A Software Framework for Interactive Visualization of Optimization Algorithms

MASTER THESIS No. 1666 MARIJA KALEBOTA KODŽOMAN

MENTOR: DOMAGOJ JAKOBOVIĆ, Ph. D. C. S.

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING, UNIVERSITY OF ZAGREB JULY 2018

Outline

Mathematical optimization problems

Optimization algorithms

Technologies

Implementation

Using the framework

Conclusion

Mathematical optimization problems

$\underset{x}{minimize } f(x) : \mathbb{R}^n \to \mathbb{R}$

Explicit constraints

Implicit constraints

 $\overrightarrow{x_l} \leq \overrightarrow{x} \leq \overrightarrow{x_u}$

 $g_i(x) \le 0$ $h_j(x) = 0$

Explicit constraints

$$\overrightarrow{x_l} \le \overrightarrow{x} \le \overrightarrow{x_u}$$

Optimization algorithms

Methods for solving optimization problems Different kinds and behaviour \rightarrow can be difficult to understand

Iterative \rightarrow visualization helps

Technologies

Python

Jupyter Notebook

ipywidgets

Technologies

Python

Jupyter Notebook

ipywidgets

[demonstration]

Implementation

Using the framework

[demonstration]

Conclusion

Interactive visualization

Modularity - easily extended and upgraded

Ease of use; suitable for demonstration purposes

Thank you!