness of job j4 in the last schedule, and
use this information to schedule it to another machine in the second iteration. In the
third iteration the IDR obtained a schedule of the same fitness value, and therefore the
procedure was terminated. In the end, the IDR created a schedule with a Twt value
of 0.590.

Subfigure 10c shows the schedule which was created by a DR which uses look-
ahead. The figure shows that the DR was able to fix both bad decisions which the
dynamic DR made. First it was able to determine that job j11 should not be scheduled
on machine M0 the very moment it arrives into the system, but with the help of look-
ahead it was able to determine that a job which has a higher priority will very soon
arrive into the system, and thus it delayed the scheduling of job j11. When job j10
arrives into the system, it is immediately scheduled on machine M0, and after it has
finished with its execution, job j11 is executed. At the end of the schedule, the DR
was also able to determine that it would be better to schedule job j4 immediately on
machine M0. Look-ahead can also be helpful in this situation, since the DR will have
a clear oversight of the look-ahead horizon, and will be aware that no new jobs will

32 Marko Ðurasević, Domagoj Jakobović

be released during it, therefore it can prioritise the available jobs and schedule them
without any drawbacks. The schedule also shows that the DR introduced several idle
times into the schedule to keep the machines free for high priority jobs which arrive
in the near future. Therefore, the DR kept machine M1 free until job j0 comes into
the system, since this job has a high weight and executes the fastest on machine M1.
The same happens for machine M0, where the DR does not schedule job j7, but rather
waits for job j6, and schedules job j7 on machine M1 on which it achieves the fastest
processing time. For machine M2 the same thing can be observed when scheduling
jobs j3 and j5. Therefore, it can be concluded that the look-ahead provides DRs with
more information than the previous two methods, and allows them to create better
schedules. Even though the DR introduced a lot of idle times into the system, it
nevertheless achieved a better performance than the previous two methods, with the
Twt value being 0.574.

Finally, Subfigure 10d represents the schedule created by the rollout algorithm.
The schedule is very similar to the one obtained by the DR with look-ahead, however,
the rollout algorithm tries to reduce the amount of idle times which are introduced
into the schedule. Once again, for machine M0, it was shown to be more beneficial
if job j10 is executed prior to job j11. The rollout algorithm also determined that a
certain amount of idle time should be introduced on machine M1 so that job j0 can
start immediately with its execution, to minimise the tardiness caused by it. However,
rollout determined that it was better to execute job j7 on machine M0 as soon as it
arrives, since this will allow for job j9 to be executed immediately on machine M1.
This will lead to a very small increase in the tardiness value for job j6, but will
allow for job j9 to finish significantly earlier, and thus greatly reduce its tardiness
value. Also, for machine M2 the algorithm determined that it is better to immediately
start executing job j3, since it will not only prevent job j5 of being late, but will
additionally reduce the tardiness of jobs j8 and j1. In this schedule, job j4 does finish
at a latter time with its execution, than it was in the case when a DR with look-
ahead was used. However, since the job has a very small weight, it will not have a
large effect on the Twt value of the entire schedule. In the end, the Twt value of this
schedule amounts to 0.510, which is the best value achieved by any of the methods.

Based on all previous observations it can be concluded that the rollout algorithm
has the best overlook on the problem. This can best be seen in the comparison with
look-ahead. The DR with look-ahead gives a higher priority to jobs which had a
shorter execution time on the current machine, and thus introduced several idle times
to keep the machines free for those jobs. However, this had a negative effect on the
later parts of the schedule, where these decisions lead to an increased tardiness of
some other jobs. Even with look-ahead it is hard for the DR to predict all the effects
a scheduling decision could have on the future of the system. However, the rollout
algorithm can try out all the combinations at each scheduling decision, and approxi-
mate the influence of this decision on the rest of the schedule with a good DR. This
gives rollout an unparalleled overview of the problem, and allows it perform deci-
sions at the beginning of the schedule, which will not have a negative influence on
the later parts of the schedule.

Automatic design of dispatching rules for static scheduling conditions 33

7 Conclusion

The objective of this paper was to analyse different ways of adapting automati-
cally generated DRs to improve their performance for the static and off-line schedul-
ing problems. The paper analysed how additional static terminal nodes, look-ahead,
IDRs, and the rollout algorithm improve the performance of DRs for scheduling prob-
lems under static conditions. The results demonstrate that the various methods offer
different levels of improvement over dynamic DRs, and obtain vastly different execu-
tion times. The rollout algorithm achieved the overall best results out of the previous
four methods. Although the method was unable to outperform the results of an effec-
tive GA, it obtained results that came quite close but in a smaller execution time. The
other methods did not achieve better results than the GA. However, their execution
time is almost negligible when compared to that of the GA, and in most cases they
achieved better results than dynamic DRs. Out of these three methods, look-ahead
achieved the best results and has demonstrated to offer the best results in the least
amount of time required to construct them. Additional tests demonstrated that that
combining various methods mostly leads to even better performance of the DRs.

Based on the previously outlined observations, it can be concluded that the tested
static methods achieved improved results over the DRs generated for dynamic en-
vironments. Even more, the proposed rollout algorithm is demonstrated to be very
competitive with GAs, obtaining results worse by only a few percent but in a much
smaller amount of time. Since the tested methods have different execution times, it
is possible to select the one which offers the best trade-off between the quality of
the obtained results and the time needed to create the schedule. Although this study
did consider four methods for adapting DRs to static conditions, it is still evident
from the execution times that a huge gap exists which was not filled by any of the
considered methods. Therefore, it should still be possible to cover that area by using
other methods or adaptations of the methods considered in this study. Furthermore,
this study considered only the total weighted tardiness criterion. Therefore, in the
future this study could be extended by considering other scheduling criteria like the
makespan and flowtime, or multi-objective optimisation could also be coupled to-
gether with these methods. Another possibility to improve this research would be
to combine these methods with other methods that can improve the performance of
DRs, but which are not exclusively applicable to static scheduling conditions (like
ensemble learning). This would enable the methods to probably achieve even better
results than those denoted in this paper. This research considers only four methods to
adapt DRs for static conditions, but it would be possible to develop novel methods of
adapting DRs for static scheduling problems. Another line of research would be to
improve the used methods to obtain better results in less time. For example, it would
be interesting that in each step the rollout heuristic does not create the entire schedule
by using a DR, but rather a part of the schedule, so that the scheduling decision is
based only on that partially created schedule. This should improve the execution time
of the method, however, the question is how it would effect the performance. Thus,
it can be seen that many open questions and possibilities for improvement remain in
this topic.

34 Marko Ðurasević, Domagoj Jakobović

Conflict of interest and funding

Funding: None.
Conflict of Interest: The authors declare that they have no conflict of interest.

References

1. Adyanthaya, S., Geilen, M., Basten, T., Schiffelers, R., Theelen, B., Voeten, J.: Fast multiprocessor
scheduling with fixed task binding of large scale industrial cyber physical systems. In: Proceedings
of the Euromicro Conference on Digital System Design 2013, 4-6 September 2013, Los Alamitos,
California, pp. 979–988. Institute of Electrical and Electronics Engineers, United States (2013). DOI
10.1109/DSD.2013.111

2. Bertsekas, D.P.: Rollout Algorithms for Discrete Optimization: A Survey, pp. 2989–3013. Springer
New York, New York, NY (2013). DOI 10.1007/978-1-4419-7997-1_8. URL http://dx.doi.

org/10.1007/978-1-4419-7997-1_8
3. Bertsekas, D.P., Castanon, D.A.: Rollout Algorithms for Stochastic Scheduling Problems. Journal of

Heuristics 5(1), 89–108 (1999). DOI 10.1023/A:1009634810396. URL http://link.springer.

com/10.1023/A:1009634810396
4. Branke, J., Hildebrandt, T., Scholz-Reiter, B.: Hyper-heuristic Evolution of Dispatching Rules: A

Comparison of Rule Representations. Evolutionary Computation 23(2), 249–277 (2015). DOI
10.1162/EVCO_a_00131. URL http://www.mitpressjournals.org/doi/10.1162/EVCO_

a_00131
5. Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated Design of Production Scheduling

Heuristics: A Review. IEEE Transactions on Evolutionary Computation 20(1), 110–124 (2016). DOI
10.1109/TEVC.2015.2429314. URL http://ieeexplore.ieee.org/document/7101236/

6. Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M., Reuther, A.I., Robertson, J.P.,
Theys, M.D., Yao, B., Hensgen, D., Freund, R.F.: A Comparison of Eleven Static Heuristics for Map-
ping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems. Journal of
Parallel and Distributed Computing 61(6), 810–837 (2001). DOI 10.1006/jpdc.2000.1714. URL
http://linkinghub.elsevier.com/retrieve/pii/S0743731500917143

7. Cheng, C.T., Lin, J.Y., Sun, Y.G., Chau, K.: Long-term prediction of discharges in manwan hy-
dropower using adaptive-network-based fuzzy inference systems models. In: L. Wang, K. Chen, Y.S.
Ong (eds.) Advances in Natural Computation, pp. 1152–1161. Springer Berlin Heidelberg, Berlin,
Heidelberg (2005)

8. Cheng, R., Gen, M., Tsujimura, Y.: A tutorial survey of job-shop scheduling problems using genetic
algorithms—i. representation. Computers & Industrial Engineering 30(4), 983–997 (1996). DOI
10.1016/0360-8352(96)00047-2. URL https://doi.org/10.1016/0360-8352(96)00047-2

9. Cheng, R., Gen, M., Tsujimura, Y.: A tutorial survey of job-shop scheduling problems using ge-
netic algorithms, part II: hybrid genetic search strategies. Computers & Industrial Engineering
36(2), 343–364 (1999). DOI 10.1016/s0360-8352(99)00136-9. URL https://doi.org/10.1016/

s0360-8352(99)00136-9
10. Cheng, V., Crawford, L., Menon, P.: Air traffic control using genetic search techniques. In: Proceed-

ings of the 1999 IEEE International Conference on Control Applications, vol. 1, pp. 249–254 (1999).
DOI 10.1109/CCA.1999.806209. URL http://ieeexplore.ieee.org/document/806209/

11. Dimopoulos, C., Zalzala, A.: Recent developments in evolutionary computation for manufacturing
optimization: problems, solutions, and comparisons. IEEE Transactions on Evolutionary Compu-
tation 4(2), 93–113 (2000). DOI 10.1109/4235.850651. URL http://ieeexplore.ieee.org/

document/850651/
12. Dimopoulos, C., Zalzala, A.M.: A genetic programming heuristic for the one-machine total tardiness

problem. In: Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, vol. 3.
IEEE (1999)

13. Dimopoulos, C., Zalzala, A.M.: Investigating the use of genetic programming for a classic one-
machine scheduling problem. Advances in Engineering Software 32(6), 489–498 (2001)

14. Ernst, A., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: A review of appli-
cations, methods and models. European Journal of Operational Research 153(1), 3–27 (2004). DOI
10.1016/s0377-2217(03)00095-x. URL https://doi.org/10.1016/s0377-2217(03)00095-x

http://dx.doi.org/10.1007/978-1-4419-7997-1_8
http://dx.doi.org/10.1007/978-1-4419-7997-1_8
http://link.springer.com/10.1023/A:1009634810396
http://link.springer.com/10.1023/A:1009634810396
http://www.mitpressjournals.org/doi/10.1162/EVCO_a_00131
http://www.mitpressjournals.org/doi/10.1162/EVCO_a_00131
http://ieeexplore.ieee.org/document/7101236/
http://linkinghub.elsevier.com/retrieve/pii/S0743731500917143
https://doi.org/10.1016/0360-8352(96)00047-2
https://doi.org/10.1016/s0360-8352(99)00136-9
https://doi.org/10.1016/s0360-8352(99)00136-9
http://ieeexplore.ieee.org/document/806209/
http://ieeexplore.ieee.org/document/850651/
http://ieeexplore.ieee.org/document/850651/
https://doi.org/10.1016/s0377-2217(03)00095-x

Automatic design of dispatching rules for static scheduling conditions 35

15. Ferreira, C.: Gene expression programming: a new adaptive algorithm for solving problems. Complex
Systems 13(2), 87–129 (2001). URL http://arxiv.org/abs/cs/0102027

16. Fotovatikhah, F., Herrera, M., Shamshirband, S., wing Chau, K., Ardabili, S.F., Piran, M.J.: Survey
of computational intelligence as basis to big flood management: challenges, research directions and
future work. Engineering Applications of Computational Fluid Mechanics 12(1), 411–437 (2018).
DOI 10.1080/19942060.2018.1448896

17. Gao, J., Gen, M., Sun, L., Zhao, X.: A hybrid of genetic algorithm and bottleneck shifting for multi-
objective flexible job shop scheduling problems. Computers & Industrial Engineering 53(1), 149–162
(2007). DOI 10.1016/j.cie.2007.04.010. URL https://doi.org/10.1016/j.cie.2007.04.010

18. Geiger, C.D., Uzsoy, R., Aytuğ, H.: Rapid Modeling and Discovery of Priority Dispatching Rules:
An Autonomous Learning Approach. Journal of Scheduling 9(1), 7–34 (2006). DOI 10.1007/
s10951-006-5591-8. URL http://link.springer.com/10.1007/s10951-006-5591-8

19. Gogna, A., Tayal, A.: Metaheuristics: review and application. Journal of Experimental & Theoretical
Artificial Intelligence 25(4), 503–526 (2013). DOI 10.1080/0952813X.2013.782347

20. Hansen, J.V.: Genetic search methods in air traffic control. Computers & Operations Research 31(3),
445–459 (2004). DOI 10.1016/S0305-0548(02)00228-9. URL http://linkinghub.elsevier.

com/retrieve/pii/S0305054802002289

21. Hart, E., Ross, P., Corne, D.: Evolutionary Scheduling: A Review. Genetic Programming and Evolv-
able Machines 6(2), 191–220 (2005). DOI 10.1007/s10710-005-7580-7. URL http://link.

springer.com/10.1007/s10710-005-7580-7

22. Hart, E., Sim, K.: A Hyper-Heuristic Ensemble Method for Static Job-Shop Scheduling. Evolu-
tionary Computation 24(4), 609–635 (2016). DOI 10.1162/EVCO_a_00183. URL http://www.

mitpressjournals.org/doi/10.1162/EVCO_a_00183

23. Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Towards improved dispatching rules for complex shop
floor scenarios. In: Proceedings of the 12th annual conference on Genetic and evolutionary computa-
tion - GECCO ’10, p. 257. ACM Press, New York, New York, USA (2010). DOI 10.1145/1830483.
1830530. URL http://portal.acm.org/citation.cfm?doid=1830483.1830530

24. Hou, E., Ansari, N., Ren, H.: A genetic algorithm for multiprocessor scheduling. IEEE Transactions
on Parallel and Distributed Systems 5(2), 113–120 (1994). DOI 10.1109/71.265940. URL https:

//doi.org/10.1109/71.265940

25. Ingimundardottir, H., Runarsson, T.P.: Supervised learning linear priority dispatch rules for job-shop
scheduling. In: C.A.C. Coello (ed.) Learning and Intelligent Optimization: 5th International Confer-
ence, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers, pp. 263–277. Springer (2011). DOI
10.1007/978-3-642-25566-3_20. URL https://doi.org/10.1007/978-3-642-25566-3_20

26. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in memetic
algorithms for multiobjective permutation flowshop scheduling. IEEE Transactions on Evolutionary
Computation 7(2), 204–223 (2003). DOI 10.1109/tevc.2003.810752. URL https://doi.org/10.

1109/tevc.2003.810752

27. Jakobović, D., Budin, L.: Dynamic scheduling with genetic programming. In: Genetic Programming:
9th European Conference, EuroGP 2006, Budapest, Hungary, April 10-12, 2006. Proceedings, pp.
73–84. Springer Berlin Heidelberg, Berlin, Heidelberg (2006). DOI 10.1007/11729976_7. URL
https://doi.org/10.1007/11729976_7

28. Jakobović, D., Marasović, K.: Evolving priority scheduling heuristics with genetic programming.
Applied Soft Computing 12(9), 2781–2789 (2012). DOI 10.1016/j.asoc.2012.03.065. URL http:

//linkinghub.elsevier.com/retrieve/pii/S1568494612001780

29. Karunakaran, D., Chen, G., Zhang, M.: Parallel Multi-objective Job Shop Scheduling Using Ge-
netic Programming. In: Artificial Life and Computational Intelligence: Second Australasian Confer-
ence, ACALCI 2016, Canberra, Australia, February 2-5, 2016, Proceedings, pp. 234–245. Springer
(2016). DOI 10.1007/978-3-319-28270-1_20. URL http://link.springer.com/10.1007/

978-3-319-28270-1_20

30. Keijzer, M., Babovic, V.: Dimensionally Aware Genetic Programming. Proceedings of the Genetic
and Evolutionary Computation Conference 2, 1069–1076 (1999). URL http://www.cs.bham.ac.

uk/~wbl/biblio/gecco1999/GP-420.pdf

31. Kofler, M., Wagner, S., Beham, A., Kronberger, G., Affenzeller, M.: Priority Rule Generation with
a Genetic Algorithm to Minimize Sequence Dependent Setup Costs. In: Computer Aided Sys-
tems Theory, Las Palmas de Gran Canaria, Spain, February 15-20, 2009, pp. 817–824. Springer
(2009). DOI 10.1007/978-3-642-04772-5_105. URL http://link.springer.com/10.1007/

978-3-642-04772-5_105

http://arxiv.org/abs/cs/0102027
https://doi.org/10.1016/j.cie.2007.04.010
http://link.springer.com/10.1007/s10951-006-5591-8
http://linkinghub.elsevier.com/retrieve/pii/S0305054802002289
http://linkinghub.elsevier.com/retrieve/pii/S0305054802002289
http://link.springer.com/10.1007/s10710-005-7580-7
http://link.springer.com/10.1007/s10710-005-7580-7
http://www.mitpressjournals.org/doi/10.1162/EVCO_a_00183
http://www.mitpressjournals.org/doi/10.1162/EVCO_a_00183
http://portal.acm.org/citation.cfm?doid=1830483.1830530
https://doi.org/10.1109/71.265940
https://doi.org/10.1109/71.265940
https://doi.org/10.1007/978-3-642-25566-3_20
https://doi.org/10.1109/tevc.2003.810752
https://doi.org/10.1109/tevc.2003.810752
https://doi.org/10.1007/11729976_7
http://linkinghub.elsevier.com/retrieve/pii/S1568494612001780
http://linkinghub.elsevier.com/retrieve/pii/S1568494612001780
http://link.springer.com/10.1007/978-3-319-28270-1_20
http://link.springer.com/10.1007/978-3-319-28270-1_20
http://www.cs.bham.ac.uk/~wbl/biblio/gecco1999/GP-420.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco1999/GP-420.pdf
http://link.springer.com/10.1007/978-3-642-04772-5_105
http://link.springer.com/10.1007/978-3-642-04772-5_105

36 Marko Ðurasević, Domagoj Jakobović

32. Koza, J.R.: Genetic programming: A paradigm for genetically breeding populations of computer pro-
grams to solve problems. Tech. rep., Stanford, CA, USA (1990)

33. Koza, J.R.: Human-competitive results produced by genetic programming. Genetic Programming
and Evolvable Machines 11(3-4), 251–284 (2010). DOI 10.1007/s10710-010-9112-3. URL http:

//link.springer.com/10.1007/s10710-010-9112-3

34. Lee, J.H., Yu, J.M., Lee, D.H.: A tabu search algorithm for unrelated parallel machine scheduling with
sequence- and machine-dependent setups: minimizing total tardiness. The International Journal of Ad-
vanced Manufacturing Technology 69(9-12), 2081–2089 (2013). DOI 10.1007/s00170-013-5192-6.
URL http://link.springer.com/10.1007/s00170-013-5192-6

35. Lee, Y.H., Bhaskaran, K., Pinedo, M.: A heuristic to minimize the total weighted tardiness with
sequence-dependent setups. IIE transactions 29(1), 45–52 (1997)

36. Li, X., Olafsson, S.: Discovering Dispatching Rules Using Data Mining. Journal of Scheduling
8(6), 515–527 (2005). DOI 10.1007/s10951-005-4781-0. URL http://link.springer.com/

10.1007/s10951-005-4781-0

37. Lin, C.W., Lin, Y.K., Hsieh, H.T.: Ant colony optimization for unrelated parallel machine scheduling.
The International Journal of Advanced Manufacturing Technology 67(1-4), 35–45 (2013). DOI 10.
1007/s00170-013-4766-7. URL http://link.springer.com/10.1007/s00170-013-4766-7

38. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic Mapping of a Class of
Independent Tasks onto Heterogeneous Computing Systems. Journal of Parallel and Distributed
Computing 59(2), 107–131 (1999). DOI 10.1006/jpdc.1999.1581. URL http://linkinghub.

elsevier.com/retrieve/pii/S0743731599915812

39. Masood, A., Mei, Y., Chen, G., Zhang, M.: Many-objective genetic programming for job-shop
scheduling. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 209–216. IEEE (2016).
DOI 10.1109/CEC.2016.7743797. URL http://ieeexplore.ieee.org/document/7743797/

40. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 1802, pp. 121–132 (2000). DOI 10.1007/978-3-540-46239-2_9

41. Miyashita, K.: Job-shop scheduling with genetic programming. In: Proceedings of the 2Nd Annual
Conference on Genetic and Evolutionary Computation, GECCO’00, pp. 505–512. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (2000). URL http://dl.acm.org/citation.cfm?id=

2933718.2933809

42. Moazenzadeh, R., Mohammadi, B., Shamshirband, S., wing Chau, K.: Coupling a firefly algorithm
with support vector regression to predict evaporation in northern iran. Engineering Applications of
Computational Fluid Mechanics 12(1), 584–597 (2018). DOI 10.1080/19942060.2018.1482476

43. Morton, T.E., Pentico, D.W.: Heuristic Scheduling Systems. John Wiley And Sons, Inc. (1993)
44. Najafi, B., Ardabili, S.F., Shamshirband, S., wing Chau, K., Rabczuk, T.: Application of anns, an-

fis and rsm to estimating and optimizing the parameters that affect the yield and cost of biodiesel
production. Engineering Applications of Computational Fluid Mechanics 12(1), 611–624 (2018).
DOI 10.1080/19942060.2018.1502688

45. Nguyen, S., Mei, Y., Zhang, M.: Genetic programming for production scheduling: a survey with
a unified framework. Complex & Intelligent Systems 3(1), 41–66 (2017). DOI 10.1007/
s40747-017-0036-x. URL http://link.springer.com/10.1007/s40747-017-0036-x

46. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: A Computational Study of Representations in Ge-
netic Programming to Evolve Dispatching Rules for the Job Shop Scheduling Problem. IEEE Trans-
actions on Evolutionary Computation 17(5), 621–639 (2013). DOI 10.1109/TEVC.2012.2227326.
URL http://ieeexplore.ieee.org/document/6353198/

47. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Dynamic multi-objective job shop scheduling: A ge-
netic programming approach. In: Automated Scheduling and Planning: From Theory to Practice, pp.
251–282. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). DOI 10.1007/978-3-642-39304-4_
10. URL https://doi.org/10.1007/978-3-642-39304-4_10

48. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Learning iterative dispatching rules for job shop
scheduling with genetic programming. The International Journal of Advanced Manufacturing Tech-
nology 67(1-4), 85–100 (2013). DOI 10.1007/s00170-013-4756-9. URL http://link.springer.

com/10.1007/s00170-013-4756-9

49. Nguyen, S., Zhang, M., Tan, K.C.: Enhancing genetic programming based hyper-heuristics for
dynamic multi-objective job shop scheduling problems. In: 2015 IEEE Congress on Evolution-
ary Computation (CEC), pp. 2781–2788. IEEE (2015). DOI 10.1109/CEC.2015.7257234. URL
http://ieeexplore.ieee.org/document/7257234/

http://link.springer.com/10.1007/s10710-010-9112-3
http://link.springer.com/10.1007/s10710-010-9112-3
http://link.springer.com/10.1007/s00170-013-5192-6
http://link.springer.com/10.1007/s10951-005-4781-0
http://link.springer.com/10.1007/s10951-005-4781-0
http://link.springer.com/10.1007/s00170-013-4766-7
http://linkinghub.elsevier.com/retrieve/pii/S0743731599915812
http://linkinghub.elsevier.com/retrieve/pii/S0743731599915812
http://ieeexplore.ieee.org/document/7743797/
http://dl.acm.org/citation.cfm?id=2933718.2933809
http://dl.acm.org/citation.cfm?id=2933718.2933809
http://link.springer.com/10.1007/s40747-017-0036-x
http://ieeexplore.ieee.org/document/6353198/
https://doi.org/10.1007/978-3-642-39304-4_10
http://link.springer.com/10.1007/s00170-013-4756-9
http://link.springer.com/10.1007/s00170-013-4756-9
http://ieeexplore.ieee.org/document/7257234/

Automatic design of dispatching rules for static scheduling conditions 37

50. Nie, L., Gao, L., Li, P., Zhang, L.: Application of gene expression programming on dynamic
job shop scheduling problem. In: Proceedings of the 2011 15th International Conference on
Computer Supported Cooperative Work in Design (CSCWD), pp. 291–295. IEEE (2011). DOI
10.1109/CSCWD.2011.5960088. URL http://ieeexplore.ieee.org/document/5960088/

51. Park, J., Nguyen, S., Zhang, M., Johnston, M.: Evolving ensembles of dispatching rules using ge-
netic programming for job shop scheduling. In: Genetic Programming: 18th European Confer-
ence, EuroGP 2015, Copenhagen, Denmark, April 8-10, 2015, pp. 92–104. Springer (2015). DOI
10.1007/978-3-319-16501-1_8. URL https://doi.org/10.1007/978-3-319-16501-1_8

52. Petrovic, S., Castro, E.: A genetic algorithm for radiotherapy pre-treatment scheduling. In: Applica-
tions of Evolutionary Computation: EvoApplications 2011, Torino, Italy, April 27-29, 2011, pp. 454–
463. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). DOI 10.1007/978-3-642-20520-0_46.
URL https://doi.org/10.1007/978-3-642-20520-0_46

53. Pfund, M., Fowler, J.W., Gadkari, A., Chen, Y.: Scheduling jobs on parallel machines with setup times
and ready times. Computers & Industrial Engineering 54(4), 764–782 (2008). DOI 10.1016/j.cie.
2007.08.011. URL http://linkinghub.elsevier.com/retrieve/pii/S036083520700229X

54. Pfund, M., Fowler, J.W., Gadkari, A., Chen, Y.: Scheduling jobs on parallel machines with setup times
and ready times. Computers & Industrial Engineering 54(4), 764–782 (2008)

55. Pfund, M.E., Mason, S.J., Fowler, J.W.: Semiconductor Manufacturing Scheduling and Dispatch-
ing. In: Handbook of Production Scheduling, pp. 213–241. Kluwer, Boston (2006). DOI
10.1007/0-387-33117-4_9. URL http://link.springer.com/10.1007/0-387-33117-4_9

56. Picek, S., Cupic, M., Rotim, L.: A new cost function for evolution of s-boxes. Evolutionary Compu-
tation 24(4), 695–718 (2016). DOI 10.1162/EVCO_a_00191. PMID: 27482748

57. Picek, S., Jakobovic, D., Miller, J.F., Batina, L., Cupic, M.: Cryptographic boolean functions: One
output, many design criteria. Applied Soft Computing 40, 635 – 653 (2016). DOI https://doi.org/
10.1016/j.asoc.2015.10.066. URL http://www.sciencedirect.com/science/article/pii/

S1568494615007103

58. Pinedo, M.L.: Scheduling: Theory, algorithms, and systems: Fourth edition, vol. 9781461423614.
Springer US, Boston, MA (2012). DOI 10.1007/978-1-4614-2361-4. URL http://link.

springer.com/10.1007/978-1-4614-2361-4

59. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming. Published via
http://lulu.com and freely available at http://www.gp-field-guide.org.uk (2008). URL
http://www.gp-field-guide.org.uk

60. Sarin, S.C., Varadarajan, A., Wang, L.: A survey of dispatching rules for operational control in wafer
fabrication. Production Planning & Control 22(1), 4–24 (2011). DOI 10.1080/09537287.2010.
490014. URL http://www.tandfonline.com/doi/abs/10.1080/09537287.2010.490014

61. Singh, S., Chana, I.: A survey on resource scheduling in cloud computing: Issues and challenges.
Journal of Grid Computing 14(2), 217–264 (2016). DOI 10.1007/s10723-015-9359-2. URL https:

//doi.org/10.1007/s10723-015-9359-2

62. Ðurasević, M., Jakobović, D.: Comparison of ensemble learning methods for creating ensembles of
dispatching rules for the unrelated machines environment. Genetic Programming and Evolvable Ma-
chines 19(1), 53–92 (2018). DOI 10.1007/s10710-017-9302-3. URL https://doi.org/10.1007/

s10710-017-9302-3

63. Ðurasević, M., Jakobović, D.: Evolving dispatching rules for optimising many-objective criteria in the
unrelated machines environment. Genetic Programming and Evolvable Machines 19(1), 9–51 (2018).
DOI 10.1007/s10710-017-9310-3. URL https://doi.org/10.1007/s10710-017-9310-3

64. Ðurasević, M., Jakobović, D.: Creating dispatching rules by simple ensemble combination. Journal of
Heuristics 25(6), 959–1013 (2019). DOI 10.1007/s10732-019-09416-x. URL https://doi.org/

10.1007%2Fs10732-019-09416-x

65. Ðurasević, M., Jakobović, D., Knežević, K.: Adaptive scheduling on unrelated machines with genetic
programming. Applied Soft Computing 48, 419–430 (2016). DOI 10.1016/j.asoc.2016.07.025. URL
http://linkinghub.elsevier.com/retrieve/pii/S1568494616303519

66. chuan Wang, W., wing Chau, K., Qiu, L., bo Chen, Y.: Improving forecasting accuracy of medium and
long-term runoff using artificial neural network based on eemd decomposition. Environmental Re-
search 139, 46 – 54 (2015). DOI https://doi.org/10.1016/j.envres.2015.02.002. URL http://www.

sciencedirect.com/science/article/pii/S0013935115000298. Environmental Research
on Hydrology and Water Resources

67. Yang-Kuei, L., Chi-Wei, L.: Dispatching rules for unrelated parallel machine scheduling with re-
lease dates. The International Journal of Advanced Manufacturing Technology 67(1-4), 269–

http://ieeexplore.ieee.org/document/5960088/
https://doi.org/10.1007/978-3-319-16501-1_8
https://doi.org/10.1007/978-3-642-20520-0_46
http://linkinghub.elsevier.com/retrieve/pii/S036083520700229X
http://link.springer.com/10.1007/0-387-33117-4_9
http://www.sciencedirect.com/science/article/pii/S1568494615007103
http://www.sciencedirect.com/science/article/pii/S1568494615007103
http://link.springer.com/10.1007/978-1-4614-2361-4
http://link.springer.com/10.1007/978-1-4614-2361-4
http://www.gp-field-guide.org.uk
http://www.tandfonline.com/doi/abs/ 10.1080/09537287.2010.490014
https://doi.org/10.1007/s10723-015-9359-2
https://doi.org/10.1007/s10723-015-9359-2
https://doi.org/10.1007/s10710-017-9302-3
https://doi.org/10.1007/s10710-017-9302-3
https://doi.org/10.1007/s10710-017-9310-3
https://doi.org/10.1007%2Fs10732-019-09416-x
https://doi.org/10.1007%2Fs10732-019-09416-x
http://linkinghub.elsevier.com/retrieve/pii/S1568494616303519
http://www.sciencedirect.com/science/article/pii/S0013935115000298
http://www.sciencedirect.com/science/article/pii/S0013935115000298

38 Marko Ðurasević, Domagoj Jakobović

279 (2013). DOI 10.1007/s00170-013-4773-8. URL http://link.springer.com/10.1007/

s00170-013-4773-8

68. Yaseen, Z.M., Sulaiman, S.O., Deo, R.C., Chau, K.W.: An enhanced extreme learning machine model
for river flow forecasting: State-of-the-art, practical applications in water resource engineering area
and future research direction. Journal of Hydrology 569, 387 – 408 (2019). DOI https://doi.org/10.
1016/j.jhydrol.2018.11.069. URL http://www.sciencedirect.com/science/article/pii/

S0022169418309545

69. Zhou, H., Feng, Y., Han, L.: The hybrid heuristic genetic algorithm for job shop scheduling. Com-
puters & Industrial Engineering 40(3), 191–200 (2001). DOI 10.1016/s0360-8352(01)00017-1. URL
https://doi.org/10.1016/s0360-8352(01)00017-1

A Problem instance design

The processing times of jobs are generated from the interval pi j ∈ [0,100], by us-
ing either the uniform, normal (Gaussian), or quasi-bimodal distribution. The normal
distribution uses a mean of 51 and a standard deviation value of 20. If a value is
generated from outside of the allowed interval, then it is set to the nearest boundary.
For each processing time it will be randomly selected which one of the three afore-
mentioned distributions will be used for its generation. All job weights are generated
uniformly from the interval wT ∈< 0,1]. A higher value of the weight denotes that
the job has a higher priority. The release times of the jobs are generated by a uniform

distribution from the interval r j ∈
[
0, p̂

2

]
, where p̂ is defined as p̂ =

∑
n
j=1 ∑

m
i=1 pi j

m2 , and
pi j denotes the duration of job j on machine i, while m denotes the total number of
machines. The due dates of the jobs are also defined using a uniform distribution from
the interval d j ∈

[
r j +(p̂− r j)∗

(
1−T − R

2

)
,r j +(p̂− r j)∗

(
1−T + R

2

)]
, where pa-

rameter T represents the due date tightness, while the parameter R represents the due
date range. The due date range parameter defines the dispersion of the due date val-
ues, while the due date tightness adjusts the amount of jobs that will be late. Both of
those parameters assumed values of 0.2, 0.4, 0.6, 0.8 and 1 in various combinations
while generating the problem set. 1

The fitness of a single individual on the entire problem set is calculated so that
for each problem instance in the set the individual is used to create a schedule inde-
pendently from the other instances, and the Twt value for the obtained schedule is
calculated. Since problem instances in the sets come in different sizes, the obtained
Twt value for each instance is first normalised. The normalisation is performed by
using the following expression: fi =

Twt
nw̄p̄ , where n represents the number of jobs, w̄

represents the average of all job weights, while p̄ the average processing times of
jobs across machines and is calculated as p̄ = p̂

n . The normalised Twt values are then
summed up, and the obtained value represents the total fitness value for he problem
set.

B Parameter settings and tuning

In order to obtain the best possible results, the parameters for all tested methods
have been thoroughly optimised. This appendix provides the information on how the
parameter optimisation process was conducted.

http://link.springer.com/10.1007/s00170-013-4773-8
http://link.springer.com/10.1007/s00170-013-4773-8
http://www.sciencedirect.com/science/article/pii/S0022169418309545
http://www.sciencedirect.com/science/article/pii/S0022169418309545
https://doi.org/10.1016/s0360-8352(01)00017-1

Automatic design of dispatching rules for static scheduling conditions 39

B.1 GP parameters

The parameters which were optimised were the number of iterations, population size
(sizes of 200, 500, 1000, and 2000), mutation probability (values of 0.1, 0.3, 0.5,
0.7, 0.9), different tree depths (depths of 3, 5, 7, 9, 11, and 13), various function
nodes (basic arithmetic operators, minimum, maximum, if else branches, etc.), dif-
ferent crossover and mutation operators. In the cases of the function nodes and the
genetic operators the same constructive and destructive heuristics have been applied
as described for the selection of static terminal nodes. The parameters were optimised
independently from each other. This means that all parameters except one were fixed
to certain values, while several different values were tested for the remaining param-
eter. The parameter for which the best average values over 50 runs were obtained
was selected and the next parameter was optimised. Table 10 lists all the parameter
values which were in the end used by GP. As can be seen, several operators are used
for crossover and mutation. This means that in each iteration of the algorithm one
operator from the given set is randomly selected for crossover and one for mutation,
and then those two selected operators are applied in the given iteration.

Table 10: Parameter values used by GP

Parameter Value
Population size 1000
Termination criterion 80 000 iterations
Selection steady state GP using tournament selection
Tournament size 3
Initialisation ramped half-and-half
Mutation probability 0.3
Maximum tree depth 5
Crossover operators subtree, uniform, context-preserving, size-fair

Mutation operators subtree, Gauss, hoist, node complement, node replacement,
permutation, shrink

B.2 GA parameters

The parameters used by the GA-PERM are represented in Table 11, while the param-
eters used by the GA-FP algorithm are shown in Table 12. The parameter values for
these two algorithms were optimised similarly as it was performed for GP parame-
ters. The values that were tested for the population size were 30, 100, 200, and 1000,
whereas for the mutation probability the values 0.05, 0.1, 0.3, 0.5, and 0.7 were tested.
Since in this case more than one operator is again defined for each representation, the
procedure to select the operators is the same as described for GP.

40 Marko Ðurasević, Domagoj Jakobović

Table 11: Parameter values used by GA-PERM

Parameter Value
Population size 1000
Termination criterion 1 000 000 function evaluations
Selection steady state GP using tournament selection
Tournament size 3
Mutation probability 0.7

Crossover operators COSA, DPX, OBX, OPX, OX, OX2, PBX, PMX, SPX, ULX, UPMX,
cyclic

Mutation operators toggle, inverse, insert

Table 12: Parameter values used by GA-FP

Parameter Value
Population size 30
Termination criterion 1 000 000 function evaluations
Selection steady state GP using tournament selection
Tournament size 3
Mutation probability 0.3

Crossover operators arithmetic, average, bga, blxalpha, discrete, flat, heuristic, local,
onepoint, sbx

Mutation operators simple

	Introduction
	Background
	DR based methods for static scheduling
	Benchmark setup
	Results
	Analysis of static scheduling methods
	Conclusion
	Problem instance design
	Parameter settings and tuning

