
Automated design of dispatching rules
in the unrelated machines environment
Thesis defence

Candidate: Marko Đurasević
Faculty of Electrical Engineering and Computing

Mentor: Professor Domagoj Jakobović, Ph.D.

February 2018

Outline
• Introduction
• Scheduling problems
• Genetic programming
• Designing dispatching rules with genetic programming
• Automatic design of multi-objective dispatching rules
• Design of ensembles of dispatching rules
• Selection of dispatching rules based on characteristics of

problem instances
• Automatic design of dispatching rules for static conditions
• Conclusion

2/51

Introduction
• Various methods used to solve scheduling problems

• Problem-specific heuristics are hard to design
manually

• Different machine learning and evolutionary
computation methods are applied to automatically
design new heuristics

• These methods can be used to design heuristics for
various scheduling problems and conditions

• A substantial amount of research already performed in
this area

3/51

Introduction
• Still a lot of open issues remain in the automatic

generation of dispatching rules

• Thesis’ objective is to investigate automatic generation
of scheduling heuristics
▫ Investigate how the performance of automatically

generated dispatching rules can be improved

▫ Investigate the generation of dispatching rules for
different and multiple scheduling criteria

▫ Investigate the application of dispatching rules under
various conditions

4/51

Scheduling problems
• Scheduling – allocation of activities (jobs) to scarce

resources (machines) [1]

• Goal: create a schedule which optimises certain user
defined criteria

• Most scheduling problems are NP-hard [1,2]

• Many applications in real world scenarios:
▫ Scheduling in air traffic control [3]

▫ Scheduling in semiconductor manufacturing [4]

▫ Scheduling jobs in clusters [5]

▫ Therapy scheduling in hospitals [6]

5/51

Unrelated machines environment
• n jobs need to be scheduled on m machines
• Job properties [1,2]:
▫ Processing time (𝑝𝑖𝑗)

▫ Release time (𝑟𝑗)

▫ Due date (𝑑𝑗)

▫ Weight (𝑤𝑗)

• Scheduling criteria [1]:
▫ Makespan
▫ Total weighted tardiness

• Scheduling under dynamic and static conditions:
▫ Static: all system information is available prior to its execution
▫ Dynamic: information about jobs becomes available when

they are released

6/51

Solving scheduling problems
• Exact algorithms
▫ Can obtain the optimal solution
▫ Computationally expensive and used only for static conditions

• Approximation algorithms
▫ Obtain solutions worse than the optimal solution by a certain

factor
▫ Applicable under static conditions, and difficult to design

• Heuristic algorithms
▫ Applicable for various criteria and conditions
▫ Do not necessarily obtain the optimal solution
▫ Improvement heuristics – iteratively improve a schedule

 Applicable under static conditions only
▫ Constructive heuristics – incrementally create a schedule

 Mostly in form of dispatching rules
 Applicable under dynamic conditions

7/51

Dispatching rules (DRs)
• Simple scheduling heuristics

• At each scheduling decision they determine which job
should be scheduled on which machine

• To determine which job should be used a priority
function is used [7]:

▫ EDD:
1

𝑑𝑗

▫ WSPT:
𝑤𝑗

𝑝𝑗

▫ ERD:
1

𝑟𝑗

8/51

Example of a DR

9/51

Job 1:
• 𝑝 = 10
• 𝑑 = 17
• 𝑤 = 0.8

Job 2:
• 𝑝 = 7
• 𝑑 = 30
• 𝑤 = 0.5

π𝑗 =
𝑝𝑗 ∗ (𝑑𝑗 − 𝑡𝑖𝑚𝑒)

𝑤𝑗

π1 = 212.5

π2 = 420

Schedule:

Priority rule:

Machine 1

Time = 0

Example of a DR

10/51

Job 2:
• 𝑝 = 7
• 𝑑 = 30
• 𝑤 = 0.5

Job 3:
• 𝑝 = 13
• 𝑑 = 25
• 𝑤 = 0.7

π𝑗 =
𝑝𝑗 ∗ (𝑑𝑗 − 𝑡𝑖𝑚𝑒)

𝑤𝑗

π2 = 280

π3 = 278.6

Schedule:

Priority rule:

Machine 1

Time = 10

Job 1

Example of a DR

11/51

Job 2:
• 𝑝 = 7
• 𝑑 = 30
• 𝑤 = 0.5

π𝑗 =
𝑝𝑗 ∗ (𝑑𝑗 − 𝑡𝑖𝑚𝑒)

𝑤𝑗

π2 = 98

Schedule:

Priority rule:

Machine 1

Time = 23

Job 1 Job 3

Example of a DR

12/51

π𝑗 =
𝑝𝑗 ∗ (𝑑𝑗 − 𝑡𝑖𝑚𝑒)

𝑤𝑗

Schedule:

Priority rule:

Machine 1

Time = 30

Job 1 Job 3 Job 2

Dispatching rules (DRs)
• Advantages:
▫ Perform scheduling decisions quickly

▫ Can be applied in dynamic conditions

▫ Can adapt to various changes in the scheduling
environment

• Disadvantages:
▫ Hard to manually design new DRs

▫ Achieve inferior performance to genetic algorithms and
other more complex methods

▫ It is unknown which DR performs the best for a concrete
problem instance

13/51

Dispatching rules (DRs)
• Divide the DR into two parts:
▫ A schedule generation scheme (designed manually)

while (unscheduled jobs exist) {
wait until a machine becomes ready
determine the priorities πi of all unscheduled jobs
schedule the job with the best priority

}

▫ A priority function (designed automatically)

 The priority function can be designed by various methods:
 Neural networks, genetic programming, linear regression, etc.

14/51

π𝑗 =
𝑝𝑗 ∗ (𝑑𝑗 − 𝑡𝑖𝑚𝑒)

𝑤𝑗

Genetic programming
• An evolutionary algorithm for solving optimisation

problems [8]

• Individuals represent mathematical functions and
expressions

15/51

• Leaf nodes represent job and
system parameters

• Inner nodes represent
functions

• Expression: 𝑤 ∗ 𝑝𝑡 +
𝑝𝑡

𝑑𝑑
∗ 𝑆𝐿

Steps for automatic design of DRs
• Define the set of nodes used by GP:
▫ Terminal nodes: pt, pavg, pmin, MR, SL, w, dd, PAT, age

▫ Function nodes: +, -, *, /, pos

• Define a set of problem instances:
▫ 120 problem instances of various characteristics

▫ 60 instances used for designing new DRs, 60 for
evaluation

• Determine optimal GP parameters

16/51

Automatic design of DRs
• A lot of research done in this area:
▫ Application in different machine environments and for various

criteria [9, 10, 11, 12, 13]
▫ Comparison of various solution representations [14, 15]
▫ Design of due date assignment rules [16]
▫ Design of DRs for the order acceptance and scheduling problem

[17]

• Many open research areas:
▫ Design of DRs for multi-objective and many-objective optimisation
▫ Design of ensembles of DRs
▫ Selection of automatically generated DRs based on the problem

instance characteristics
▫ Design of DRs appropriate for scheduling under static conditions
▫ Increasing the interpretability of DRs
▫ Generating DRs for stochastic scheduling environments

17/51

Contributions of the thesis
• Investigate the generation of dispatching rules for

optimising several objectives simultaneously

• Investigate the generation of ensembles of dispatching
rules, to improve their performance

• Investigate the selection of automatically designed
dispatching rules based on the problem characteristics

• Investigate the generation of dispatching rules
designed for static scheduling conditions

18/51

Design of DRs for multi-objective problems
• Objective: automatic design DRs for simultaneous

optimisation of several objectives

• Previous research [18, 19, 20, 21]:
▫ No analysis on the influence of the various criteria

combinations

▫ Very little comparison with existing standard DRs

• Application of four multi-objective GP (MOGP) methods
▫ NSGA-II [22], NSGA-III [23], MOEA/D [24], HaD-MOEA [25]

• Experimental setup
▫ 14 multi-objective scheduling problems

▫ Problems containing between three and nine scheduling
criteria

19/51

Design of DRs for multi-objective problems

20/51

• MOGP performance when optimising six criteria
simultaneously

Design of DRs for multi-objective problems
• Comparison of

automatically
designed DRs
with the manually
designed ATC rule

• ATC [26] defined
as:

▫ π𝑗 =
𝑤𝑇𝑗

𝑝𝑖𝑗
∗

exp −
max 𝑑𝑗−𝑝𝑖𝑗−𝑡𝑖𝑚𝑒,0

𝑘∗ ҧ𝑝

21/51

Design of DRs for multi-objective problems
• Correlation of the Twt criterion with other scheduling

criteria

22/51

Design of DRs for multi-objective problems
• NSGA-II and NSGA-III generate the best DRs

• Results provide an overview of the criteria correlation
▫ Useful when choosing which criteria to optimise

simultaneously

• The performance of MOGP algorithms depends on the
selected scheduling criteria that are optimised:
▫ Best results achieved when optimising related criteria

simultaneously (large improvements over standard DRs)

▫ Problems occur when optimising negatively related
criteria

23/51

Design of DRs for multi-objective problems
• Conclusions
▫ MOGP algorithms generate DRs which are better than

standard DRs
▫ Optimising more than 6 criteria simultaneously usually

proves to be difficult
▫ Algorithms very sensitive to the inclusion of criteria that

negatively correlate with other criteria

• Future research
▫ Use more sophisticated MOGP algorithms (adaptive

NSGA-III)
▫ Include non standard scheduling criteria
▫ Perform a deeper analysis of the evolved MOGP rules to

learn how DRs optimise several criteria simultaneously

24/51

Design of ensembles of DRs
• Several studies demonstrated the benefits of

ensembles of DRs [27, 28, 29]
▫ Mostly the cooperative coevolution method was used

• Ensemble learning methods:
▫ Simple ensemble combination (SEC)

▫ BagGP [30]

▫ BoostGP [31]

▫ Cooperative coevolution [32]

▫ Ensemble subset search (ESS)

• Ensemble combination methods [33]:
▫ Sum

▫ Vote

25/51

Design of ensembles of DRs
• Performance of the tested ensemble learning methods

26/51

Design of ensembles of DRs
• Performance of a selected ensemble of DRs

27/51

Design of ensembles of DRs
• Ensembles of DRs consistently achieved improvements

over standard DRs and DRs evolved by GP
▫ Twt: 5.1% better than GP, 13.3% better than standard DRs

▫ Nwt: 3.4% better than GP, 8.2% better than standard DRs

▫ Ft: 0.4% better than GP, 1.6% better than standard DRs

▫ Cmax: 0.9% better than GP, 0.6% better than standard DRs

• The best results achieved by the proposed SEC approach

• Usually ensembles of around five DRs achieved the best
results

28/51

Design of ensembles of DRs
• Conclusions:
▫ Ensembles of DRs achieve superior performance than an

individual DR
▫ The proposed SEC method achieved superior results

than other methods
▫ By using the ESS methods the results can in some

occasions be improved and the ensemble sizes reduced

• Future research:
▫ Testing other ensemble learning approaches and

ensemble combination methods
▫ Testing different ensemble construction methods for SEC
▫ Test the ensemble learning methods on other machine

environments

29/51

Selection of automatically designed DRs
• Several papers studied the selection of manual DRs

[34, 35, 36], but no studies applied generated DRs

• The proposed procedure
▫ Learning process: determine which DR is appropriate for

each instance by using various problem characteristics

▫ Two selection scenarios:
 Static

 The decision can be performed prior to the system execution

 Dynamic
 Decision must be performed during the system execution

 System parameters need to be approximated

 Two problem types: constant and changing job characteristics

30/51

Selection of automatically designed DRs
• Performance of the DR selection method under

dynamic conditions

• The factors used to generate the due dates and
release times vary during the system execution

31/51

Selection of automatically designed DRs
• Execution of the DR selection procedure on one

problem instance

• Changing DRs during the execution allows the method
to adapt to certain scheduling conditions

32/51

Selection of automatically designed DRs
• Static scheduling decision
▫ Better results up to 10% on the validation set and up to

6% on the test set

▫ C4.5 and knn achieve the best performance

• Dynamic scheduling decision
▫ Improvements up to 16% on both problem sets

▫ Good performance on both problem types

▫ C4.5 and knn achieve the best performance

▫ Better to perform the decision as soon as possible

▫ In many cases it was enough to perform the decision
only once

33/51

Selection of automatically designed DRs
• Conclusions:
▫ Viable in both static and dynamic selection scenarios
▫ The method achieves a large improvement in the results
▫ A substantial number of parameters need to be

optimised
▫ Very sensitive to the choice of parameters

• Future research:
▫ Testing with other classification methods
▫ Investigating the influence of other features
▫ Using dynamic system parameters to perform the

decision
▫ Generate the classification methods together with DRs

34/51

Design of DRs for static conditions
• Very little research done in this area [43, 44]

• DRs have several benefits over other algorithms for
static conditions:
▫ Fast execution time

▫ Incremental construction of the schedule

• Objective: design DRs suitable for static conditions

• Four tested methods:
▫ Static terminal nodes

▫ Look-ahead [37]

▫ Iterative dispatching rules [38]

▫ Rollout algorithm [39, 40, 41]

▫ Various combinations

35/51

Design of DRs for static conditions

36/51

Design of DRs for static conditions

37/51

Design of DRs for static conditions

38/51

Design of DRs for static conditions
• Look-ahead achieves the best improvement with a

slightly increased execution time

• Improvement of look-ahead:
▫ Dynamic DRs: 17.9% better, 2.3 times slower

▫ GA: 8.8% worse, 2300 times faster

• Improvement of the rollout algorithm:
▫ Dynamic DRs: 22.8% better, 1078 times slower

▫ GA: 2% better, 4.86 times faster

• Best combinations of methods:
▫ Look-ahead and IDRs

▫ Rollout and look-ahead

▫ Rollout, look-ahead, and static terminal nodes

39/51

Design of DRs for static conditions
• Conclusions:
▫ Look-ahead appropriate when time is of the essence
▫ Rollout algorithm appropriate for obtaining the best

results
▫ With rollout the DRs achieve better performance than a

GA in less time
▫ Different methods provide various trade-offs between

execution time and solution quality

• Future research:
▫ Design of new methods
▫ Reduce the execution time of the rollout algorithm
▫ Application on other scheduling criteria (design of new

static terminals and terminals for IDRs)

40/51

Conclusions
• Thesis contributions:
▫ Development of DRs for various multi-objective

scheduling problems
▫ Development of ensembles of DRs
▫ Procedure for selecting DRs based on problem instances
▫ Development of DRs for scheduling under static

conditions

• GP demonstrated great potential for developing new
DRs for various conditions and criteria

• The obtained results demonstrate improved
performance over standard DRs and GP

• The results and methods provide show great potential
for further research and improvement

41/51

Conclusions
• Future research:
▫ Testing combinations of the aforementioned methods

▫ Design of DRs for batch processing

▫ Design of DRs for scheduling problems with various
constraints (setup times, machine breakdowns,
precedence constraints)

▫ Development of more interpretable DRs

▫ Development of DRs for problems with stochastic
parameters (parameters are not known until jobs finish
with execution)

▫ Development of new schedule generation schemes

42/51

References
[1] Pinedo, M. L., Scheduling: Theory, algorithms, and systems: Fourth
edition. Boston, MA: Springer US, 2012
[2] Leung, J. Y.-T., Handbook of scheduling : algorithms, models, and
performance analysis. Boca Raton, Fla.: Chapman & Hall/CRC, 2004
[3] Cheng, V., Crawford, L., Menon, P., “Air traffic control using genetic
search techniques”, in Proceedings of the 1999 IEEE International
Conference on Control Applications (Cat. No.99CH36328), Vol. 1. IEEE,
1999, pp. 249–254, available
[4] Pfund, M. E., Mason, S. J., Fowler, J. W., “Semiconductor
Manufacturing
Scheduling and Dispatching”, in Handbook of Production Scheduling.
Boston: Kluwer Academic Publishers, 2006, pp. 213–241,
[5] Hou, E., Ansari, N., Ren, H., “A genetic algorithm for multiprocessor
scheduling”, IEEE Transactions on Parallel and Distributed Systems, Vol. 5,
No. 2, 1994, pp. 113–120
[6] Petrovic, S., Castro, E., “A genetic algorithm for radiotherapy pre-
treatment scheduling”, in Applications of Evolutionary Computation:
EvoApplications 2011: EvoCOMNET, EvoFIN, EvoHOT, EvoMUSART,
EvoSTIM, and EvoTRANSLOG, Torino, Italy, April 27-29, 2011,

43/51

References
[7] Maheswaran, M., Ali, S., Siegal, H., Hensgen, D., Freund, R.: Dynamic
matching andscheduling of a class of independent tasks onto
heterogeneous computing systems. Proceedings.Eighth Heterogeneous
Computing Workshop (HCW’99) (June 1999) (1999).
[8] Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic
programming. Publishedvia http://lulu.com and freely available at
http://www.gp-field-guide.org.uk(2008). (With contributions by J. R.
Koza)
[9] Miyashita, K., “Job-shop scheduling with genetic programming”, in
Proceedings of the 2Nd Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO’00. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2000, pp. 505–512
[10] Jakobovic, D., Budin, L., “Dynamic scheduling with genetic
programming”, in Genetic Programming: 9th European Conference,
EuroGP 2006, Budapest, Hungary, April 10-12, 2006.
[11] Jakobovic, D., Jelenkovic, L., Budin, L., “Genetic Programming
Heuristics for Multiple Machine Scheduling”, in Genetic Programming.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 321–330

44/51

References
[12] Jakobovic, D., Marasovic, K., “Evolving priority scheduling heuristics
with genetic programming”, Applied Soft Computing, Vol. 12, No. 9, Sep.
2012, pp. 2781–2789
[13] Ðurasevic, M., Jakobovic, D., “Comparison of solution
representations for scheduling in the unrelated machines environment”,
in 2016 39th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO).
IEEE, May 2016, pp. 1336–1342
[14] Nguyen, S., Zhang, M., Johnston, M., Tan, K. C., “A Computational
Study of Representations in Genetic Programming to Evolve Dispatching
Rules for the Job Shop Scheduling Problem”, IEEE Transactions on
Evolutionary Computation, Vol. 17, No. 5, Oct. 2013, pp. 621–639
[15] Branke, J., Hildebrandt, T., Scholz-Reiter, B., “Hyper-heuristic
Evolution of Dispatching Rules: A Comparison of Rule Representations”,
Evolutionary Computation, Vol. 23, No. 2, Jun. 2015, pp. 249–277
[16] Nguyen, S., Zhang, M., Johnston, M., Tan, K. C., “Genetic
Programming for Evolving Due-Date Assignment Models in Job Shop
Environments”, Evolutionary Computation, Vol. 22, No. 1, Mar. 2014, pp.
105–138

45/51

References
[17] Park, J., Nguyen, S., Zhang, M., Johnston, M., “Genetic
programming for order acceptance and scheduling”, in 2013 IEEE
Congress on Evolutionary Computation. IEEE, Jun. 2013, pp. 1005–
1012
[18] Nie, L., Gao, L., Li, P., Wang, X., “Multi-Objective Optimization
for Dynamic Single-Machine Scheduling”, in Advances in Swarm
Intelligence: Second International Conference, ICSI 2011,
Chongqing, China, June 12-15, 2011, Proceedings, Part II
[19] Nguyen, S., Zhang, M., Johnston, M., Tan, K. C., “Dynamic
multi-objective job shop scheduling: A genetic programming
approach”, in Automated Scheduling and Planning: From Theory to
Practice, Uyar, A. S., Ozcan, E., Urquhart, N., (ed.). Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 251–282
[20] Nguyen, S., Zhang, M., Tan, K. C., “Enhancing genetic
programming based hyper-heuristics for dynamic multi-objective
job shop scheduling problems”, in 2015 IEEE Congress on
Evolutionary Computation (CEC). IEEE, May 2015, pp. 2781–2788

46/51

References
[21] Masood, A., Mei, Y., Chen, G., Zhang, M., “Many-objective genetic
programming for job-shop scheduling”, in 2016 IEEE Congress on Evolutionary
Computation (CEC). IEEE, Jul. 2016, pp. 209–216
[22] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., “A fast and elitist
multiobjective genetic algorithm: NSGA-II”, IEEE Transactions on Evolutionary
Computation, Vol. 6, No. 2, Apr. 2002, pp. 182–197
[23] Deb, K., Jain, H., “An Evolutionary Many-Objective Optimization Algorithm
Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving
ProblemsWith Box Constraints”, IEEE Transactions on Evolutionary Computation,
Vol. 18, No. 4, Aug. 2014, pp. 577–601
[24] Qingfu Zhang, Hui Li, “MOEA/D: A Multiobjective Evolutionary Algorithm
Based on Decomposition”, IEEE Transactions on Evolutionary Computation, Vol.
11, No. 6, Dec. 2007, pp. 712–731
[25] Wang, Z., Tang, K., Yao, X., “Multi-Objective Approaches to Optimal Testing
Resource Allocation in Modular Software Systems”, IEEE Transactions on
Reliability, Vol. 59, No. 3, Sep. 2010, pp. 563–575
[26] Morton, T. E., Rachamadugu, R. M. V., “Myopic heuristics for the single
machine weighted tardiness problem.”, DTIC Document, Tech. Rep., 1982.

47/51

References
[27] Park, J., Nguyen, S., Zhang, M., Johnston, M., “Evolving
ensembles of dispatching rules using genetic programming for job
shop scheduling”, in Genetic Programming: 18th European
Conference, EuroGP 2015, Copenhagen, Denmark, April 8-10, 2015
[28] Hart, E., Sim, K., “A Hyper-Heuristic Ensemble Method for
Static Job-Shop Scheduling”, Evolutionary Computation, Vol. 24,
No. 4, Dec. 2016, pp. 609–635
[29] Park, J., Nguyen, S., Zhang, M., Johnston, M., “A Single
Population Genetic Programming based Ensemble Learning
Approach to Job Shop Scheduling”, in Proceedings of the
Companion Publication of the 2015 on Genetic and Evolutionary
Computation Conference - GECCO Companion ’15. New York, New
York, USA: ACM Press, 2015, pp. 1451–1452,
[30] Iba, H., “Bagging, boosting, and bloating in genetic
programming”, in Proceedings of the 1st Annual Conference on
Genetic and Evolutionary Computation - Volume 2, ser. GECCO’99.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999,
pp. 1053–1060

48/51

References
[31] Paris, G., Robilliard, D., Fonlupt, C., “Applying boosting techniques to
genetic programming”, in Artificial Evolution: 5th International
Conference, Evolution Artificielle, EA 2001 Le Creusot, France, October
29–31, 2001 Selected Papers, Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E.,
Schoenauer, M., (ed.). Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 267–278
[32] Potter, M. A., Jong, K. A. D., “A cooperative coevolutionary approach
to function optimization”, in Proceedings of the International Conference
on Evolutionary Computation. The Third Conference on Parallel Problem
Solving from Nature: Parallel Problem Solving from Nature, ser. PPSN III.
London, UK, UK: Springer-Verlag, 1994, pp. 249–257
[33] Polikar, R., “Ensemble learning”, Scholarpedia, Vol. 4, No. 1, 2009,
pp. 2776, revision #91224.
[34] PRIORE, P., DE LA FUENTE, D., GOMEZ, A., PUENTE, J., “A review of
machine learning in dynamic scheduling of flexible manufacturing
systems”, Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, Vol. 15, No. 3, 2001, pp.251–263.

49/51

References
[35] Shahzad, A., Mebarki, N., “Learning dispatching rules for
scheduling: A synergistic view comprising decision trees, tabu
search and simulation”, Computers, Vol. 5, No. 1, 2016
[36] Priore, P., Gómez, A., Pino, R., Rosillo, R., “Dynamic scheduling
of manufacturing systems using machine learning: An updated
review”, Artificial Intelligence for Engineering Design, Analysis and
Manufacturing: AIEDAM, Vol. 28, No. 1, 2014, pp. 83–97
[37] Hildebrandt, T., Heger, J., Scholz-Reiter, B., “Towards improved
dispatching rules for complex shop floor scenarios”, in Proceedings
of the 12th annual conference on Genetic and evolutionary
computation - GECCO ’10. New York, New York, USA: ACM Press,
2010, pp. 257
[38] Nguyen, S., Zhang, M., Johnston, M., Tan, K. C., “Learning
iterative dispatching rules for job shop scheduling with genetic
programming”, The International Journal of Advanced
Manufacturing Technology, Vol. 67, No. 1-4, Jul. 2013, pp. 85–100

50/51

References
[39] Bertsekas, D., Castanon, D., “Rollout algorithms for
stochastic scheduling problems”, in Proceedings of the
37th IEEE Conference on Decision and Control (Cat.
No.98CH36171), Vol. 2. IEEE, 1998, pp. 2143–2148

[40] Bertsekas, D., Castanon, D., “Rollout algorithms for
stochastic scheduling problems”, MASSACHUSETTS INST
OF TECH CAMBRIDGE LAB FOR INFORMATION AND
DECISION SYSTEMS, Tech. Rep., 1998.

[41] Bertsekas, D. P., Castanon, D. A., “Rollout Algorithms
for Stochastic Scheduling Problems”, Journal of
Heuristics, Vol. 5, No. 1, 1999, pp. 89–108, available at:
http://link.springer.com/10.1023/A:1009634810396

51/51

Scheduling criteria

52/51

Priority function example

53/51

Terminal nodes

54/51

Function nodes

55/51

Schedule generation scheme

56/51

Generalisation error

57/51

GP parameters

58/51

Problem instance generation

59/51

Standard DR performance

60/51

Multi-objective optimisation

61/51

Vote combination method

62/51

Random selection method

63/51

Results for ensemble learning methods

64/51

ATC for static scheduling problem

65/51

Look-ahead

66/51

IDRs

67/51

IDR nodes

68/51

The rollout algorithm

69/51

GA representations

70/51

Permutation representation:

Floating point representation:

Examples of constructed schedules

71/51

