Automated design of dispatching rules
in the unrelated machines environment

Thesis defence

Candidate: Marko Durasevic
Faculty of Electrical Engineering and Computing

Mentor: Professor Domagoj Jakobovi¢, Ph.D.

February 2018

Outline

Introduction

Scheduling problems

Genetic programming

Designing dispatching rules with genetic programming
Automatic design of multi-objective dispatching rules
Design of ensembles of dispatching rules

Selection of dispatching rules based on characteristics of
problem instances

e Automatic design of dispatching rules for static conditions
e Conclusion

Introduction

e Various methods used to solve scheduling problems

* Problem-specific heuristics are hard to design
manually

e Different machine learning and evolutionary
computation methods are applied to automatically
design new heuristics

 These methods can be used to design heuristics for
various scheduling problems and conditions

e A substantial amount of research already performed in
this area

Introduction

e Still a lot of open issues remain in the automatic
generation of dispatching rules

e Thesis’ objective is to investigate automatic generation
of scheduling heuristics

o |nvestigate how the performance of automatically
generated dispatching rules can be improved

o |nvestigate the generation of dispatching rules for
different and multiple scheduling criteria

o |nvestigate the application of dispatching rules under
various conditions

Scheduling problems

e Scheduling — allocation of activities (jobs) to scarce
resources (machines) [1]

e Goal: create a schedule which optimises certain user
defined criteria

 Most scheduling problems are NP-hard [1,2]
 Many applications in real world scenarios:
o Scheduling in air traffic control [3]
= Scheduling in semiconductor manufacturing [4]
= Scheduling jobs in clusters [5]
o Therapy scheduling in hospitals [6]

Unrelated machines environment

* n jobs need to be scheduled on m machines
e Job properties [1,2]:
s Processing time (p; ;)
= Release time (r})
= Due date (d;)
= Weight (w;)
e Scheduling criteria [1]:
o Makespan
= Total weighted tardiness
e Scheduling under dynamic and static conditions:

o Static: all system information is available prior to its execution

= Dynamic: information about jobs becomes available when
they are released

Solving scheduling problems

e Exact algorithms

= Can obtain the optimal solution

= Computationally expensive and used only for static conditions
e Approximation algorithms

= QObtain solutions worse than the optimal solution by a certain
factor

= Applicable under static conditions, and difficult to design
e Heuristic algorithms

= Applicable for various criteria and conditions

= Do not necessarily obtain the optimal solution

o Improvement heuristics — iteratively improve a schedule
* Applicable under static conditions only

o Constructive heuristics — incrementally create a schedule
* Mostly in form of dispatching rules
* Applicable under dynamic conditions

Dispatching rules (DRs)

e Simple scheduling heuristics

e At each scheduling decision they determine which job
should be scheduled on which machine

e To determine which job should be used a priority
function is used [7]:

= EDD: —
d;j

W;

= WSPT:
Dj

Example of a DR

Priority rule: Job 1:
T = b; J tme e d=17 M, = 212.5
Wj ¢« w=0.8

Job 2:
° p — 7
e d=230 m, = 420
e w=20.5

Schedule:

Machine 1

Time=0

Example of a DR

Priority rule:

m =
j w;

Job 2:
« p=7
° d = 30 Ty = 280
e w=20.5

Schedule:
Job 3:

Machine 1 - e d=25 3 = 278.6

I e w=20.7

Time =10

Example of a DR

Priority rule:

p; * (dj — time)

m; =
j W,
Job 2:
° p —
° d = 30 Ty, = 98
e w=20.5
Schedule:

Time = 23

Example of a DR

Priority rule:

p; * (dj — time)
T[j =
Wj

Schedule:

Time =30

Dispatching rules (DRs)

* Advantages:
o Perform scheduling decisions quickly
= Can be applied in dynamic conditions

= Can adapt to various changes in the scheduling
environment

e Disadvantages:
o Hard to manually design new DRs

= Achieve inferior performance to genetic algorithms and
other more complex methods

o |t is unknown which DR performs the best for a concrete
problem instance

Dispatching rules (DRs)

e Divide the DR into two parts:
= A schedule generation scheme (designed manually)

while (unscheduled jobs exist) {
wait until a machine becomes ready
determine the priorities m; of all unscheduled jobs
schedule the job with the best priority

= A priority function (designed automatically)

pj * (dj — time)

T =
])
W;j

* The priority function can be designed by various methods:
* Neural networks, genetic programming, linear regression, etc.

Genetic programming

e An evolutionary algorithm for solving optimisation
problems [8]

 Individuals represent mathematical functions and
expressions

e Leaf nodes represent job and o
system parameters

e Inner nodes represent . .

functions

.Expressionzw*pt+Z_Z*SL ° o o e
() (=)

Steps for automatic design of DRs

e Define the set of nodes used by GP:
= Terminal nodes: pt, pavg, pmin, MR, SL, w, dd, PAT, age
= Function nodes: +, -, *, /, pos

e Define a set of problem instances:
= 120 problem instances of various characteristics

= 60 instances used for designing new DRs, 60 for
evaluation

e Determine optimal GP parameters

Automatic design of DRs

e A lot of research done in this area:
o Application in different machine environments and for various
criteria [9, 10, 11, 12, 13]
= Comparison of various solution representations [14, 15]
o Design of due date assignment rules [16]

= Design of DRs for the order acceptance and scheduling problem
[17]

 Many open research areas:
s Design of DRs for multi-objective and many-objective optimisation
= Design of ensembles of DRs

o Selection of automatically generated DRs based on the problem
instance characteristics

o Design of DRs appropriate for scheduling under static conditions
o |ncreasing the interpretability of DRs
o Generating DRs for stochastic scheduling environments

Contributions of the thesis

 Investigate the generation of dispatching rules for
optimising several objectives simultaneously

* Investigate the generation of ensembles of dispatching
rules, to improve their performance

 Investigate the selection of automatically designed
dispatching rules based on the problem characteristics

e Investigate the generation of dispatching rules
designed for static scheduling conditions

Design of DRs for multi-objective problems

e Objective: automatic design DRs for simultaneous
optimisation of several objectives

e Previous research [18, 19, 20, 21]:

= No analysis on the influence of the various criteria
combinations

= \ery little comparison with existing standard DRs
e Application of four multi-objective GP (MOGP) methods
= NSGA-II [22], NSGA-III [23], MOEA/D [24], HaD-MOEA [25]
e Experimental setup
o 14 multi-objective scheduling problems

= Problems containing between three and nine scheduling
criteria

° _| - |_ TSN | | |
A HH | m-vosn L |_E 1
m Ry ..TE.A- FVOSN 1
- =
2 s P o &L s
- - e TEIA -
S .m.u _ _ | anaon —« - vaow-aeH
O £ % g 7 T
o fff R
Qe b e | |
._a 5 i v.mf | m .._= - HI-VDSN
v - i v
S m L g | -vosx
.J I | |
2 __‘ ,. 4_ [- .TET VAOW-(PH
6 B =3¢ L aveor
° 3 7 - v = 0
| | | | |}m
w m e s o T oo
| dos
m P m _IEIT- -VOSN HH
W _ [E | III-% DSN
& _IEIA.T__.{EZ S
S > .. 3 T@-...ﬁwmz
5 S TEIT - VAOW-aeH TEIA
S S - VHOW-(¥H
< o - A/ vIOW _I_HmuA
= 5 b IAWI.H_,_ L] e avEon
o0 T 5 °% 278 T
= - <
o & 3
— @ 3
O o ¢
(4°)
C &=
o 5 2
%) S m
Q n
a o

Design of DRs for multi-objective problems

e Comparison of Method Criteria
automatica | |y Coe Cw Etwt FEpy Ft My Nwt Tpe Twt
d ESIg n e d D RS ATC 38.26 901.5 968.5 1427 1959 0.127 6.686 2418 13.30

with the manually

Evolved DRs - three objectives

RI - 8934 - - 1735 - - - 1279
deSIgHEd ATCrule = . - - - . - 6566 2249 1228
PY ATC [26] deflned Evolved DRs - five objectives
35" R3 - 9005 9685 - 1793 - 6333 - 13.00
) R4 - - - 1700 1735 - 6440 2401 12.68
WT].
. T[j — pii * Evolved DRs - six objectives
ij
exp (_ max(dj—mj—time»o)> RS 3822 - - 1645 1781 - 6306 2410 12.85
kxp

Evolved DRs - seven objectives

R6 38.08 903.1 - 15.22 1829 - 6.650 2390 13.22

Evolved DRs - nine objectives

R7 3931 904.0 967.9 17.65 1825 0.145 6.566 2477 13.08

Design of DRs for multi-objective problems

e Correlation of the Twt criterion with other scheduling

80 |-
2000 10001 60
S| $1500 3 £ 40
¥ 500
w0l E 1000 | 20
200 400 600 800 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Twt Twt Twt Twt
T T T T
. 40 F ']
1500 40
30
1000 _ 30)
< = : 20 .
= 20 &~
500 - 10
10
'|l . . | | L O [— | 1
200 400 600 600 80 0 200 400 600 800 0 200 400 600 800
Twt Twt Twt

Design of DRs for multi-objective problems

 NSGA-Il and NSGA-IIl generate the best DRs
e Results provide an overview of the criteria correlation
= Useful when choosing which criteria to optimise
simultaneously
 The performance of MOGP algorithms depends on the
selected scheduling criteria that are optimised:

= Best results achieved when optimising related criteria
simultaneously (large improvements over standard DRs)

= Problems occur when optimising negatively related
criteria

Design of DRs for multi-objective problems

e Conclusions

= MOGP algorithms generate DRs which are better than
standard DRs

o Optimising more than 6 criteria simultaneously usually
proves to be difficult

= Algorithms very sensitive to the inclusion of criteria that
negatively correlate with other criteria

e Future research

= Use more sophisticated MOGP algorithms (adaptive
NSGA-III)

o |nclude non standard scheduling criteria

= Perform a deeper analysis of the evolved MOGP rules to
learn how DRs optimise several criteria simultaneously

Design of ensembles of DRs

e Several studies demonstrated the benefits of
ensembles of DRs [27, 28, 29]
= Mostly the cooperative coevolution method was used
 Ensemble learning methods:
= Simple ensemble combination (SEC)
= BagGP [30]
o BoostGP [31]
o Cooperative coevolution [32]
= Ensemble subset search (ESS)
 Ensemble combination methods [33]:
o Sum
o \ote

Design of ensembles of DRs

* Performance of the tested ensemble learning methods

.

.

-

-
—
= ———

-

.

.
=

18

17"

16 1

15

[Uo2 ¢-A-U0NNJOA20)
8-SSH D 01-A-dDisoog
D 6-A-dDIsoog

6-SSH 01-A-dD1soog
C-A-dDIsooyg

084 S-SSH 01-A-dD3ed
084 6-A-dD5ed

#-SSH 01-A-DHS
6-A-DHS

CU0d ¢-5-uonnjoa=0)
#-SSH D 01-s-dDisoog
D L-s-dDwsoog

6-SSH 01-s-dDisoog
£-5-dD1sooyg

084 +-SSH 01-s-dD3eg
089 6-s-dO5ed

€-SSH §-s-DdS
¢-s-DHS

dO

Design of ensembles of DRs

e Performance of a selected ensemble of DRs

Problem instance index Individual DR Ensemble

0 11 28 30 46

1 0.620 0494 0.295 0.264 0.301 0.264
13 1.131 0.737 0.767 0.870 1.126 0.836
17 0.116 0489 0.170 0.204 0.259 0.102
22 1.894 1.860 2.137 1.889 | 1.860 1.860
26 0936 1.010 1.123 0978 1.142 0978
28 0.032 0.091 0.091 0.032 0.032 0.032
29 0.506 0.524 0.506 0.506 0430 0.506
39 099 0960 1.034 0955 0999 0917
40 1.399 1.233 1.399 1.233 1.386 1.177
41 0.053 0.091 0.091 0.116 0.058 0.163

Total fitness on all instances 14.28 13.11 13.69 13.12 14.31 12.45

Fitness on the test set 16.39 1572 16.20 15.67 16.02 14.84

Design of ensembles of DRs

 Ensembles of DRs consistently achieved improvements
over standard DRs and DRs evolved by GP
o Twt: 5.1% better than GP, 13.3% better than standard DRs
o Nwt: 3.4% better than GP, 8.2% better than standard DRs
o Ft: 0.4% better than GP, 1.6% better than standard DRs
= Cmax: 0.9% better than GP, 0.6% better than standard DRs
e The best results achieved by the proposed SEC approach

e Usually ensembles of around five DRs achieved the best
results

Design of ensembles of DRs

e Conclusions:

= Ensembles of DRs achieve superior performance than an
individual DR

= The proposed SEC method achieved superior results
than other methods

o By using the ESS methods the results can in some
occasions be improved and the ensemble sizes reduced
e Future research:

= Testing other ensemble learning approaches and
ensemble combination methods

= Testing different ensemble construction methods for SEC

= Test the ensemble learning methods on other machine
environments

Selection of automatically designed DRs

e Several papers studied the selection of manual DRs
[34, 35, 36], but no studies applied generated DRs

e The proposed procedure

o Learning process: determine which DR is appropriate for
each instance by using various problem characteristics

= Two selection scenarios:
* Static
* The decision can be performed prior to the system execution
* Dynamic
* Decision must be performed during the system execution
* System parameters need to be approximated
* Two problem types: constant and changing job characteristics

Selection of automatically designed DRs

e Performance of the DR selection method under
dynamic conditions

e The factors used to generate the due dates and
release times vary during the system execution

Twt value on Improvement

Experiment Twt value on Improvement

number the validation _011 Fhe the test set on the test set
set validation set
1 4.901 12.92% 5.450 10.70%
2 5.009 11.00% 5.395 11.60%
3 5.177 8.01% 5.545 9.14%
4 4.975 11.60% 5.292 13.29%
5 5.328 5.33% 5.895 341%
Manually 5.628 - 6.103

selected DR

Selection of automatically designed DRs

e Execution of the DR selection procedure on one
problem instance

 Changing DRs during the execution allows the method
to adapt to certain scheduling conditions

Number of released jobs
Method
50 100 150 2000 250 300 350 400 450 500 550 600 650 700
DR index 3 15 13 1 3 8 3 5 3 3 2 3 3 2
Selection procedure
Twr 0 0 0 0.005 0.005 0006 0016 0028 0041 0073 0.095 0.121 0.141 0.155

Manually selected DR Twt 0.000 0008 0.008 0.013 0013 0019 0035 0046 0.079 0122 0.137 0179 0203 0.219

Selection of automatically designed DRs

e Static scheduling decision

= Better results up to 10% on the validation set and up to
6% on the test set

o C4.5 and knn achieve the best performance
e Dynamic scheduling decision

o Improvements up to 16% on both problem sets
Good performance on both problem types
C4.5 and knn achieve the best performance
Better to perform the decision as soon as possible

In many cases it was enough to perform the decision
only once

O

O

O

O

Selection of automatically designed DRs

e Conclusions:
= Viable in both static and dynamic selection scenarios
= The method achieves a large improvement in the results
o A substantial number of parameters need to be
optimised
= Very sensitive to the choice of parameters

e Future research:
= Testing with other classification methods
o |nvestigating the influence of other features

= Using dynamic system parameters to perform the
decision

o Generate the classification methods together with DRs

Design of DRs for static conditions

e Very little research done in this area [43, 44]
* DRs have several benefits over other algorithms for
static conditions:
o Fast execution time
= |ncremental construction of the schedule
e Objective: design DRs suitable for static conditions
e Four tested methods:
= Static terminal nodes
o Look-ahead [37]
o |terative dispatching rules [38]
= Rollout algorithm [39, 40, 41]
= Various combinations

Design of DRs for static conditions

16
15 | L
- . .
- . .
14 | . —_—
[3 [] .
*

13—J_ ® + ‘

Twi
.
|
|

12 - * *

11}

of ES

HH
HHH
|

e

I3 -

L 1 !
] =+ = — -
= E 8 > 3 5 2 g
a1 Ej o

<

R-n-20 5-2]
R-n-10 Len- 10

L-n-20 S-ul-21 +

-4 L-n-10 8-ul-21 |-

R-n-10 L-n-20 S-u-21 +
R-n=10 L-n-20 S-ul-21

Design of DRs for static conditions

E Index Method
78 | 1 DGP
o 2 ATC
103 £ 1 3 GA
5 2.0 3 1 a S-14
.]
2.12:1 *19 . 5 §-21
6 L-n-10
21e 2625 . "
e ® 7 L-n-100
18
10% | 2-3 L) i 8 L-n-10 $-u-21
= - 1 9 L-n-10 $-ul-21
3 8 10 L-2-20 S-ul-21
8 _ 113
D
< i 12 14
E 13 -4 §-21
=) 1L a
= 10° |] 14 I4LnsS
g .
g 1 15 -4 L-n-100
2 . 16 1-4L-n-10 S-ul-21
& b) 17 1-4L-n-100 S-ul-21
5 i
18 R-n-3
107 | - 19 R-n-20
17] 20 R-n-208-21
15 16 d i 21 R-n-10L-n-10
»
*14 = 1 22 Rn20Lan10
) 102] 9 8 . 1.11.2] 23 R-n-3L-n-100
L] L
. . 45 24 Ren-10L-n-20 S-u-21
]. 0 F . =
] 25 R-n-3 L-n-50 S-u-21
] 26 R-n-3 L-n-20 S-ul-21
' ' ' . 27 R-n-10 L-n-20 §-ul-21

10 10.5 11 11.5 12 12.5 13 13.5
Median Twt value

28 R-n-10 L-n-100 S-ul-21

Design of DRs for static conditions

10°]
N 3 1 Index Method
27 .)
L]
22 11 DGP
2l1e
2 ATC
10 © 203 .
: 13 GA
- 1 4 S-14
=
S 6 L-n-10
= 10tk E
2 i | 10 L-n-20 S-ul-21
g 1 14 -4 L-n-5
g]
g 2 115 I-4 L-n-100
10" F 1 21 R-n-10 L-n-10
5 | 22 R-n-20 L-n-10
L] B
L | 23 R-n-3 L-n-100
10w 6
-1 | . ¢ 1 127 Rnl0L-n-20S-ul-2l
1|0 lOI.S 1|1 11.5 12 12|.5 1|3 13|.5

Median Twrt value

Design of DRs for static conditions

Look-ahead achieves the best improvement with a
slightly increased execution time
e Improvement of look-ahead:
o Dynamic DRs: 17.9% better, 2.3 times slower
o GA: 8.8% worse, 2300 times faster
* Improvement of the rollout algorithm:
= Dynamic DRs: 22.8% better, 1078 times slower
= GA: 2% better, 4.86 times faster
Best combinations of methods:
o Look-ahead and IDRs
= Rollout and look-ahead
= Rollout, look-ahead, and static terminal nodes

Design of DRs for static conditions

e Conclusions:

o Look-ahead appropriate when time is of the essence

= Rollout algorithm appropriate for obtaining the best
results

= With rollout the DRs achieve better performance than a
GA in less time

= Different methods provide various trade-offs between
execution time and solution quality

e Future research:
= Design of new methods
= Reduce the execution time of the rollout algorithm

= Application on other scheduling criteria (design of new
static terminals and terminals for IDRs)

Conclusions

e Thesis contributions:

= Development of DRs for various multi-objective
scheduling problems

= Development of ensembles of DRs
= Procedure for selecting DRs based on problem instances

= Development of DRs for scheduling under static
conditions

 GP demonstrated great potential for developing new
DRs for various conditions and criteria

e The obtained results demonstrate improved
performance over standard DRs and GP

e The results and methods provide show great potential
for further research and improvement

Conclusions

e Future research:
= Testing combinations of the aforementioned methods
= Design of DRs for batch processing

= Design of DRs for scheduling problems with various
constraints (setup times, machine breakdowns,
precedence constraints)

= Development of more interpretable DRs

= Development of DRs for problems with stochastic
parameters (parameters are not known until jobs finish
with execution)

= Development of new schedule generation schemes

References

1] Pinedo, M. L., Scheduling: Theory, algorithms, and systems: Fourth
edition. Boston MA Springer US, 2012

2] Leung, J. Y.-T., Handbook of scheduling : algorithms, models, and
performance anaIyS|s Boca Raton, Fla.: Chapman & Hall/CRC, 2004

3] Cheng, V., Crawford, L., Menon, P., “Air traffic control using genetic
search technlques in Proceedmgs of the 1999 IEEE International
Conference on Control Applications (Cat. No.99CH36328), Vol. 1. IEEE,
1999, pp. 249-254, available

[4] Pfund, M. E., Mason, S. J., Fowler, J. W., “Semiconductor
Manufacturing

Scheduling and Dispatching”, in Handbook of Production Scheduling.
Boston: Kluwer Academic Publishers, 2006, pp. 213-241,

[5] Hou, E., Ansari, N., Ren, H., “A genetic algorithm for multiprocessor
scheduling”, IEEE Transactions on Parallel and Distributed Systems, Vol. 5,
No. 2, 1994, pp. 113-120

[6] Petrovic, S., Castro, E., “A genetic algorithm for radiotherapy pre-
treatment scheduling”, in Applications of Evolutionary Computation:
EvoApplications 2011: EvoCOMNET, EvoFIN, EvoHOT, EvoMUSART,
EvoSTIM, and EvoTRANSLOG, Torino, ltaly, April 27-29, 2011,

References

[7] Maheswaran, M., Ali, S., Siegal, H., Hensgen, D., Freund, R.: Dynamic
matching andscheduling of a class of independent tasks onto
heterogeneous computing systems. Proceedings.Eighth Heterogeneous
Computing Workshop (HCW’99) (June 1999) (1999).

[8] Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic
programming. Publishedvia http://lulu.com and freely available at
http://www.gp-field-guide.org.uk(2008). (With contributions by J. R.
Koza)

[9] Miyashita, K., “Job-shop scheduling with genetic programming”, in
Proceedings of the 2Nd Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO’00. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2000, pp. 505-512

[10] Jakobovic, D., Budin, L., “Dynamic scheduling with genetic
programming”, in Genetic Programming: 9th European Conference,
EuroGP 2006, Budapest, Hungary, April 10-12, 2006.

[11] Jakobovic, D., Jelenkovic, L., Budin, L., “Genetic Programming
Heuristics for Multiple Machine Scheduling”, in Genetic Programming.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 321-330

References

[12] Jakobovic, D., Marasovic, K., “Evolving priority scheduling heuristics
with genetic programming”, Applied Soft Computing, Vol. 12, No. 9, Sep.
2012, pp. 2781-2789

[13] Purasevic, M., Jakobovic, D., “Comparison of solution
representations for scheduling in the unrelated machines environment”,
in 2016 39th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO).
IEEE, May 2016, pp. 1336-1342

[14] Nguyen, S., Zhang, M., Johnston, M., Tan, K. C., “A Computational
Study of Representations in Genetic Programming to Evolve Dispatching
Rules for the Job Shop Scheduling Problem”, IEEE Transactions on
Evolutionary Computation, Vol. 17, No. 5, Oct. 2013, pp. 621-639

[15] Branke, J., Hildebrandt, T., Scholz-Reiter, B., “Hyper-heuristic
Evolution of Dispatching Rules: A Comparison of Rule Representations”,
Evolutionary Computation, Vol. 23, No. 2, Jun. 2015, pp. 249-277

[16] Nguyen, S., Zhang, M., Johnston, M., Tan, K. C., “Genetic
Programming for Evolving Due-Date Assignment Models in Job Shop

Environments”, Evolutionary Computation, Vol. 22, No. 1, Mar. 2014, pp.
105-138

References

[17] Park, J., Nguyen, S., Zhang, M., Johnston, M., “Genetic
programming for order acceptance and scheduling”, in 2013 |IEEE
Congress on Evolutionary Computation. IEEE, Jun. 2013, pp. 1005—-
1012

[18] Nie, L., Gao, L., Li, P., Wang, X., “Multi-Objective Optimization
for Dynamic Single-Machine Scheduling”, in Advances in Swarm
Intelligence: Second International Conference, ICSI 2011,
Chongqging, China, June 12-15, 2011, Proceedings, Part I

[19] Nguyen, S., Zhang, M., Johnston, M., Tan, K. C., “Dynamic
multi-objective job shop scheduling: A genetic programming
approach”, in Automated Scheduling and Planning: From Theory to
Practice, Uyar, A. S., Ozcan, E., Urquhart, N., (ed.). Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 251-282

[20] Nguyen, S., Zhang, M., Tan, K. C., “Enhancing genetic
programming based hyper-heuristics for dynamic multi-objective
job shop scheduling problems”, in 2015 IEEE Congress on
Evolutionary Computation (CEC). IEEE, May 2015, pp. 2781-2788

References

[21] Masood, A., Mei, Y., Chen, G., Zhang, M., “Many-objective genetic
programming for job-shop scheduling”, in 2016 IEEE Congress on Evolutionary
Computation (CEC). IEEE, Jul. 2016, pp. 209-216

[22] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., “A fast and elitist
multiobjective genetic algorithm: NSGA-II”, IEEE Transactions on Evolutionary
Computation, Vol. 6, No. 2, Apr. 2002, pp. 182-197

[23] Deb, K., Jain, H., “An Evolutionary Many-Objective Optimization Algorithm
Using Reference-Point-Based Nondominated Sorting Approach, Part |: Solving
ProblemsWith Box Constraints”, IEEE Transactions on Evolutionary Computation,
Vol. 18, No. 4, Aug. 2014, pp. 577-601

[24] Qingfu Zhang, Hui Li, “MOEA/D: A Multiobjective Evolutionary Algorithm
Based on Decomposition”, IEEE Transactions on Evolutionary Computation, Vol.
11, No. 6, Dec. 2007, pp. 712-731

[25] Wang, Z., Tang, K., Yao, X., “Multi-Objective Approaches to Optimal Testing
Resource Allocation in Modular Software Systems”, IEEE Transactions on
Reliability, Vol. 59, No. 3, Sep. 2010, pp. 563-575

[26] Morton, T. E., Rachamadugu, R. M. V., “Myopic heuristics for the single
machine weighted tardiness problem.”, DTIC Document, Tech. Rep., 1982.

References

[27] Park, J., Nguyen, S., Zhang, M., Johnston, M., “Evolving
ensembles of dispatching rules using genetic programming for job
shop scheduling”, in Genetic Programming: 18th European
Conference, EuroGP 2015, Copenhagen, Denmark, April 8-10, 2015

[28] Hart, E., Sim, K., “A Hyper-Heuristic Ensemble Method for
Static Job-Shop Scheduling”, Evolutionary Computation, Vol. 24,
No. 4, Dec. 2016, pp. 609-635

[29] Park, J., Nguyen, S., Zhang, M., Johnston, M., “A Single
Population Genetic Programming based Ensemble Learning
Approach to Job Shop Scheduling”, in Proceedings of the
Companion Publication of the 2015 on Genetic and Evolutionary
Computation Conference - GECCO Companion '15. New York, New
York, USA: ACM Press, 2015, pp. 1451-1452,

[30] Iba, H., “Bagging, boosting, and bloating in genetic
programming”, in Proceedings of the 1st Annual Conference on
Genetic and Evolutionary Computation - Volume 2, ser. GECCO’99.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999,
pp. 1053-1060

References

[31] Paris, G., Robilliard, D., Fonlupt, C., “Applying boosting techniques to
genetic programming”, in Artificial Evolution: 5th International
Conference, Evolution Artificielle, EA 2001 Le Creusot, France, October
29-31, 2001 Selected Papers, Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E.,
Schoenauer, M., (ed.). Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 267-278

[32] Potter, M. A., Jong, K. A. D., “A cooperative coevolutionary approach
to function optimization”, in Proceedings of the International Conference
on Evolutionary Computation. The Third Conference on Parallel Problem
Solving from Nature: Parallel Problem Solving from Nature, ser. PPSN lII.
London, UK, UK: Springer-Verlag, 1994, pp. 249-257

[33] Polikar, R., “Ensemble learning”, Scholarpedia, Vol. 4, No. 1, 2009,
pp. 2776, revision #91224.

[34] PRIORE, P.,, DE LA FUENTE, D., GOMEZ, A., PUENTE, J., “A review of
machine learning in dynamic scheduling of flexible manufacturing

systems”, Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, Vol. 15, No. 3, 2001, pp.251-263.

References

[35] Shahzad, A., Mebarki, N., “Learning dispatching rules for
scheduling: A synergistic view comprising decision trees, tabu
search and simulation”, Computers, Vol. 5, No. 1, 2016

[36] Priore, P.,, GOmez, A., Pino, R., Rosillo, R., “Dynamic scheduling
of manufacturing systems using machine learning: An updated
review”, Artificial Intelligence for Engineering Design, Analysis and
Manufacturing: AIEDAM, Vol. 28, No. 1, 2014, pp. 83-97

[37] Hildebrandt, T., Heger, J., Scholz-Reiter, B., “Towards improved
dispatching rules for complex shop floor scenarios”, in Proceedings
of the 12th annual conference on Genetic and evolutionary
computation - GECCO "10. New York, New York, USA: ACM Press,
2010, pp. 257

[38] Nguyen, S., Zhang, M., Johnston, M., Tan, K. C., “Learning
iterative dispatching rules for job shop scheduling with genetic
programming”, The International Journal of Advanced
Manufacturing Technology, Vol. 67, No. 1-4, Jul. 2013, pp. 85-100

References

[39] Bertsekas, D., Castanon, D., “Rollout algorithms for
stochastic scheduling problems”, in Proceedings of the
37th IEEE Conference on Decision and Control (Cat.
No.98CH36171), Vol. 2. IEEE, 1998, pp. 2143-2148

[40] Bertsekas, D., Castanon, D., “Rollout algorithms for
stochastic scheduling problems”, MASSACHUSETTS INST
OF TECH CAMBRIDGE LAB FOR INFORMATION AND
DECISION SYSTEMS, Tech. Rep., 1998.

[41] Bertsekas, D. P., Castanon, D. A., “Rollout Algorithms
for Stochastic Scheduling Problems”, Journal of
Heuristics, Vol. 5, No. 1, 1999, pp. 89—-108, available at:
http://link.springer.com/10.1023/A:1009634810396

Scheduling criteria

. . PR P . o Makespan (C - denotes the completion time of the last job that leaves the system:
Completion time (C;) - the moment in time at which job j finishes with its execution and pan (Cnas) P ! Y

exists the system. Coax = max(C). (2.5)

b Flowtlme (FJ’) - the amount Of time that -]Ob J Spent in the SyStem: o Maximum flowtime (F,) - denotes the maximum flowtime achieved by any of the jobs:

— . Fyar = max{F;). 2.6)

Fi=Cj—rj. 2.1 ax(Fy) (
o Maximum tardiness (T},,,) - denotes the maximum tardiness achieved by any of the

e Tardiness of a job (7;) - the amount of time that job j spent executing after its due date: Jobs:
Ty = max(T}). @)
/
T',i — ma_X(Cj _ dJ,O) (22) o Total weighted completion time (Cw) - denotes the weighted sum of all completion
times:
Cw =Y weCj. (2.8)
i

e Earliness (E;) - the amount of time that job j finished prior to its due date:
» Total weighted tardiness (7wt} - denotes the weighted sum of tardiness values of all

jobs:
E; =max{—(C;—d;),0}. (2.3) Tt = Yowr 15, 2.9)

o Total flowtime (Ft) - denotes the sum of flowtimes of all jobs:

e Unit penalty (U;) - a flag denoting whether a job is tardy or not:
i
1:7;>0 o Weighted number of tardy jobs (Nwr) - denotes the weighted sum of all tardy jobs:
Uj= . 2.4)
0:7j=0 Nwr =Y wrU;. (2.11)
j

» Weighted earliness and weighted tardiness (Efwr) - denotes the sum of the total weighted
tardiness and the total weighted earliness:
Etwt = Y (weiEj+wrTj). (2.12)
i
+ Machine utilisation (M) - denotes the difference between the maximum utilisation and

minimum utilisation of all machines:

AN
Mo = mi{”‘ (C!mrx) B m"‘“ (C!mrx) ' (2]3)

Priority function example
/ \
T AN /N

pos

SN N AT N

Wy dd +
N/ v/ \ ANA /NN
pmin PAT pmin w, pt pavg w; MR w, Wi pmin w; age
pmin+PAT—|—pmin—(pt+MR—|—pavg$wI)+ SL 5 +dd +w +pmm—£—w;
Wi MR % W: age
pmin SL

PAT +

—pt — MR dd
W P +MR$1U%+

Terminal nodes

Node name Description

pt processing time of job j on the machine i (p;;)

pmin the minimal job processing time on all machines: min;(p;;)

pavg the average processing time of a job on all machines

PAT patience - the amount of time until the machine with the minimal process-

ing time for the current job will be available

MR machine ready - the amount of time until the current machine becomes
available
age the time that the job spent in the system: time —r;

Used when optimising the due date related criteria

dd due date of a job (d;)
SL positive slack of a job: max(d; — p;; — time,0)
Wy tardiness weight of a job (wr ;)

Used when optimising the total weighted completion criterion

We completion time weight of a job (w¢;)

Used when optimising the weighted earliness and weighted tardiness criterion

We earliness weight of a job (wg)

55/51 “

Function nodes

Node name Description

+ binary addition operator
- binary subtraction operator

* binary multiplication operator

| L 1, if |b| < 0.000001
/ secure binary division: /(a,b) =
o, else

POS unary operator: POS(a) = max(a,0)

Schedule generation scheme

Algorithm S Schedule generation scheme used by DRs generated by GP

1: while unscheduled jobs are available do

2 Wait until at least one job and one machine are available

3 for all available jobs and all machines do

4: Obtain the priority 7;; of scheduling job j on machine i

5: end for

6 for each job j from the set of available jobs do

7 Determine the best machine (the one for which the best value of priority 7;;
8 1s achieved)

9

: end for
10: while jobs whose best machine is available exist do
11: Determine the best priority of all such jobs
12: Schedule the job with the best priority on the corresponding machine

13: end while
14: end while

Generalisation error

16

15.5

Twt

15

14.5

--._.—l"_

—
 ———=

| | I |
20 40 60 80

|
100 120 140 160 180 200 22

Number of iterations (in thousands)

—— Training set — Test set

|
240 260 280 30

GP parameters

Parameter name Parameter value

Population size 1000 individuals

Termination criterion 80000 iterations

Selection Steady state tournament GP

Tournament size Three individuals

Initialisation Ramped half-and-half

Maximum tree depth 5

Crossover operators Subtree, uniform, context-preserving, size-fair

Mutation operators Subtree, Gauss, hoist, node complement, node replacement,

permutation, shrink

Problem instance generation

Pij € [‘U, 100]
T.UTj . ij s ij e< 0,]_]
. E?=1 D i1 Pij
p - m2

d; € {rj+@_rj)* (1—T—§) i+ (p—rj) * (1—T+§)]

Coar Cw Erwt Fuae Ft My Nwt Tnax Twt

Standard DR performance oo oo

GA - min 37.48 B49.2 9832 1371 1464 0011 5373 1900 9917

GA - med 37.72 B51.3 103.0 1397 1499 0012 5455 1941 10.27

MCT 38.57 9023 9772 1403 181.1 0.130 8.007 2.891 18.88
MET 3844 8789 9963 16.01 1579 0.131 7.003 3.130 16.15
ERD 3857 9023 9772 1403 181.1 0.130 8.007 2.891 18.88
LPT 38.08 9243 9759 17.29 200.7 0.123 8.233 4.014 27.22
WSPT 38.68 8734 991.7 17.14 169.2 0.129 7.305 3468 19.45
SA 38.47 8828 9940 1568 161.2 0.129 7430 3.117 17.02
KBP 3837 8753 9985 1570 [1545 0.133 7.013 3.092 15.93
Maxstd 38.27 8857 9936 1593 1650 0.127 7.144 3.195 17.57
OMCT 38.31 B86.8 9942 1571 165.6 0.127 7.147 3.208 18.11
OLB 46.84 981.6 9402 25.81 258.1 0.104 10.75 7.345 38.85
WQ 73.44 1733 8444 5724 1018 0072 31.61 26.00 364.1
T 60.36 1881 3789 51.00 1156 0.101 29.33 17.09 189.3
EDD 38.72 910.2 960.8 16.72 1894 0.129 6.976 2521 14.50
MS 3859 911.4 9621 1644 1903 0.130 7.319 2.678 16.05
MON 38.39 B88.4 989.6 16.19 1683 0.128 | 6.711 2.668 14.97
CR 38.47 9017 9787 14.04 180.5 0.130 7.775 2921 19.23
COVERT 38.26 903.0 967.1 1457 1823 0.126 6.755 2442 13.50
ATC 38.26 9015 9685 1631 1808 0.125 6.686 2418 13.30

Min-min 3841 8751 9987 1554 [1545 0.131 6950 3.003 15.80
Max-min 38.62 908.8 9747 | 14.08 1879 0.127 8.008 3.072 20.94
Min-max 38.14 8857 9892 1443 1653 0.132 7425 3.111 17.18
Sufferage 37.88 8817 9937 1515 160.1 0.128 6.986 2.854 15.94
Sufferage2 ' 37.85 017.6 9752 16.57 1964 0.123 8.096 3.566 24.07

RC 38.11 8749 9983 1491 1541 0.128 6.786 2.864 15.12
LJFR-SJFR 3841 877.0 9959 1558 157.3 0.132 7.090 2953 16.21
MECT 3848 876.7 998.6 1565 156.0 0.133 7.011 3.141 16.33

GP - min 38.02 873.8 2369 13.60 154.0 0.046 6.384 2376 1296
GP - med 38.26 8749 3693 1396 155.0 0054 7.005 2653 13.60

Multi-objective optimisation

10 o -
o)
8 B 0 o © —
e\ o O
E O :A c? o N
5 B
5 4 ° 5 © o —
O
2| . :
®
®
0 | | | | B
2 4 6 8
Criterion 1

1. fi(x") < fi(x?) foralli e {1,...,k}
2. fi(x!) < fi(x*) for at least one j € {1,...,k}.

Vote combination method

Algorithm 2 The vote combination method

1: Let bestPair represent the best selected job-machine association (empty at the beginning)
2: for each unscheduled job which is already released into the system do

3 for each DR in the ensemble do

4 Calculate the priority value by using the selected DR for all machines

5: Determine the machine for which the DR achieved the best value and vote for it
6 end for

7 Select the machine with the most votes

8 Let current Pair denote the job-machine association chosen in this iteration

9: if best Pair is not empty then

10: for each DR in the ensemble do
11: Make a vote between currentPair and bestPair
12: end for
13: if currentPair received more votes than best Pair then
14: best Pair < currentPair
15: end if
16: else
17: best Pair < currentPair
18: end if
19: end for

20: Schedule the job in the best Pair on the machine in the best Pair

Random selection method

Algorithm 3 The random selection method

: Let R represent the set of available DRs
. bestE + @
while the number of created ensembles is less than the maximum allowed value do
E + 0
while Size of E is smaller than the given ensemble size do
Select a random DR from R\ E| and add it to E
end while
if bestE 1s empty then
bestEl +— E
else if E achieves a better fitness than bestE then
bestE +— E
end if
end while

N
W N =D

Results for ensemble learning methods

Approach min med max
ATC 16.63 - -
COVERT 16.86 - -
EDD 17.31 - -
GP 1523 1594 17.59

Sum ensemble combination

SEC-5 14.84 1512 15.76
SEC-5 ESS-3 1488 1521 15.99
BagGP-9 B80 1491 1577 17.26
BagGP-10 ESS-4 B80 14.81 15.59 17.07
BoostGP-3 1528 15.76 17.45

BoostGP-10 ESS-5 1485 15.61 16.47
BoostGP-7 C 1495 1578 16.42
BoostGP-10 CESS-4 1492 1564 16.43
Coevolution-2 con2 15.11 1592 16.43

Vote ensemble combination

SEC-9 1520 15.54 16.06
SEC-10 ESS-4 15.17 15.65 16.25
BagGP-9 B30 15.11 1539 16.32
BagGP-10 ESS-5B80 | 15.05 1541 16.36
BoostGP-5 15.08 1550 16.11
BoostGP-10 ESS-9 1499 1554 16.11
BoostGP-9 C 1502 1552 16.50

BoostGP-10 C ESS-8 | 15.02 1542 16.29
Coevolution-3 conl 15.14 16.01 16.96

ATC for static scheduling problem

wr, {_ max (d; — pi j — max (rj,time), O)} exp {_ max (r; — time, O)]

= —Lex _ -
"I i P kip ko p

Look-ahead

Algorithm 4 Schedule generation scheme used for DRs with look-ahead

1: while unscheduled jobs are available do

2 Wait until at least one job and one machine are available

3 for all jobs where r; < (time 4 (max;(rj) — time) *) and all machines do

4 Obtain the priority m;; of scheduling job j on machine i

5: end for

6 for all jobs where r; < (time + (max;(r;) — time) * a) do

7 Determine the best machine (the one for which the best value of priority m;;
8 is achieved)

9

end for
10: while jobs whose best machine is available exist do
11: Determine the best priority of all such jobs
12: Schedule the job with best priority if it is released
13: end while

14: end while

IDRSs

Algorithm 5 Schedule generation scheme used by IDRs

1: Let R represent the set of parameters extracted from the previous schedule which are used by
the priority function, and let Ry represent their initial values

2: R+ Ry

3: Flitness™ < oo

4: Let S represent the current schedule (empty at the begging), and bestS the best created

schedule

5: do
bestS « S

7: Generate the schedule using the standard schedule generation scheme and the priority
function 7

8: S <+ generated schedule

9: Fitness™ < Flitness

10: Fitness < fitness value of the generated schedule S

11: Calculate new values for schedule dependant nodes, based on the constructed schedule S,

and store the calculated values in R
12: while (Flitness* > Fitness)
13: Return bestS as the result

IDR nodes

Node name Node description

NLATE number of tardy jobs in the previous schedule

LATENESS total lateness of the entire previously created schedule

INDLATE lateness of a concrete job in the previous schedule

TARDINESS total weighted tardiness of the entire previously created schedule

INDTARD tardiness of a concrete job in the previous schedule

INDWTARD weighted tardiness of a concrete job in the previous schedule

ISLATE if the job was late in the previous schedule the left branch of the node is
executed, otherwise the right branch is executed

JOBFINISH completion time of a concrete job in the previous schedule

FLOWTIME flowtime of a concrete job in the previous schedule

The rollout algorithm

Algorithm 6 Rollout algorithm for scheduling with DRs

1: time + 0
2: previousF'itness + oo
3: bestF'itness +— oo
4: while unscheduled jobs are available do
5: Set time to the next point in time where there is at least one released job and one available
machine
for each unscheduled job j where r; < (time + (max;(r;) — time) *) do
for each machine m do

8: Use a DR to construct the rest of the schedule when job j would be scheduled on
machine m.

9: Let fitness denote the fitness of the constructed schedule.

10: if fitness < bestF'itness then

11: best F'itness + fitness

12: Let best Pair denote the selected job-machine pair

13: end if

14: end for

15: end for

16: if previousF'itness > bestFitness then

17: previousFitness + bestFitness

18: Schedule the job from bestPair on the machine from best Pair

19: else

20: Execute the DR to perform the next scheduling decision

21: end if

22: end while

GA representations

Permutation representation:

O ' 4 3|72 0 8 1 | 5] 6

o/ 2,210, 0 10|21
Floating point representation:
0.27 { 0.31 | 0.15 | 0.77 | 0.70 | 0.89 | 0.62 | 0.43 | 0.47 | 0.03

Examples of constructed schedules

010 20 30 40 50 60 70 80 90 100 110 1200 130 140 150 160 170

Mo -_
v [

- _
0 15 15 09 73 35 45 () Schedule generated by the best dynamic DR

98 104 0.07 62 64 5
1 43 087 47 89 9 ’”._

(b} Schedule generated by a DR with static terminal nodes
010 20 30 40 50 60 0 80 90 100 110 120 130 140 150 160 170

Jobindex j r; d; Wi poj Plj P2j

=

&

[a—

=

25 76 006 58 31 24

v
47 9% 006 65 75 47 Ll ——

(ch Schedule generated by an IDR in the first iteration

31 70 0.26 38 82 19 010 20 30 40 50 60 70 80 90 100 110 1200 130 140 150 16D 170

Mo -_
59 84 078 12 93 92 i .—
- i o I

42 78 094 33 24 62 (d) Schedule generated by an IDR in the second iteration

010 20 30 40 50 60 70 80 90 100 110 1200 130 140 150 16D 170

56 102 063 92 62 31 pe——un___ 1
3 64 033 99 70 92 ~ B I -

(e} Schedule generated by a DR with look-ahead
010 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

21 27 049 1 80 18 v o [
v S
19 43 095 18 15 96 vl

(f) Schedule generated by the rollout algorithm

o &0 39 O i B W

[
S

’—l
[

