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1. Introduction

Identification of recurring patterns is useful in many cases for example in advertising

where it helps to understand which group a person belongs to in order to target them

with ads or in identification of fraudulent activities where frauds are outliers. Although

many applications exist, this thesis will focus more closely on its application in car

engine testing.

Testing of car engines is a very long process and it needs to be done in multiple

stages. First, there is a calibration campaign where signals are measured for different

starting states, and afterwards, engine’s stability must also be tested which can take a

few weeks. What would be useful is if engine’s stability could be determined a priori

from calibration campaign’s tests. That is where recurring pattern detection comes in.

During tests, multiple signals are recorded at the same time. If patterns can be

found in tuples of chosen signals, engine’s stability might be determined by whether

or not its state, defined by other signals not used as clustering parameters, is similar at

every occurrence or most occurrences of some pattern.

This thesis will describe some clustering techniques, such as K-Means, DBSCAN

and OPTICS which can be used to achieve detection of recurring patterns, and will

compare them.
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2. Data

As mentioned in an earlier chapter, multiple signals (temperature, rotation speed, cool-

ing etc.) are recorded at the same time during testing. Those signals might not be

recorded at the same frequency therefore all of them will need to be resampled to the

common frequency in order to create time windows with the same number of samples

for each of them.

Since a signal can contain a myriad of samples in a given time window it is not

practical to use raw samples as point’s coordinates for clustering. It would be more

practical if each time-windowed signal can be described by some attribute e.g. mean

of all the samples in a window. That would significantly decrease cluster computation

time since the number of coordinates would be decreased by several magnitudes. That

is not to say that a signal cannot be described by multiple characteristics like average

derivation, mean, median etc. but in this thesis, for simplicity, a windowed signal will

only be described by its mean.

That being said, data points will be in the form

pi = (m1,m2, ...,mN)

where mn is a mean value of the n-th signal for an i-th time window and N is the

number of time windows.

For the purposes of comparing and displaying results only two signals will be used

because data points will then be 2-dimensional and easy to plot. Since the data is

confidential, real names of the two signals cannot be disclosed and will instead be

referred to as signals A and B, respectively.

The example data set has 7374 samples and its graph can be seen in Figure 2.1.
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3. Clustering Techniques

3.1. K-Means

K-Means is the most widely used algorithm for data clustering. Like its name suggests,

it groups data into K clusters by assigning the data to a cluster with the nearest mean.

Its simplicity and computational efficiency might be the exact reason for its popu-

larity.

3.1.1. Algorithm

To not complicate the algorithm with more words than necessary, the pseudo code of

the algorithm is outlined in Algorithm 1.

Algorithm 1 K-Means algorithm.

function KMEANS(K, data)

centroids ← pickInitialCentroidsFromData(K, data)

closest ← {} � Dictionary of points associated to centroids

loop

for point in data do

closest[point] ← findClosestCentroid(point, centroids)

end for

nextCentroids ← calculateCentroidsBasedOnClusterMeans(closest)

if nextCentroids = centroids then � Convergence point reached

return closest

end if

centroids ← nextCentroids

end loop

return closest

end function
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Now that the pseudo code for the algorithm is laid down, let us describe what

it does. The above function returns a dictionary closest which assigns the closest

centroid to each key (data point) .

The algorithm starts by picking initial centroids and starting a loop. In the loop,

to each data point the nearest centroid, which defines a cluster, is assigned. Then, the

cluster centroids are recalculated based on the means of the data in them. The loop

is repeated until the convergence point is reached i.e. the centroids have not changed

after recalculation.

pickInitialCentroidsFromData picks K random points from data and decides that

those points will be initial centroids.

findClosestCentroid finds the closest centroid to the current point. In order to deter-

mine which centroid is the closest, first, we must determine how the distance between

the points is calculated. Most commonly, Euclidean distance is used. There are more

ways, but that is out of the scope of this thesis.

Euclidean distance between points A and B is calculated by the following for-

mula

d(A,B) =
�

(a1 − b1)2 + (a2 − b2)2 + ...+ (aN − bN)2

where an and bn are coordinates of A and B, respectively.

Of course, the goal of the algorithm is to minimize the distance d of clusters’ mem-

bers to their centroids (means) therefore, since for all the points p it is true that p ∈ RN ,

minimization can also be done with d2 so as to not unnecessarily compute the square

root in order to save computational time. With that being said, the formula which will

be used in the minimization process is

d2(A,B) = (a1 − b1)
2 + (a2 − b2)

2 + ...+ (aN − bN)
2

or more formally

d2(A,B) =
N
�

i=1

(ai − bi)
2

calculateCentroidsBasedOnClusterMeans calculates, as function’s name suggests,

new centroids based on the current cluster means. To calculate a new centroid for a

cluster, the function calculates the mean value of all the points currently in that cluster

and that mean value becomes the new centroid of the cluster.
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3.1.2. Challenges

Optimal Number of Clusters

The first challenge is choosing an optimal K for the data at hand. One of the methods

to overcome that is running the algorithm many times but with an increased K each

time and then choosing K after which the increase in quality of groups is insignificant.

This method is called an elbow technique. Although there are more methods which

can be used to solve this problem, here, only the elbow method will be described.

Elbow method is a heuristic method for finding an optimal number of clusters. The

main principle of the method is to calculate the score of a clustering result for each

K ∈ {2, 3, ..., kmax} and find K for which a point of diminishing returns is reached.

For all Ks after that point an increase in result quality will be insignificant. Most

commonly, a score of a K-Means clustering result is represented by the ANOVA1 F-

Test. If the score is big that means that the variance between groups is much larger

than the variance within groups which is a good thing because the goal of clustering is

to group similar data, and if the score is low that means that the variance in the clusters

is large which means that clusters are chosen poorly.

F =
between group variance

within group variance
=

�
K

k=1
nk∗(µk−X)2

K−1
�

K

k=1

�nk

i=1
(Xki−µk)2

N−K

where K is number of clusters, nk is number of samples in k-th cluster, µk is the mean

value of k-th cluster, X is the mean of all data samples, Xki is i-th sample in k-th

cluster and N is overall sample size.

Non-Static Result

Since initial centroids are chosen randomly, the output of the algorithm for a fixed data

set will be different each time which means the result sometimes might not be optimal.

This can be solved by performing many runs of the algorithm and then choosing the

best result. Results can also be compared by performing an F-Test on them.

Flat Geometry

The third problem for which there is no solution is that K-Means only works with flat

geometry which means that if the data should be clustered by its shape rather than

1ANOVA is an acronym for "analysis of variance".
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distance, K-Means is not suitable for that and another algorithm must be used. This

would be the case if the plotted data looks like concentric circles and each circle should

be one cluster.

3.2. DBSCAN

Density-Based Spatial Clustering for Application with Noise (DBSCAN) is a clus-

tering algorithm which, as opposed to K-Means, calculates clusters based on the data

density rather than closeness. That allows clusters to take any number of shapes instead

of only circular ones, and solves the flat geometry issue of K-Means.

This algorithm’s core attribute is that it deals with noise really well. The algo-

rithm acknowledges that some samples are so different from others that they should

not belong to any group so it labels them as outliers or noise.

The algorithm requires two parameters, the � and N . � parameter is a radius within

which points are considered neighbors. The N parameter defines a minimum number

of neighbors a point needs in order for it to be considered core.

DBSCAN algorithm defines three different types of points: core, border and noise.

Core point is a point which has at least N−1 neighbor points around. Not all points

are considered neighbors, only the ones which are not further than � are considered as

such. If one core point is neighboring another, they belong to the same cluster.

Border point is a point which does not have at least N − 1 neighbors but it has a

neighbor which is a core point. That makes it a border point and it still belongs to a

cluster. If a border point is neighboring with more than one core point its cluster is the

same as the first core point found.

Noise point is just that, noise. It does not belong to any cluster since it does not

satisfy the requirements to be a core point, nor a border point.
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Algorithm 2 DBSCAN algorithm.

function DBSCAN(�, N, data)

// Find all core points.

for point in data do

if hasAtLeastKNeighbors(point, �, N − 1) then

markPointAsCore(point)

end if

end for

// Assign clusters to core points.

currentClusterIndex ← −1

for point in getCorePoints(data) do

if isAlreadyAssignedToACluster(point) then

continue

end if

currentClusterIndex ← currentClusterIndex+ 1

assignClusterIndexToPoint(point, currentClusterIndex)

for corePoint in recursivelyReachableCorePoints(point, data, �) do

assignClusterIndexToPoint(corePoint, currentClusterIndex)

end for

end for

// Go through all non-core points and distinguish border points from noise.

for point in getNonCorePoints(data) do

corePointNeighbor ← getCorePointNeighbor(point, data, �)

if corePointNeighbor is None then

markPointAsNoise(point)

continue

end if

assignClusterIndexToPoint(point, clusterIndexOf(corePointNeighbor))

end for

// Return map where to each point its cluster index is assigned (excluding noise).

return getPointToClusterIndexMap(data)

end function
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The pseudo code is split into three for loops. The first for loop marks points with

at least N − 1 neighbors as core points. The second loop iterates through all the core

points, and if the point is not yet assigned to a cluster, it will be assigned to a new one.

Additionally, after a core point is assigned to a new cluster, all core points directly

or indirectly (through other core points) reachable from it will also be assigned to the

same cluster. A point is reachable from another if they are not further than �. The third

loop iterates through all non-core points and determines if they are border, and belong

to some cluster, or noise points.

Now that the core of the algorithm is defined, some non-straightforward functions

used in the pseudo code will be explained in the following paragraphs.

recursivelyReachableCorePoints returns a list of all the core points which are neigh-

boring with the point itself or with its neighbors or their neighbors etc. This is used so

each core point can be assigned to the same cluster as its core point neighbor.

getCorePointNeighbor returns the first core point neighbor it can find for the point

given. If the point does not have a core neighbor then it returns None. If this method

returned None that means the point is a definitely a noise point and does not belong to

any cluster.

getPointToClusterIndexMap returns a map of points with assigned cluster indices to

which they belong to. Noise points can be included in the map or left out completely.

That is entirely up to the implementation. Of course, if noise points are included in the

map then they need to be assigned to a special value so that they are not confused with

the non-noise ones.

3.2.2. Challenges

Data Sets With Drastic Differences in Density

DBSCAN clusters data by using fixed � value. That works well when data has some-

what consistent density, but if the opposite is the case, then less dense regions could be

considered as noise rather than valid clusters but less dense.

Optimal Parameters

Parameter N , as well as �, depends mostly on the domain of the data. It often requires

a person to be familiar with the domain in order to decide which values are acceptable.
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In contrast to N , there have been some techniques proposed to find an optimal �.

Here, only one will be covered.

Finding an optimal � could be achieved by plotting a K-distance plot and choosing

as an epsilon value a distance at the maximum curvature. This method is entirely a

rule of thumb method, and it might not work really well on all data sets. The method

begins by calculating the minimal distance to k-th, k should not be confused with the

N , neighbor for all points in the data set. Then, distances are sorted in an ascending

order and plotted against their own index. So, distances will be on y-axis and their

indices on x-axis.

3.3. OPTICS

Ordering points to identify clustering structure (OPTICS) is very different from K-

Means and DBSCAN algorithms. It is not a clustering algorithm per se because its

output is not really a clustering result right away but a reachability distance graph.

After the distances are found it uses DBSCAN to actually cluster the points or the

points can be manually selected by looking at the graph.

Actually, the algorithm is quite similar to DBSCAN. It also requires a minimum

number of points N in order to identify core points, but the situation with � is a bit

different. � is not really required but usually is asked for by the libraries to reduce al-

gorithm’s time complexity. Contrary to DBSCAN, OPTICS does not assume constant

density of data. It acknowledges that some clusters are more dense than others.

The algorithm defines two terms: core distance and reachability distance.

Core distance is the minimal radius such that a point is considered a core point.

Within this radius a point must have at least N − 1 neighbors. If the radius is greater

than the � or a point simply does not have N − 1 neighbors, core distance is undefined.

Reachability distance reachability distance of point Q to P is given as

max(CoreDistanceP , d(P,Q))

where d(P,Q) is the distance between points Q and P . If CoreDistanceP is undefined

then the reachability distance from Q to P is also undefined.
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Figure 3.2: Core distance illustration for N = 5.

Figure 3.2 illustrates the core distance of a point P for N = 5. The point’s core

distance is the distance from P to its fourth nearest neighbor. If P ’s fourth neighbor

was further than its � neighborhood (illustrated by the outer circle) its core distance

would be undefined, and therefore any reachability distance from any other point to P

would also be undefined.

For any point inside the inner circle, the reachability distance to P is P ’s core

distance. For all points outside the inner circle, the reachability distance is the actual

distance to P (usually Euclidean).

3.3.1. Algorithm

As previously mentioned, OPTICS does not return clusters, instead, it returns points

ordered by reachability which can then be plotted and afterwards clusters can be found

by performing a DBSCAN on the data with � chosen according to the reachability plot.

On the plot clusters can be identified by the drops in the reachability.

It must be noted that points are not exactly ordered by the value of their reachability,

instead they are ordered both by reachability as well as the order they are processed in.

The pseudo code of the algorithm is outlined in Algorithm 3.
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Algorithm 3 OPTICS algorithm.

function OPTICS(�, N, data)

orderedPoints ← {} � Ordered set of processed points.

for point in data do

if isProcessed(point) then

continue

end if

markAsProcessed(point)

addToOrderedSet(point, orderedPoints)

if coreDistance(point, �, N, data) is not None then

minHeap ← {} � Min-heap used to order points by reachability.

neighbors ← getNeighbors(point, �, data)

updateHeapWithEpsNeighborhood(point,minHeap, neighbors, �, N)

for other in minHeap do

minHeap.remove(other)

markAsProcessed(other)

addToOrderedSet(other, orderedSet)

if coreDistance(point, �, N, data) is not None then

neighbors� ← getNeighbors(point, �, data)

updateHeapWithEpsNeighborhood(other,minHeap, neighbors�, �, N)

end if

end for

end if

end for

return orderedPoints

end function
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Algorithm 4 Update min-heap function.

function UPDATEHEAPWITHEPSNEIGHBORHOOD(point,minHeap, neighbors, �, N )

coreDistance ← coreDistance(point, �, N, data)

for neigh in neighbors do

if isProcessed(neigh) then

continue

end if

newReachabilityDistance ← max(coreDistance, d(point, neigh))

if reachabilityDistanceOf(neigh) is None then

setReachabilityDistance(neigh, newReachabilityDistance)

minHeap.insert(neigh)

else if newReachabilityDistance < reachabilityDistanceOf(neigh)

then

setReachabilityDistance(neigh, newReachabilityDistance)

minHeap.moveUp(neigh)

end if

end for

end function

In the algorithm it is assumed that, at the start, reachability of all the points is None

or undefined. The algorithm consists of the two main nested loops.

In the outer loop we iterate through all unprocessed points and each point we mark

as processed, add it to the ordered set which is the result of the algorithm and, if the

point has a defined core distance, we get its neighbors, add them to an empty min-heap

where neighbors are ordered by their smallest reachability distance to their already

processed neighbor.

The inner loop iterates through the points in min-heap, and basically does the same

thing as the outer one, but it does not construct a new min-heap, instead it uses the al-

ready constructed one. The most important thing to note here is that the inner loop iter-

ates through points sorted by their reachability whereas the outer loop iterates through

point in order as they were provided.

By far, the most important helper function of this algorithm is updateHeapWith-

EpsNeighborhood described in Algorithm 4, and it deserves a special explanation.

The function iterates through the unprocessed neighbors of the point provided. The

neighbors are checked if their old reachability, reachability distance to some other pro-

cessed point, is greater than the distance to the point provided. If that is true, their

14



reachability is updated with the new one and their place in the min-heap is updated. Of

course, if the old reachability was None, which would mean that the point has never

even been reached until then, it would be updated with the new one and the point will

be inserted in the heap.

The result of the algorithm is an ordered set of point sorted by their reachability and

the point’s reachability distance can be retrieved with reachabilityDistanceOf(point)

which can then be plotted and from the plot clusters can be determined.

3.3.2. Challenges

Although OPTICS solves same problems DBSCAN has, most prominently it does

not need � parameter, it still requires minimal neighbors parameter which still greatly

depends on the data domain.

OPTICS is still not a miracle clustering algorithm which groups data perfectly, ac-

tually it does not group them, but outputs their ordering by reachability. It still requires

manual intervention which points make up which clusters. That intervention can be

performed manually either by handpicking points or with DBSCAN with appropriate

� parameter.
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4.7. Of course, not only that the clusters are more dense but there are also fewer of

them since only denser areas will not be considered as noise. The mentioned graph

only contains 19 clusters as opposed to 71 shown in Figure 4.5.

4.3. OPTICS

As already mentioned, the output of OPTICS are not really clusters but points ordered

by reachability distances. When the result is retrieved, the distances can be plotted and

clusters can then be determined as valleys in the graph.

In Figure 4.8, the exact graph can be seen for the mentioned data set with param-

eters � = 2.5 and N = 10. Since a lot of clusters can be found in the graph, as index

gets higher, clusters are smaller and the valleys cannot so easily be seen but the first

few valleys are very well identifiable and they represent bigger clusters. The infinity

in the graph means that the distance is greater than �.

Figure 4.8: Reachability graph for the data set.

Points with reachability distances below the line in Figure 4.9 are considered non-

noise points. All the points with the distances continuously below the line belong to

the same cluster. As soon as one point has a distance greater than the line, the next

point with distance below the line will belong to the new cluster.
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Figure 4.9: Reachability graph for the data set with line at � ≈ 0.65.

The line in the above graph is set at � ≈ 0.65 to show how the clusters in the

DBSCAN’s result would look like in the reachability graph.

If the line is lowered to � ≈ 0.45, we can see that the first valley is split into two

valleys which results in splitting that cluster into two. The mentioned cluster is the

first one from the left colored purple in Figure 4.5. The line on the reachability graph

can be seen in Figure 4.10 and the clustering result using DBSCAN with parameters

� = 0.45 and N = 10 in Figure 4.11. The new result has 100 clusters different clusters,

and it can be seen how the mentioned purple cluster was split into two, one purple and

another dark green cluster.
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5. Summary

The majority of the thesis’ content was aimed at explaining the algorithms which can

be used to cluster data. That is because in order to find recurring patterns in the data,

similar data samples must be found, actually, similar samples are patterns.

K-Means algorithm is the simplest and easiest to understand but it requires the

knowledge of how many clusters are in the data which is not really suitable for find-

ing patterns in the measurements which can be very large and N -dimensional so they

cannot be plotted on the graph and clusters cannot be identifiable from looking at the

graph.

Also, contrary to OPTICS and DBSCAN, if K-Means is used for the measurement

data sets it will identify all points as some pattern which certainly cannot be true. Some

points in data sets will be noise for sure.

That leaves us with determining which is better, OPTICS or DBSCAN. DBSCAN

is really great if the density of a data set is consistent, but as it can be seen from sample

data set presented here, points further on the x-axis are less dense therefore if we want

to group those, OPTICS must be used instead of DBSCAN.
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Identifikacija ponavljajućih uzoraka kod mjerenja u testnim platformama

Sažetak

Mnogo informacija se može naći u uzorcima velikih setova podataka. Ovaj završni

rad opisuje neke često korištene algoritme grupiranja podataka kao što su K-Means,

DBSCAN i OPTICS koji se mogu koristiti za pronalazak grupa ili uzoraka. Nakon

što su metode opisane, navesti će se rezultati nad testnim podatkovnim setom te će se

odrediti koji je algoritam najbolji za grupiranje već navedenih testnih podataka.

Ključne riječi: grupiranje; podaci; znanost o podacima; uzorak; K-Means; OPTICS;

DBSCAN

Identification of Recurring Patterns for Test Bed Measurements

Abstract

A lot of information can be found by looking at the patterns in big data sets. This

thesis describes some common clustering techniques like K-Means, DBSCAN and

OPTICS which can be used to identify clusters or patterns. After the methods are

described, the results on a sample data set will be shown and the conclusion will be

drawn which method is the best for the data at hand.

Keywords: clustering; data; data science; pattern; K-Means; OPTICS; DBSCAN


