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Introduction
• Various methods used to solve scheduling problems

• Problem-specific heuristics are hard to design
manually

• Different machine learning and evolutionary 
computation methods are applied to automatically 
design new heuristics

• These methods can be used to design heuristics for 
various scheduling problems and conditions

• A substantial amount of research already performed in 
this area
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Introduction
• Still a lot of open issues remain in the automatic 

generation of dispatching rules

• Thesis’ objective is to investigate automatic generation 
of scheduling heuristics
▫ Investigate how the performance of automatically 

generated dispatching rules can be improved

▫ Investigate the generation of dispatching rules for 
different and multiple scheduling criteria

▫ Investigate the application of dispatching rules under 
various conditions
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Scheduling problems
• Scheduling – allocation of activities (jobs) to scarce 

resources (machines) [1]

• Goal: create a schedule which optimises certain user 
defined criteria

• Most scheduling problems are NP-hard [1,2]

• Many applications in real world scenarios:
▫ Scheduling in air traffic control [3]

▫ Scheduling in semiconductor manufacturing [4]

▫ Scheduling jobs in clusters [5]

▫ Therapy scheduling in hospitals [6]
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Unrelated machines environment
• n jobs need to be scheduled on m machines
• Job properties [1,2]:
▫ Processing time (𝑝𝑖𝑗)

▫ Release time (𝑟𝑗)

▫ Due date (𝑑𝑗)

▫ Weight (𝑤𝑗)

• Scheduling criteria [1]:
▫ Makespan
▫ Total weighted tardiness

• Scheduling under dynamic and static conditions:
▫ Static: all system information is available prior to its execution
▫ Dynamic: information about jobs becomes available when 

they are released
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Solving scheduling problems
• Exact algorithms
▫ Can obtain the optimal solution
▫ Computationally expensive and used only for static conditions

• Approximation algorithms
▫ Obtain solutions worse than the optimal solution by a certain 

factor
▫ Applicable under static conditions, and difficult to design

• Heuristic algorithms
▫ Applicable for various criteria and conditions
▫ Do not necessarily obtain the optimal solution
▫ Improvement heuristics – iteratively improve a schedule

 Applicable under static conditions only
▫ Constructive heuristics – incrementally create a schedule

 Mostly in form of dispatching rules
 Applicable under dynamic conditions
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Dispatching rules (DRs)
• Simple scheduling heuristics

• At each scheduling decision they determine which job 
should be scheduled on which machine

• To determine which job should be used a priority 
function is used [7]:

▫ EDD: 
1

𝑑𝑗

▫ WSPT: 
𝑤𝑗

𝑝𝑗

▫ ERD: 
1

𝑟𝑗
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Example of a DR

9/51

Job 1:
• 𝑝 = 10
• 𝑑 = 17
• 𝑤 = 0.8

Job 2:
• 𝑝 = 7
• 𝑑 = 30
• 𝑤 = 0.5

π𝑗 =
𝑝𝑗 ∗ (𝑑𝑗 − 𝑡𝑖𝑚𝑒)

𝑤𝑗

π1 = 212.5

π2 = 420

Schedule:

Priority rule:

Machine 1 

Time = 0



Example of a DR
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Job 2:
• 𝑝 = 7
• 𝑑 = 30
• 𝑤 = 0.5

Job 3:
• 𝑝 = 13
• 𝑑 = 25
• 𝑤 = 0.7

π𝑗 =
𝑝𝑗 ∗ (𝑑𝑗 − 𝑡𝑖𝑚𝑒)

𝑤𝑗

π2 = 280

π3 = 278.6

Schedule:

Priority rule:

Machine 1 

Time = 10

Job 1



Example of a DR
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Job 2:
• 𝑝 = 7
• 𝑑 = 30
• 𝑤 = 0.5

π𝑗 =
𝑝𝑗 ∗ (𝑑𝑗 − 𝑡𝑖𝑚𝑒)

𝑤𝑗

π2 = 98

Schedule:

Priority rule:

Machine 1 

Time = 23

Job 1 Job 3



Example of a DR
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π𝑗 =
𝑝𝑗 ∗ (𝑑𝑗 − 𝑡𝑖𝑚𝑒)

𝑤𝑗

Schedule:

Priority rule:

Machine 1 

Time = 30

Job 1 Job 3 Job 2



Dispatching rules (DRs)
• Advantages:
▫ Perform scheduling decisions quickly

▫ Can be applied in dynamic conditions

▫ Can adapt to various changes in the scheduling 
environment

• Disadvantages:
▫ Hard to manually design new DRs

▫ Achieve inferior performance to genetic algorithms and 
other more complex methods

▫ It is unknown which DR performs the best for a concrete 
problem instance
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Dispatching rules (DRs)
• Divide the DR into two parts:
▫ A schedule generation scheme (designed manually)

while (unscheduled jobs exist) {
wait until a machine becomes ready
determine the priorities πi of all unscheduled jobs
schedule the job with the best priority

}

▫ A priority function (designed automatically)

 The priority function can be designed by various methods:
 Neural networks, genetic programming, linear regression, etc.

14/51

π𝑗 =
𝑝𝑗 ∗ (𝑑𝑗 − 𝑡𝑖𝑚𝑒)

𝑤𝑗



Genetic programming
• An evolutionary algorithm for solving optimisation 

problems [8]

• Individuals represent mathematical functions and 
expressions
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• Leaf nodes represent job and 
system parameters

• Inner nodes represent 
functions

• Expression: 𝑤 ∗ 𝑝𝑡 +
𝑝𝑡

𝑑𝑑
∗ 𝑆𝐿



Steps for automatic design of DRs
• Define the set of nodes used by GP:
▫ Terminal nodes: pt, pavg, pmin, MR, SL, w, dd, PAT, age

▫ Function nodes: +, -, *, /, pos

• Define a set of problem instances:
▫ 120 problem instances of various characteristics

▫ 60 instances used for designing new DRs, 60 for 
evaluation

• Determine optimal GP parameters
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Automatic design of DRs
• A lot of research done in this area:
▫ Application in different machine environments and for various 

criteria [9, 10, 11, 12, 13]
▫ Comparison of various solution representations [14, 15]
▫ Design of due date assignment rules [16]
▫ Design of DRs for the order acceptance and scheduling problem

[17]

• Many open research areas:
▫ Design of DRs for multi-objective and many-objective optimisation
▫ Design of ensembles of DRs
▫ Selection of automatically generated DRs based on the problem 

instance characteristics
▫ Design of DRs appropriate for scheduling under static conditions
▫ Increasing the interpretability of DRs
▫ Generating DRs for stochastic scheduling environments
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Contributions of the thesis
• Investigate the generation of dispatching rules for 

optimising several objectives simultaneously 

• Investigate the generation of ensembles of dispatching 
rules, to improve their performance 

• Investigate the selection of automatically designed 
dispatching rules based on the problem characteristics 

• Investigate the generation of dispatching rules
designed for static scheduling conditions
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Design of DRs for multi-objective problems
• Objective: automatic design DRs for simultaneous 

optimisation of several objectives

• Previous research [18, 19, 20, 21]:
▫ No analysis on the influence of the various criteria 

combinations

▫ Very little comparison with existing standard DRs

• Application of four multi-objective GP (MOGP) methods
▫ NSGA-II [22], NSGA-III [23], MOEA/D [24], HaD-MOEA [25]

• Experimental setup
▫ 14 multi-objective scheduling problems

▫ Problems containing between three and nine scheduling 
criteria
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Design of DRs for multi-objective problems
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• MOGP performance when optimising six criteria 
simultaneously



Design of DRs for multi-objective problems
• Comparison of 

automatically 
designed DRs 
with the manually 
designed ATC rule 

• ATC [26] defined 
as:

▫ π𝑗 =
𝑤𝑇𝑗

𝑝𝑖𝑗
∗

exp −
max 𝑑𝑗−𝑝𝑖𝑗−𝑡𝑖𝑚𝑒,0

𝑘∗ ҧ𝑝
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Design of DRs for multi-objective problems
• Correlation of the Twt criterion with other scheduling 

criteria
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Design of DRs for multi-objective problems
• NSGA-II and NSGA-III generate the best DRs

• Results provide an overview of the criteria correlation
▫ Useful when choosing which criteria to optimise 

simultaneously

• The performance of MOGP algorithms depends on the 
selected scheduling criteria that are optimised:
▫ Best results achieved when optimising related criteria 

simultaneously (large improvements over standard DRs)

▫ Problems occur when optimising negatively related 
criteria
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Design of DRs for multi-objective problems
• Conclusions
▫ MOGP algorithms generate DRs which are better than 

standard  DRs
▫ Optimising more than 6 criteria simultaneously usually 

proves to be difficult
▫ Algorithms very sensitive to the inclusion of criteria that 

negatively correlate with other criteria

• Future research
▫ Use more sophisticated MOGP algorithms (adaptive 

NSGA-III)
▫ Include non standard scheduling criteria
▫ Perform a deeper analysis of the evolved MOGP rules to 

learn how DRs optimise several criteria simultaneously
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Design of ensembles of DRs
• Several studies demonstrated the benefits of 

ensembles of DRs [27, 28, 29]
▫ Mostly the cooperative coevolution method was used

• Ensemble learning methods: 
▫ Simple ensemble combination (SEC)

▫ BagGP [30]

▫ BoostGP [31]

▫ Cooperative coevolution [32]

▫ Ensemble subset search (ESS)

• Ensemble combination methods [33]:
▫ Sum

▫ Vote
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Design of ensembles of DRs
• Performance of the tested ensemble learning methods
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Design of ensembles of DRs
• Performance of a selected ensemble of DRs
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Design of ensembles of DRs
• Ensembles of DRs consistently achieved improvements 

over standard DRs and DRs evolved by GP
▫ Twt: 5.1% better than GP, 13.3% better than standard DRs

▫ Nwt: 3.4% better than GP, 8.2% better than standard DRs

▫ Ft: 0.4% better than GP, 1.6% better than standard DRs

▫ Cmax: 0.9% better than GP, 0.6% better than standard DRs

• The best results achieved by the proposed SEC approach

• Usually ensembles of around five DRs achieved the best 
results
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Design of ensembles of DRs
• Conclusions:
▫ Ensembles of DRs achieve superior performance than an

individual DR
▫ The proposed SEC method achieved superior results 

than other methods
▫ By using the ESS methods the results can in some 

occasions be improved and the ensemble sizes reduced

• Future research:
▫ Testing other ensemble learning approaches and 

ensemble combination methods
▫ Testing different ensemble construction methods for SEC
▫ Test the ensemble learning methods on other machine 

environments
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Selection of automatically designed DRs
• Several papers studied the selection of manual DRs

[34, 35, 36], but no studies applied generated DRs

• The proposed procedure
▫ Learning process: determine which DR is appropriate for 

each instance by using various problem characteristics

▫ Two selection scenarios:
 Static

 The decision can be performed prior to the system execution

 Dynamic
 Decision must be performed during the system execution

 System parameters need to be approximated

 Two problem types: constant and changing job characteristics
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Selection of automatically designed DRs
• Performance of the DR selection method under 

dynamic conditions

• The factors used to generate the due dates and 
release times vary during the system execution

31/51



Selection of automatically designed DRs
• Execution of the DR selection procedure on one 

problem instance

• Changing DRs during the execution allows the method 
to adapt to certain scheduling conditions
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Selection of automatically designed DRs
• Static scheduling decision
▫ Better results up to 10% on the validation set and up to 

6% on the test set

▫ C4.5 and knn achieve the best performance

• Dynamic scheduling decision
▫ Improvements up to 16% on both problem sets

▫ Good performance on both problem types

▫ C4.5 and knn achieve the best performance

▫ Better to perform the decision as soon as possible

▫ In many cases it was enough to perform the decision 
only once
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Selection of automatically designed DRs
• Conclusions:
▫ Viable in both static and dynamic selection scenarios
▫ The method achieves a large improvement in the results
▫ A substantial number of parameters need to be 

optimised
▫ Very sensitive to the choice of parameters

• Future research:
▫ Testing with other classification methods
▫ Investigating the influence of other features
▫ Using dynamic system parameters to perform the 

decision
▫ Generate the classification methods together with DRs
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Design of DRs for static conditions
• Very little research done in this area [43, 44]

• DRs have several benefits over other algorithms for 
static conditions:
▫ Fast execution time

▫ Incremental construction of the schedule

• Objective: design DRs suitable for static conditions

• Four tested methods:
▫ Static terminal nodes

▫ Look-ahead [37]

▫ Iterative dispatching rules [38]

▫ Rollout algorithm [39, 40, 41]

▫ Various combinations
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Design of DRs for static conditions
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Design of DRs for static conditions
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Design of DRs for static conditions
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Design of DRs for static conditions
• Look-ahead achieves the best improvement with a 

slightly increased execution time

• Improvement of look-ahead:
▫ Dynamic DRs: 17.9% better, 2.3 times slower

▫ GA: 8.8% worse, 2300 times faster

• Improvement of the rollout algorithm:
▫ Dynamic DRs: 22.8% better, 1078 times slower

▫ GA: 2% better, 4.86 times faster

• Best combinations of methods:
▫ Look-ahead and IDRs

▫ Rollout and look-ahead

▫ Rollout, look-ahead, and static terminal nodes
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Design of DRs for static conditions
• Conclusions:
▫ Look-ahead appropriate when time is of the essence
▫ Rollout algorithm appropriate for obtaining the best 

results
▫ With rollout the DRs achieve better performance than a 

GA in less time
▫ Different methods provide various trade-offs between 

execution time and solution quality

• Future research:
▫ Design of new methods
▫ Reduce the execution time of the rollout algorithm
▫ Application on other scheduling criteria (design of new 

static terminals and terminals for IDRs)
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Conclusions
• Thesis contributions:
▫ Development of DRs for various multi-objective 

scheduling problems
▫ Development of ensembles of DRs
▫ Procedure for selecting DRs based on problem instances
▫ Development of DRs for scheduling under static 

conditions

• GP demonstrated great potential for developing new 
DRs for various conditions and criteria

• The obtained results demonstrate improved 
performance over standard DRs and GP

• The results and methods provide show great potential 
for further research and improvement
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Conclusions
• Future research:
▫ Testing combinations of the aforementioned methods

▫ Design of DRs for batch processing

▫ Design of DRs for scheduling problems with various 
constraints (setup times, machine breakdowns, 
precedence constraints)

▫ Development of more interpretable DRs

▫ Development of DRs for problems with stochastic 
parameters (parameters are not known until jobs finish 
with execution)

▫ Development of new schedule generation schemes
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