Resolving Entity Coreference in Croatian with a Constrained Mention-Pair Model

Goran Glavaš and Jan Šnajder
TakeLab UNIZG
Entity coreference resolution (CR)
- Identifying **different mentions** of the **same entity**
- Important NLP task with **numerous applications**: relation extraction, question answering, summarization, . . .

Easy to define but difficult to tackle
- **External knowledge** often required
 (e.g., "U.S. President" ⇔ "Barack Obama")
Existing Work

- Early, **rule-based** CR focused on theories of discourse such as *focusing* and *centering* (Sidner 1979; Grosz et al., 1983)
- Shift to **machine-learning** approaches occurred with appearance of manually annotated coreference data (MUC)
Existing Work

- Early, **rule-based** CR focused on theories of discourse such as *focusing* and *centering* (Sidner 1979; Grosz et al., 1983)
- Shift to **machine-learning** approaches occurred with appearance of manually annotated coreference data (MUC)
- The **mention-pair model** is the most widely applied coreference resolution model (Aone and Bennett, 1995)
 - A **binary classifier** for pairs of event mentions
 - Fails to account for *transitivity* of the coreference relation
Existing Work

- Early, **rule-based** CR focused on theories of discourse such as *focusing* and *centering* (Sidner 1979; Grosz et al., 1983)
- Shift to **machine-learning** approaches occurred with appearance of manually annotated coreference data (MUC)
- The **mention-pair model** is the most widely applied coreference resolution model (Aone and Bennett, 1995)
 - A **binary classifier** for pairs of event mentions
 - **Fails to account for transitivity** of the coreference relation
- More complex models failed to significantly outperform the mention-pair model
 - Entity-mention models (Daume III and Marcu, 2005)
 - Ranking models (Yang et al., 2008)
Besides large body of work for English, much work has been done for other major languages as well:

- Spanish (Palomar et al., 2001; Sapena et al., 2010)
- Italian (Kobdani and Schütze 2010; Poesio et al., 2010)
- German (Versley, 2006; Wunsch, 2010)
- Chinese (Converse, 2006; Kong and Zhou, 2010)
- ...
Existing Work

- Besides large body of work for English, much work has been done for other major languages as well
 - Spanish (Palomar et al., 2001; Sapena et al., 2010)
 - Italian (Kobdani and Schütze 2010; Poesio et al., 2010)
 - German (Versley, 2006; Wunsch, 2010)
 - Chinese (Converse, 2006; Kong and Zhou, 2010)
 - ...

- Research for **Slavic languages** has been quite limited
 - Substantial research for Polish (Marciniak, 2002; Matysiak, 2007; Kopec and Ogrodniczuk, 2012)
 - Czech (Linh et al., 2009)
 - Bulgarian (Zhikov et al., 2013)
Coreference Resolution for Croatian

1. Data Annotation
2. Constrained Mention-Pair Model
 - Mention-Pair Model
 - Enforcing Transitivity via ILP
3. Experimental Setup and Results
4. Conclusion
- We adopt the CR type scheme for Polish (Ogrodniczuk et al., 2013)

<table>
<thead>
<tr>
<th>CR type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>Premijer je izjavio da on nije odobrio taj zahtjev. (The Prime Minister said he didn’t grant that request.)</td>
</tr>
<tr>
<td>Hyper-hypo</td>
<td>Ivan je kupio novi automobil. Taj Mercedes je čudo od auta. (Ivan bought a new car. That Mercedes is an amazing car.)</td>
</tr>
<tr>
<td>Meronymy</td>
<td>Od jedanaestorice rukometaša danas je igralo samo njih osam. (Only eight out of eleven handball players played today.)</td>
</tr>
<tr>
<td>Metonymy</td>
<td>Dinamo je jučer pobijedio Cibaliju. Zagrepčani su postigli tri pogotka. (Dinamo defeated Cibalia yesterday. Zagreb boys scored three goals.)</td>
</tr>
<tr>
<td>Ø-Anaphora</td>
<td>Marko je išao u trgovinu. Kupio je banane. (Marko went to the store. [He] bought bananas.)</td>
</tr>
</tbody>
</table>
Data Annotation

- News articles corpus of 285 documents
- Six trained annotators
 - Detailed annotation guidelines
 - In-house developed annotation tool

Workflow:
1. Calibration round on 15 documents + discussion + consensus
2. Round 1
 - Three pairs of annotators, each working on 45 documents
 - Each annotator annotated the data independently
3. Round 2
 - Same as Round 1, but with reshuffled annotator pairs
4. Estimate of the average pairwise IAA
 \[\Rightarrow 70\% \text{ agreement} \]
5. Resolving the disagreements (one person)
 \[\Rightarrow \]
 Final dataset: 270 documents with 13K CR relations
Data Annotation

- News articles corpus of 285 documents
- Six trained annotators
 - Detailed annotation guidelines
 - In-house developed annotation tool
- Workflow:
 1. Calibration round on 15 documents + discussion + consensus
 2. Round 1
 - Three pairs of annotators, each working on 45 documents
 - Each annotator annotated the data independently
 3. Round 2
 - Same as Round 1, but with reshuffled annotator pairs
 4. Estimate of the average pairwise IAA $\Rightarrow 70\%$ agreement
 5. Resolving the disagreements (one person)
Data Annotation

- News articles corpus of 285 documents
- Six trained annotators
 - Detailed annotation guidelines
 - In-house developed annotation tool
- Workflow:
 1. Calibration round on 15 documents + discussion + consensus
 2. Round 1
 - Three pairs of annotators, each working on 45 documents
 - Each annotator annotated the data independently
 3. Round 2
 - Same as Round 1, but with reshuffled annotator pairs
 4. Estimate of the average pairwise IAA ⇒ 70% agreement
 5. Resolving the disagreements (one person)

⇒ Final dataset: 270 documents with 13K CR relations
Our Focus

1. We don’t consider the mention detection but instead work on **gold mentions**.
2. We consider only the **Identity** relation, which accounts for 87% CR relations.
3. **Identity** is an equivalence relation, thus we want clusters.
A mention-pair model is a **binary classifier**
- Predicts whether two given mentions refer to the same entity

To produce clusters of coreferent mentions, we need to couple the mention-pair model with
- A heuristic for creating mention-pair instances
- A method for ensuring the transitivity of coreference relations (i.e., coherence of pairwise decisions)
Creating Mention-Pair Instances

- Considering all possible mention pairs is not feasible
 - **Too many instances**, the vast majority of which are **negative**
- We follow the approach by Ng and Cardie (2002) for creating training instances
 - **A positive instance** between a mention m_j and its closest preceding non-pronomial coreferent mention m_i
 - **Negative instances** by pairing m_j with all mentions in between m_j and its closest preceding coreferent mention m_i (i.e., with m_{i+1}, \ldots, m_{j-1})
The Mention-Pair Model

- A non-linear SVM (RBF) with 16 binary/numerical features:

1. **String-matching features** compare two mentions at the superficial string level
 - strings identical, mention containment, longest common subsequence length, edit (Levenshtein) distance

2. **Overlap features** quantify the overlap in tokens
 - at least one matching word/lemma/stem between mentions, number of common content (N/A/V/R) lemmas

3. **Grammatical features** aim to indicate the grammatical compatibility of the mentions
 - pronominal mentions, gender match, number match

4. **Distance-based features** measure how close are the mentions
 - distance in number of sentences/tokens, same sentence, adjacent mentions, number of mentions in between
By making only pairwise predictions, the mention-pair model does not guarantee document-level coherence of coreference. We employ constrained optimization via integer linear programming (ILP) to ensure that document-level coreference transitivity holds.
By making only pairwise predictions, the mention-pair model **does not guarantee** document-level coherence of coreference.

We employ **constrained optimization via integer linear programming (ILP)** to ensure that document-level coreference transitivity holds.

Objective function (to be maximized):

$$\sum_{(m_i, m_j) \in P} x_{ij} \cdot r(m_i, m_j) \cdot C(m_i, m_j)$$

- $r(m_i, m_j) \in \{-1, 1\}$ is the mention-pair classifier’s decision for mentions m_i and m_j.
- $C(m_i, m_j) \in [0.5, 1]$ is the confidence of the binary mention-pair classifier.
- $x_{ij} \in \{0, 1\}$ is the final decision for mentions m_i and m_j.
Transitivity property is encoded via linear constraints

\[
\begin{align*}
 x_{ij} + x_{jk} - x_{ik} &\leq 1, \\
 x_{ij} + x_{ik} - x_{jk} &\leq 1, \\
 x_{jk} + x_{ik} - x_{ij} &\leq 1, \\
 \forall\{(m_i, m_j), (m_j, m_k), (m_i, m_k)\} \subseteq P
\end{align*}
\]

After optimization, we obtain **coreference clusters** by simply computing the **transitive closure** over **coherent** pairwise decisions \(x_{ij}\)
Experimental Setup

- Dataset split: 220 training documents, 50 test documents
- SVM model selection (C and γ optimization) using 10-fold CV on the train set
- Two baselines:
 1. Overlap baseline classifies mentions as coreferent if they share at least one content word
 2. GendNum baseline links each mention to the closest preceding mention of matching gender and number
 Standard closest-first clustering (Soon et al., 2001) is applied
Experimental Setup

- Dataset split: 220 training documents, 50 test documents
- SVM model selection (C and γ optimization) using 10-fold CV on the train set
- Two baselines:
 1. **Overlap** baseline classifies mentions as coreferent if they share at least one content word
 2. **GendNum** baseline links each mention to the closest preceding mention of matching gender and number
- Standard closest-first clustering ([Soon et al., 2001](#)) is applied for both baselines
Standard coreference evaluation metrics: MUC and B^3

Models:

- **MP–MORPH** – the binary mention pair model without grammatical features
- **MP** – the binary mention-pair model
- **MP+ILP** – the constrained mention-pair model (global coherence)
Results

<table>
<thead>
<tr>
<th>Model</th>
<th>MUC P</th>
<th>MUC R</th>
<th>MUC F₁</th>
<th>B³ P</th>
<th>B³ R</th>
<th>B³ F₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERLAP</td>
<td>81.0</td>
<td>42.9</td>
<td>54.1</td>
<td>75.7</td>
<td>54.5</td>
<td>61.4</td>
</tr>
<tr>
<td>GENDNUM</td>
<td>55.2</td>
<td>39.0</td>
<td>45.4</td>
<td>59.8</td>
<td>50.5</td>
<td>54.3</td>
</tr>
<tr>
<td>MP–MORPH</td>
<td>90.6</td>
<td>61.1</td>
<td>72.1</td>
<td>86.2</td>
<td>67.3</td>
<td>74.6</td>
</tr>
<tr>
<td>MP</td>
<td>89.4</td>
<td>64.7</td>
<td>74.2</td>
<td>84.0</td>
<td>70.1</td>
<td>75.4</td>
</tr>
<tr>
<td>MP+ILP</td>
<td>91.9</td>
<td>63.5</td>
<td>74.4</td>
<td>90.6</td>
<td>68.7</td>
<td>77.6</td>
</tr>
</tbody>
</table>

MP significantly outperforms the baselines. Removing morphological features lowers F₁ by ~ 2 points. Enforcing transitivity significantly increases B^3 by ~ 2 points.
Results

<table>
<thead>
<tr>
<th>Model</th>
<th>MUC</th>
<th></th>
<th></th>
<th>B^3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>F_1</td>
<td>P</td>
<td>R</td>
<td>F_1</td>
</tr>
<tr>
<td>OVERLAP</td>
<td>81.0</td>
<td>42.9</td>
<td>54.1</td>
<td>75.7</td>
<td>54.5</td>
<td>61.4</td>
</tr>
<tr>
<td>GENDNUM</td>
<td>55.2</td>
<td>39.0</td>
<td>45.4</td>
<td>59.8</td>
<td>50.5</td>
<td>54.3</td>
</tr>
<tr>
<td>MP–MORPH</td>
<td>90.6</td>
<td>61.1</td>
<td>72.1</td>
<td>86.2</td>
<td>67.3</td>
<td>74.6</td>
</tr>
<tr>
<td>MP</td>
<td>89.4</td>
<td>64.7</td>
<td>74.2</td>
<td>84.0</td>
<td>70.1</td>
<td>75.4</td>
</tr>
<tr>
<td>MP+ILP</td>
<td>91.9</td>
<td>63.5</td>
<td>74.4</td>
<td>90.6</td>
<td>68.7</td>
<td>77.6</td>
</tr>
</tbody>
</table>

- MP significantly outperforms the baselines
- Removing morphological features lowers F1 by \sim2 points
- Enforcing transitivity significantly increases B^3 by \sim2 points
Error Analysis

- Most false negatives due to cases where external knowledge is needed
 - željezni kancelar (iron chancellor)
 ⇝
 Bismarck
- Most false positives due to non-coreferent mentions with significant lexical overlap
 - Društvo hrvatskih književnika (Croatian Writers’ Association)
 ⇝
 svečanosti u Društvu hrvatskih književnika
 (ceremonies at the Croatian Writers’ Association)
The first coreference resolution model for Croatian

- A **supervised mention-pair model** is coupled with **constrained optimization (using ILP)** to enforce transitivity of coreference relations

- Most errors originate from **lack of external knowledge** needed to infer coreference
Future Work

- Knowledge-based features from external sources like Wikipedia
- Detection of near-identity coreference relations (e.g., meronymy and zero anaphora)
- Building an end-to-end coreference resolution system
- A model for automated mention detection
Thanks!

Test data:
http://takelab.fer.hr/data/crocoref

http://takelab.fer.hr