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Scheduling problems

• Allocating tasks (jobs) to 
certain resources 
(machines) [1]

• Goal: create a scheudule 
which optimises certain 
user defined criteria
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Scheduling problems
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Manufacturing

Airplane scheduling

Scheduling in grids/clusters

Scheduling on multiprocessors



Scheduling classification

• Due to a large amount of problems a special 
scheduling classification was designed [1]:
▫ Machine environment

▫ Optimised criteria

▫ Additional constraints

▫ Scheduling conditions
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Input of scheduling problems

• m machines and n jobs

• Job properties:
▫ Processing time

▫ Release time

▫ Due date

▫ Weight 

▫ Deadline

▫ ...
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Machine environments

• Single stage
▫ Job is executed on a single machine

▫ Single machine, unrelated 
machines

• Multi stage
▫ Job is executed on a series of 

machines

▫ Job shop, flow shop, open shop
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Additional constraints

• Machine breakdowns

• Machine eligibility 

• Precedence constraints

• Setup times

• Batch processing

• Release times

8



Optimisation criteria

• Total duration of the schedule

• Tardiness of all jobs

• The time jobs spent in the system

• Maximum tardiness

• Number of tardy jobs

• ....
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Scheduling conditions

• Parameter reliability:
▫ Deterministic

▫ Stochastic

• Parameter availability:
▫ Offline 

▫ Online

• Schedule construction:
▫ Static 

▫ Dynamic
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Dynamic scheduling

• No information about jobs is known beforehand

• Information about jobs becomes available as they 
are released

• The schedule needs to be constructed 
simultaneously with the system execution

• Speed is of the essence (decisions must be 
performed quickly)
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Solving scheduling problems

• Exact algorithms [2]
▫ Can obtain the optimal solution, but computationally expensive 

• Approximation algorithms [3]
▫ Obtain solutions worse than the optimal solution by a 

certain factor, but difficult to design

• Heuristic algorithms
▫ Applicable for various criteria and conditions
▫ Do not necessarily obtain the optimal solution
▫ Improvement heuristics – iteratively improve a schedule [4]
▫ Constructive heuristics – incrementally create a schedule
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Dispatching rules (DRs)

• Simple scheduling heuristics [5]

• At each scheduling decision they determine which 
job should be scheduled on which machine

• To determine which job should be used a priority 
function is used:

▫ EDD: 
1

𝑑𝑗

▫ WSPT: 
𝑤𝑗

𝑝𝑗

▫ ERD: 
1

𝑟𝑗
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Example of a DR
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Job 1:

• 𝑝 = 10
• 𝑑 = 17
• 𝑤 = 0.8

Job 2:

• 𝑝 = 7
• 𝑑 = 30
• 𝑤 = 0.5

π𝑗 =
𝑝𝑗 ∗ (𝑑𝑗 − 𝑡𝑖𝑚𝑒)

𝑤𝑗
π1 = 212.5

π2 = 420

Schedule:

Priority rule:

Machine 1 

Time = 0



Example of a DR
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Job 2:

• 𝑝 = 7
• 𝑑 = 30
• 𝑤 = 0.5

Job 3:

• 𝑝 = 13
• 𝑑 = 25
• 𝑤 = 0.7

π𝑗 =
𝑝𝑗 ∗ (𝑑𝑗 − 𝑡𝑖𝑚𝑒)

𝑤𝑗

π2 = 280

π3 = 278.6

Schedule:

Priority rule:

Machine 1 

Time = 10

Job 1



Example of a DR
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Job 2:

• 𝑝 = 7
• 𝑑 = 30
• 𝑤 = 0.5

π𝑗 =
𝑝𝑗 ∗ (𝑑𝑗 − 𝑡𝑖𝑚𝑒)

𝑤𝑗

π2 = 98

Schedule:

Priority rule:

Machine 1 

Time = 23

Job 1 Job 3



Example of a DR
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π𝑗 =
𝑝𝑗 ∗ (𝑑𝑗 − 𝑡𝑖𝑚𝑒)

𝑤𝑗

Schedule:

Priority rule:

Machine 1 

Time = 30

Job 1 Job 3 Job 2



Issues with manually designed DRs

• Performance
▫ How to improve their performance to obtain better 

schedules?

• Difficult to design manually
▫ How to easily design new, efficient DRs?

• Which DRs to use
▫ Which of the many DRs to use for a certain problem

and criteria?
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Genetic programming (GP)

• An evolutionary algorithm for 
solving optimisation problems [6]

• Individuals represent 
mathematical functions and 
expressions

• Leaf nodes represent job and 
system parameters

• Inner nodes represent functions

• Expression: 𝑤 ∗ 𝑝𝑡 +
𝑝𝑡

𝑑𝑑
∗ 𝑆𝐿

19



How to design DRs with GP?
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• DRs consist of two parts
▫ A priority function:

 𝜋𝑗 =
1

𝑟𝑗

▫ A schedule generation scheme:
 Schedule the job with the largest priority on the machine 

if it is free



How to design the priority function?

• Select appropriate terminal and function nodes, e.g.
▫ Function nodes: +, -, *, /, min, max, pos

▫ Terminal nodes:
 Simple: processing time, release time, due date

 Complex: slack of a job

▫ Performance of the generated rules depends on the 
selected terminals
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Schedule generation scheme

• Decide how the schedule should be constructed

• Should idle times be inserted?

• Are other constraints present?

while (unscheduled jobs exist) {

wait until a machine becomes ready

determine the priorities πi of all unscheduled jobs

schedule the job with the best priority

}
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How to evolve priority functions?

• Training set:
▫ Predefined problem instances
▫ Stochastic generation during execution

• Test set:
▫ A new set for 

evaluation purposes

• Fitness function:
▫ Ensure that all instances have the same influence!
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Comparison with manually designed DRs
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Criterion Manually designed DR Automatically designed DR (GP) Improvement

Cmax 37.85 38.02 -0.4%

Ft 154.1 154.0 0%

Fmax 14.03 13.60 3.1%

Nwt 6.686 6.384 4.5%

Tmax 2.418 2.376 1.7%

Twt 13.30 12.96 2.6%



What has been done until now?

• Applied on various problems [7, 8, 9]

• Comparing different representations [10, 11, 12]

• Multi objective optimisation [13, 14, 15, 16, 17]

• Ensemble learning [18, 19, 20, 21]

• Due date assignment rules [22, 23, 24, 25, 26]

• Etc.
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Why use GP?
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Linear representation Neural nettwork GP

VS VS

• GP and neural network obtain best results [11]

• GP trees are easier to interpret!



Performance of different GP methods

• Several options:

▫ Genetic programming (GP)

▫ Gene expression programming (GEP)

▫ Cartesian genetic programming (CGP)

▫ Grammatical evolution (GE)

• Similar performance (GE usually the 
worst)

• GEP and CGP generate smaller DRs

Method Twt DR size

GP 12.96 40.24

GEP 13.06 29.66

CGP 13.38 18.77

GE 13.41 17.40
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GP based DR representations [12]

• The best representation depends on the problem

• Arithmetic representation most commonly used

28

Decision-tree like 
representation

Arithmetic 
representation

Mixed 
representation



Multi-objective optimisation

• Requirements for optimising several criteria 
simultaneously

• Application of various MOGP algorithms: NSGA-II, 
NSGA-III, HaD-MOEA, MOEA/D, SPEA2

• Considered from 3 to 9 criteria 
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Multi-objective optimisation
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• Comparison of 
automatically 
designed DRs with 
the manually 
designed ATC rule 
[14, 16] 

• ATC defined as:

▫ π𝑗 =
𝑤𝑇𝑗

𝑝𝑖𝑗
∗

exp −
max 𝑑𝑗−𝑝𝑖𝑗−𝑡𝑖𝑚𝑒,0

𝑘∗ ҧ𝑝



Multi-objective optimisation
• Correlation of the Twt criterion with other scheduling 

criteria [16]
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DRs with ensemble learning

• Designed DRs may make suboptimal decisions in
certain situations, although they generally perform
well

• Using several DRs to perform the decision could 
possibly lead to better results 
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DRs with ensemble learning

33

SUM VOTE

Decision Decision



DRs with ensemble learning

• Various methods
▫ Existing: BoostGP [20], BagGP [20], cooperative 

coevolution [18, 20]

▫ New: SEC [20], Nelli-GP [19]

• Efficiency tested in the job shop and unrelated 
machines environment

• Tests performed for various criteria
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DRs with ensemble learning

Criterion Manually
designed DR

Automatically 
designed DR

Ensemble 
of DRs

Improvement 
over manually 
designed DR

Improvement 
over
atomatically 
designed DR

Cmax 38.44 38.23 38.20 0.6% 0%

Ft 159.6 158.1 157.6 1.3% 0.3%

Nwt 8.148 7.674 7.505 7.9% 2.2%

Twt 16.63 15.23 14.81 11% 2.8%
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DRs with ensemble learning



DRs with ensemble learning

• Ensembles show great potential in improving the 
performance of DRs

• Generated ensembles are less dispersed than 
individual DRs
▫ Smaller standard deviation between the results

▫ Better distribution of the results

▫ Better results are obtained more often than with GP
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Static scheduling

• Adaptation of DRs to static scheduling conditions

• Various methods of adaptation:
▫ Static terminal nodes

▫ Iterative DRs [27]

▫ Look-ahead [27]

▫ Rollout algorithm

38



Static scheduling
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• Different trade-offs between 
execution speed and schedule 
quality

• More complex methods are 
competitive with GA

• Benefit:

▫ Generating schedules 
incrementally



Other important topics

• Due date assignment rules [22, 23, 24, 25, 26]

• Order acceptance and scheduling [28, 29, 30, 31, 32]

• Applications for different problems and criteria
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Open issues and topics?

• Still, many open issues and topics:
▫ Interpretability

▫ Stochastic scheduling

▫ Evolution speed

▫ Selecting the appropriate DRs

▫ Real world application
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Interpretability

• Generated rules tend to be complex

• Quite often contain noise and redundant elements

• Difficult to interpret them and gain knowledge on 
how they work
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Interpretability
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Tree represnetation

Arithmetic representation:

Arithmetic representation 
(after simplification):



Interpretability

• Priority function (minimisation) size has an influence 
on its performance [33]
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Interpretability

• Use methods for expression simplification

• Use different GP methods to improve interpretability
▫ Dimensionally aware GP [34]

▫ Methods which generate smaller expressions

• Further analyse the correlation between fitness and 
expression size
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Evolution speed

46



Evolution speed

• Learning is performed offline

• A significant amount of time required for generating 
new DRs [35]

• Most time spent on evaluation of individuals
▫ Due to their evaluation on many problems

• Surrogate models [36]
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Evolution speed
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During evolution

Complex problem instances

Simple problem instances

End of evolution

Evaluate

Solve



Evolution speed
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At start of each generation

Complex problem instances

Simple problem instances

Evaluate

Evaluate

Crossover and 
mutation

Best N



Evolution speed

• Surrogate models achieved a better performance 
than standard GP

• The execution times are still similar to GP

• Important that the smaller problem instances have 
similar characteristics as the larger
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Stochastic scheduling

• Most research focused on deterministic scheduling

• Information like processing times, release times, due 
dates, set-up times might not be completely accurate

• DRs should be able to deal with such problems
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Stochastic scheduling

• Uncertainties of processing times were considered [37, 
38, 39]

• Uncertainty of processing time was incorporated into 
terminal nodes and evolution
▫ Using true processing times
▫ Using processing times with uncertainty

• GPs were able to generate good DR

• Still room for improvement
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Scheduling constraints

• Several research projects on individual constraints:
▫ Breakdowns [40, 41]

▫ Set-up times [42]

▫ Precedence constraints [42]

• No research on larger combinations of the
aforementioned constraints
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Selecting appropriate DRs

• Many DRs can be generated, but not all will work on 
all problem instances

• A lot of research with manually designed DRs [43, 
44]

• Can we somehow learn which DR is suitable for 
which situations?
▫ Is this even required with automatically designed DRs
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Selecting appropriate DRs

55

Automatically generated DRs

Classifier 
(k-nn, ANN, Bayes, 

C4.5, etc)

Problem instances for learning

Learn

New problem instance

Appropriate DR



Selecting appropriate DRs
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Selecting appropriate DRs

• Testing more problem features

• Automatising the process
▫ Evolving the rules and the classifier simultaneously
▫ Automatically determine when DRs need to be 

switched
▫ Use more information available during the execution

• This approach would lead to a more automatised 
scheduling system
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Application on real problems

• Most research is performed on synthetic problems

• Test the methods in real environments and real
problems

• Create a base of problems for researchers to use to 
make results comparable (OR library)
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Conclusion and future outlook

• State of the art results of automatically generated 
DRs significantly better than that of manual DRs

• Automatically generating DRs has shown immense 
potential for various environments and conditions

• Is there still room for further research?
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Conclusion and future outlook

• Many results were obtained only recently

• Many topics are still open or not researched thoroughly

• Potential of applying the obtained results for other 
problems:
▫ Vehicle routing problem?
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THE END!

• Thank you for your attention

• Questions?

• Discussion?

• Feel free to contact me at: marko.durasevic@fer.hr
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