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1. Introduction 

 Operating system: 
 support for various application programs 

 a collection of programs which facilitate user operations on 

a computer 

 name: operating the system… 
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Connecting the components: interfaces 

 all OS operations must have a defined interface 

 interface determines 
 a way to initiate operations 

 the form of results  
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 OS kernel 
 contains minimum data and code (what is considered a 

minimum?) 

 performs basic OS tasks (e.g. handling interrupt requests, 

manipulating threads/processes/ memory) 

 system functions 
 use kernel (functions) to implement OS functionality 

 exposed to programmer/user through API/GUI 

 

 How exactly a programmer uses this functionality? 

 What happens when he does? 
 will try to give those answers throughout the lectures 
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Bus-based computer architecture 

 all types of data transfer, control signals and instructions 

are relayed through a (common) bus 

 bus transfer: divided in bus cycles 

processor 
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 the processor: an automaton which repeatedly executes 

a micro-program 

repeat{ 

fetch instruction from memory location stored in program 

counter (PC); 

decode instruction, determine operation; 

increase program counter; 

determine operands’ and result locations; 

relay operands to ALU, perform operation; 

store result; 

 

while(power on); 
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Instruction thread 

 memory contents may be divided in 
 instruction segment (series of machine instructions) 

 stack segment 

 data segment 

 

 when executing a series of machine instructions, the 

processor executes an instruction thread (short: thread) 

 basic distinction of a thread: a series of instructions in 

time  
 (as opposed to a series of instructions in memory space) 
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loop subroutine 

THREAD 
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Computer process 

 program: a static object (on some media) 

 a program, loaded in memory, given appropriate 

computer resources and started, becomes a dynamic 

object 

 process: an environment in which a program is executed 

 operating system provides appropriate resources (e.g. 

memory space, CPU time, I/O access) for processes 

 

 each process is executed in at least one instruction 

thread 
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 a process may contain multiple threads which may 

execute in parallel 
 threads may execute concurrently if more processors are 

available 

 threads may interchange if only one processor is available 

(virtually parallel) 

 each thread should be able to use a part of primary 

memory 

 performing multiple threads: multithreading 
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Thread context 

 the contents of processor registers during thread 

execution is thread context 

 switching threads in multithreading systems: 
1. interrupting the current thread 

2. saving its context 

3. restoring (some other) thread’s context 

4. restarting the thread 

 exchange of context makes the apparent parallel thread 

execution possible (as if each thread runs on its own 

processor) 

 context switch is a basic mechanism on which the OS is 

built upon 
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 when does context switch occur? 
 how do we ‘exchange’ threads? 

 only after an interrupt 
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2. Interrupts 

 interrupt subsystem – evolved to facilitate I/O device 

control 
 instead of CPU checking whether a device is ready, the 

device signals the CPU (requests an interrupt) 

 CPU checks for interrupt request at the end of each 

instruction cycle 
 interrupt service includes a context switch 

 

 who handles interrupt requests? 
 not the user thread! 
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Some interrupt scenarios: 

 a device is ready  service the device 

 a time interval has elapsed  schedule some other 

thread/process (and user) on the processor! 

 an illegal instruction is encountered  stop the current 

process 

 … 
 all these scenarios require OS intervention 

 

Interrupt support in CPU hardware: 

 OS must execute with the highest available priority 
 i.e. access to all hardware resources 

 user thread should not have that access! 
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Interrupt processing – processor operating modes 

 most (non-trivial) processors may operate in several 

modes: 

 user mode, “normal tasks” (unprivileged) 

 interrupt processing mode 

 system mode, “system tasks” (may be the same as 

interrupt processing mode) 

 in different modes, alternate functionality and resources 

are available (registers, memory, stack, IO, 

instructions…) 
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Upon interrupt request (IRQ), the processor: 

 disables (additional) interrupts 

 adresses the system memory space and system stack 

 saves current program counter (PC) value (and thread 

context) to system stack 

 loads the IRQ subroutine address in program counter 

 

 IRQ subroutine address:  
 hardwired in a specific CPU architecture 

 stored in a specific register 

 several IRQ types and addresses usually exist 

 hardware device interrupts usually handled by device 

drivers – programs written to handle specific device 

(understand device and its operations) 

 device drivers must be registered for interrupts of 

controlling device 
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 servicing an IRQ is expensive 
 the thread context must be preserved – which may include 

many instructions 

 after the context switch, the IRQ processing may begin 
 includes a vast variety of data transfer/control 

 duration unknown in advance 

 when processing is over, (interrupted) user thread may 

continue (context restoration) 

 problem for many (real time) systems: 
 a low priority interrupt processing may significantly delay a 

high priority event (signaled by an interrupt) 

 typical solutions include: 
 associate priority with interrupts and process them 

accordingly – interrupt service routine is interruptible 

 divide interrupt processing into two parts: 

 short interrupt processing (non-interruptible) 

 long interrupt processing (interruptible) 
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Interrupt servicing subsystem: 

 disables new interrupts during context switch and 

internal logic 

 enables interrupts during IRQ processing 

 new interrupt with a higher priority will stop a lower 

priority processing 

 new interrupt with a lower priority is put on hold until 

priority level is lowered 
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Software interrupts 

 How can a user thread: 
 access an I/O device? 

 check if a resource (memory, device) is available? 

 wait for another thread to ‘finish’? 

 exchange message with another thread/process? 

 … 

 

 these operations not available to user threads, because: 
 simultaneous access may invalidate data 

 a thread in error could compromise the system 

 waiting thread should be removed from processor 

 

 need for a unified mechanism 
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 thread makes a system call – invokes a system function 

and/or OS kernel 

 

 OS kernel is invoked via software interrupt 
 reserved instruction in CPU architecture 

 types of interrupts may be conveyed with register values 
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3. Multiprocessor systems, OS kernel 

 OS must function the same way regardless of the 

number of processors 

 

 assumption: there exists a single shared memory 

storage where all kernel data is located 
 users/processes data 

 threads data (contexts) 

 memory management data, I/O data … 

 

 What is a multiprocessor system? 
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 every processor may access the shared memory 
 only one processor in a single bus cycle! 

 bus arbiter: decides who gets the bus 

 

 an SMP system: identical processors/processor cores 

 consequence: any thread may execute on any processor 
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Multitasking 

 multitasking (or parallel computing) goals: 
 taking advantage of multiple processing elements 

 alleviating the design and implementation of complex 

applications 

 multitasking – an OS feature 

 programming techniques: 
 multithreading (within a single process) 

 multiprocessing (several processes) 

 a combination of both 

 multiple processes: 
 execute independently 

 share no data or resources 

 must use OS mechanisms to cooperate! 

 multiple threads: 
 execute in a single memory space 

 share all process resources 
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Multithreaded programming model 

 a set of (mutually dependant) tasks 

 taskst must use synchronization 

primitives to execute in predefined 

order and use shared resources 
 do so by calling system/kernel 

functions 

 OS must provide mechanisms for: 
 thread creation 

 thread termination 

 synchronization 

 data exchange (messaging) 

D1 

D2 D3 D4 

D6 D5 

D7 
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Mutual exclusion 

 a form of thread synchronization 

 examples: acces to shared device, global data structure 

 a part of thread code using a shared resource: critical 

section 
 critical sections must be executed exclusively – only one 

thread at any given moment (and processor!) 

 part of code not using the resource: non-critical section 

 mutual exclusion mechanism: provides exclusive use of 

shared resources 
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 programming a mutual exclusion synchronization: 
 user thread does not test the condition itself 

 rather, a call to a kernel function must be made 

 the kernel function: 
 either allows the calling thread to continue 

 or stores the thread’s context and restarts another thread 
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Operating system kernel 

 a set of functions and data structures 

 OS kernel primary tasks: 
 thread manipulation (allow multithreaded execution) 

 thread synchronization 

 I/O devices control 

 


