
Operating system

concepts

Introduction

2

1. Introduction

 Operating system:
 support for various application programs

 a collection of programs which facilitate user operations on

a computer

 name: operating the system…

3

Connecting the components: interfaces

 all OS operations must have a defined interface

 interface determines
 a way to initiate operations

 the form of results

4

HARDWARE

OPERATING SYSTEM

APPLICATIONS

RAZINA
KORISNIKA

Application
program
level

Operating
system
level

Hardware
level

Operating
system user

interface

Application
 programming
interface — API

Applications
user interface

Application
hardware
interface

5

hardware

API (interface)

system functions

OS kernel

Programs

Another layered view of the operating system

6

 OS kernel
 contains minimum data and code (what is considered a

minimum?)

 performs basic OS tasks (e.g. handling interrupt requests,

manipulating threads/processes/ memory)

 system functions
 use kernel (functions) to implement OS functionality

 exposed to programmer/user through API/GUI

 How exactly a programmer uses this functionality?

 What happens when he does?
 will try to give those answers throughout the lectures

7

 Hardware 2

Operating system

Security subsystem

8

I/O devices

(device drivers)

4

Memory

management

(primary, cache, virtual)

4

Processes, threads
 6 7

File system

4

Communication
(msg. queues, pipelines)

Synchronozation
(MUTEX, semaphores, condition variables)

API - Application Program Interface 5 GUI 5

Application programs 3

 The user 1

Scheduler

Application progs. user interface 3

Network 8

Computer system

8

Bus-based computer architecture

 all types of data transfer, control signals and instructions

are relayed through a (common) bus

 bus transfer: divided in bus cycles

processor

 memory

input
access

output
access

bus

from input device to output device

9

address bus

address register

data register

 data bus

 control bus

S3
S1

S2
R0

R1

program counter (PC)

stack pointer (SP)

state register (flags)

Rk

ALU

instruction register

control
unit

clock

internal
bus

control
(S1, S2, S3)

type of
operation

control signals

10

 the processor: an automaton which repeatedly executes

a micro-program

repeat{

fetch instruction from memory location stored in program

counter (PC);

decode instruction, determine operation;

increase program counter;

determine operands’ and result locations;

relay operands to ALU, perform operation;

store result;



while(power on);

11

Instruction thread

 memory contents may be divided in
 instruction segment (series of machine instructions)

 stack segment

 data segment

 when executing a series of machine instructions, the

processor executes an instruction thread (short: thread)

 basic distinction of a thread: a series of instructions in

time
 (as opposed to a series of instructions in memory space)

12

loop subroutine

THREAD

13

Computer process

 program: a static object (on some media)

 a program, loaded in memory, given appropriate

computer resources and started, becomes a dynamic

object

 process: an environment in which a program is executed

 operating system provides appropriate resources (e.g.

memory space, CPU time, I/O access) for processes

 each process is executed in at least one instruction

thread

14

 a process may contain multiple threads which may

execute in parallel
 threads may execute concurrently if more processors are

available

 threads may interchange if only one processor is available

(virtually parallel)

 each thread should be able to use a part of primary

memory

 performing multiple threads: multithreading

15

Thread context

 the contents of processor registers during thread

execution is thread context

 switching threads in multithreading systems:
1. interrupting the current thread

2. saving its context

3. restoring (some other) thread’s context

4. restarting the thread

 exchange of context makes the apparent parallel thread

execution possible (as if each thread runs on its own

processor)

 context switch is a basic mechanism on which the OS is

built upon

16

 when does context switch occur?
 how do we ‘exchange’ threads?

 only after an interrupt

17

2. Interrupts

 interrupt subsystem – evolved to facilitate I/O device

control
 instead of CPU checking whether a device is ready, the

device signals the CPU (requests an interrupt)

 CPU checks for interrupt request at the end of each

instruction cycle
 interrupt service includes a context switch

 who handles interrupt requests?
 not the user thread!

18

Some interrupt scenarios:

 a device is ready  service the device

 a time interval has elapsed  schedule some other

thread/process (and user) on the processor!

 an illegal instruction is encountered  stop the current

process

 …
 all these scenarios require OS intervention

Interrupt support in CPU hardware:

 OS must execute with the highest available priority
 i.e. access to all hardware resources

 user thread should not have that access!

19

Interrupt processing – processor operating modes

 most (non-trivial) processors may operate in several

modes:

 user mode, “normal tasks” (unprivileged)

 interrupt processing mode

 system mode, “system tasks” (may be the same as

interrupt processing mode)

 in different modes, alternate functionality and resources

are available (registers, memory, stack, IO,

instructions…)

20

Upon interrupt request (IRQ), the processor:

 disables (additional) interrupts

 adresses the system memory space and system stack

 saves current program counter (PC) value (and thread

context) to system stack

 loads the IRQ subroutine address in program counter

 IRQ subroutine address:
 hardwired in a specific CPU architecture

 stored in a specific register

 several IRQ types and addresses usually exist

 hardware device interrupts usually handled by device

drivers – programs written to handle specific device

(understand device and its operations)

 device drivers must be registered for interrupts of

controlling device

21

 servicing an IRQ is expensive
 the thread context must be preserved – which may include

many instructions

 after the context switch, the IRQ processing may begin
 includes a vast variety of data transfer/control

 duration unknown in advance

 when processing is over, (interrupted) user thread may

continue (context restoration)

 problem for many (real time) systems:
 a low priority interrupt processing may significantly delay a

high priority event (signaled by an interrupt)

 typical solutions include:
 associate priority with interrupts and process them

accordingly – interrupt service routine is interruptible

 divide interrupt processing into two parts:

 short interrupt processing (non-interruptible)

 long interrupt processing (interruptible)

22

Interrupt servicing subsystem:

 disables new interrupts during context switch and

internal logic

 enables interrupts during IRQ processing

 new interrupt with a higher priority will stop a lower

priority processing

 new interrupt with a lower priority is put on hold until

priority level is lowered

23

Software interrupts

 How can a user thread:
 access an I/O device?

 check if a resource (memory, device) is available?

 wait for another thread to ‘finish’?

 exchange message with another thread/process?

 …

 these operations not available to user threads, because:
 simultaneous access may invalidate data

 a thread in error could compromise the system

 waiting thread should be removed from processor

 need for a unified mechanism

24

 thread makes a system call – invokes a system function

and/or OS kernel

 OS kernel is invoked via software interrupt
 reserved instruction in CPU architecture

 types of interrupts may be conveyed with register values

25

3. Multiprocessor systems, OS kernel

 OS must function the same way regardless of the

number of processors

 assumption: there exists a single shared memory

storage where all kernel data is located
 users/processes data

 threads data (contexts)

 memory management data, I/O data …

 What is a multiprocessor system?

26

bus

shared
memory

bus
arbiter

T[0]

D[0] T[N-1]

D[N-1]

T[1] D[1]

Bus connected
multiprocessor
system

processor
0

local
memory

0

processor
N-1

local
memory

N-1

processor
1

local
memory

1

27

 every processor may access the shared memory
 only one processor in a single bus cycle!

 bus arbiter: decides who gets the bus

 an SMP system: identical processors/processor cores

 consequence: any thread may execute on any processor

28

Multitasking

 multitasking (or parallel computing) goals:
 taking advantage of multiple processing elements

 alleviating the design and implementation of complex

applications

 multitasking – an OS feature

 programming techniques:
 multithreading (within a single process)

 multiprocessing (several processes)

 a combination of both

 multiple processes:
 execute independently

 share no data or resources

 must use OS mechanisms to cooperate!

 multiple threads:
 execute in a single memory space

 share all process resources

29

Multithreaded programming model

 a set of (mutually dependant) tasks

 taskst must use synchronization

primitives to execute in predefined

order and use shared resources
 do so by calling system/kernel

functions

 OS must provide mechanisms for:
 thread creation

 thread termination

 synchronization

 data exchange (messaging)

D1

D2 D3 D4

D6 D5

D7

30

Mutual exclusion

 a form of thread synchronization

 examples: acces to shared device, global data structure

 a part of thread code using a shared resource: critical

section
 critical sections must be executed exclusively – only one

thread at any given moment (and processor!)

 part of code not using the resource: non-critical section

 mutual exclusion mechanism: provides exclusive use of

shared resources

31

 programming a mutual exclusion synchronization:
 user thread does not test the condition itself

 rather, a call to a kernel function must be made

 the kernel function:
 either allows the calling thread to continue

 or stores the thread’s context and restarts another thread

32

Operating system kernel

 a set of functions and data structures

 OS kernel primary tasks:
 thread manipulation (allow multithreaded execution)

 thread synchronization

 I/O devices control

