
Operating system concepts

Kernel basics

2

OS kernel

 accessible through interrupts

 consists of data and code

 protected from user threads by memory protection and

processor modes

 main responsibilities:
 thread management (scheduling, synchronization and

communication)

 resource management (memory, UI, CPU time)

3

Kernel data structures

 for thread management:
 thread descriptors:

 thread id,

 priority, scheduling parameters (policy, timings),

 memory locations (stack, private thread data, …)

 context, …

 thread states – thread lists:
 active thread – currently running (more on multiprocessors)

 ready threads (usually sorted by priorities)

 blocked threads: delayed, synchronization related, UI related

 passive threads – threads that finished its programs or were

terminated (e.g. due to an error)

4

Kernel data structures

 for process management:
 process descriptors:

 memory locations - code, data, stack(s), virtual memory data

 resource descriptors - id’s of used system resources

 UI devices

 synchronization and communication mechanisms

 file descriptors

 …

 owner information (user, id of parent process, …)

 priority, scheduling parameters

 thread list

 …

 other resources – memory, UI, file systems, network…
 memory locations, buffers, lists for blocked threads…

5

Kernel functions

 called through interrupt mechanism

 processing is performed with disabled interrupts (at least

parts of it)

 typical processing scenario:
 interrupt signal (or instruction)

 accepting interrupt, processor behavior:
 disable interrupts,

 change processor operation mode,

 save minimal context on stack,

 jump to interrupt processing routine

 interrupt processing routine:
 save full context

 determine and call required kernel function

 restore context, restore thread (interrupted or other)

6

Kernel functions example – binary semaphore

 a simple synchronization primitive
 per semaphore data (for Sem[id]):

 value – current value: zero or one
 queue – queue for blocked threads

k-function BSemWait(id)

{

 if (Sem[id].value == 1) {

 Sem[id].value = 0;

 }

 else {

 Enqueue(ActiveThread, Sem[id].queue);

 ActiveThread = GetFirst(ReadyQueue);

 }

}

7

Kernel functions example – binary semaphore

k-function BSemSignal(id)

{

 if (Sem[id].queue is not empty) {

 Enqueue(ActiveThread, ReadyQueue);

 first = GetFirst(Sem[id].queue);

 Enqueue(first, ReadyQueue);

 ActiveThread = GetFirst(ReadyQueue);

 }

 else {

 Sem[id].value = 1;

 }

}

 Only basic functionality is presented! More on this later…

8

Kernel functions

 Most of kernel functions may use the same principles as

shown on previous example
 synchronization functions

 time management

 UI, …

9

Multiprocessor kernel support ?

 kernel data must reside in shared memory space

 critical section can’t be secured by disabling interrupts

(calling through interrupt is not enough)

 Test and Set (or similar) instruction is used in spinlock

spinlock: TAS lock_id, reg;

 if reg == 1 then goto spinlock;

 TAS uses two consecutive bus cycles to:
 read given memory location into register in first cycle

 store value 1 in same location in second cycle

 “busy waiting” is unavoidable in multiprocessor systems

10

Multiprocessor kernel extension example

k-function BSemSignal(id) {

 klock: TAS kernel_lock, reg;

 if reg == 1 then goto klock;

 if (Sem[id].queue is not empty) {

 Enqueue(ActiveThread[P], ReadyQueue);

 first = GetFirst(Sem[id].queue);

 Enqueue(first, ReadyQueue);

 ActiveThread[P] = GetFirst(ReadyQueue);

 }

 else {

 Sem[id].value = 1;

 }

 kernel_lock = 0;

}

11

Kernel practices

 ready threads are placed into multilevel queues, one

level for each priority – higher priority threads are

scheduled first

 in (today) multiprocessors, ready threads are allocated

per processor (not in single ready queue/structure)
 performance related decision – maximize cache usage

 “hot-cache” objective – returning thread may find some of its

data still in processor cache

 balancing issue – if ready queues over multiple processors

are not balanced, scheduling would not be fair!

 kernel overhead
 switching tasks (saving/restoring context)

 processor operation mode switch (not insignificant!)

Thread management

Synchronization

13

Need for synchronization?

 Many tasks – few resources
 only limited number of tasks may use available resources

at the same time

 in most cases, “limited number” equals one!
 only a single task may use a resource at a time, ALL other

tasks must wait (be blocked)!

 Single task with multiple threads
 threads share common objects using a shared object is

a critical operation, must be performed sequentially

 threads cooperate on single operation – might require

synchronization (e.g. when dividing work between them)

 “pipe-line” synchronization
 results from first task are input for next

 …

14

Available synchronization through OS

 Most effective synchronization is through OS interface
 others require spinlocks!

 Critical section (CS), mutual exclusion synchronization
 Disable/enable interrupts! (on single processor systems)

 Binary semaphore

 Mutex (CS object)

 Counter type synchronization (number of resources  1)
 Semaphores (general)

 Complex synchronizations
 Semaphores (more than one!)

 Monitors (mutex + conditional variables)

15

Disabling/enabling interrupts

 Disabling and enabling interrupt is privileged operation
 requires that program runs on high privilege level

 Must be used VERY carefully:
 blocking in critical section protected by disabled

interrupts stops everything (system deadlock)!

 Very simple, very effective when used appropriately
 appropriate use: only for very short critical sections

 Mostly used only in:
 kernel

 embedded systems (and RT systems)

16

Disabling/enabling interrupts – example

.

. (non-critical section)

.

disable_interrupt();

CRITICAL_SECTION; (only one thread may be here)

enable_interrupt();

.

. (non-critical section)

.

17

Binary semaphore – basic operations

 BSemWait(s_id)

 synonyms: acquire, lock
 operation: lock semaphore object identified with s_id

 locks only this object!

 programmers view: locking a semaphore gives access to a

single resource (semaphore  resource)

 not a global lock(like with disabling interrupts!)

 if the semaphore is already locked (owned by other thread):

 calling thread is blocked – put in queue associated with
semaphore

 BSemSignal(s_id)

 synonyms: release, unlock, post

 operation: release semaphore object
 if semaphore queue is not empty (threads are waiting):

assign semaphore to first thread in queue – release thread

form queue (move it to ready thread queue)

 otherwise (empty queue): mark semaphore as free (signaled)

18

Binary semaphore – CS example

.

. (non-critical section)

.

BSemWait(s1);

CRITICAL_SECTION; (only one thread may be here)

BSemSignal(s1);

.

. (non-critical section)

.

19

Binary semaphore – forcing alternation

 Except for crit. sect. binary semaphore can be used for

synchronization where two (or more) threads must

alternate through their crit. sect.

 Initially only one semaphore (s1 or s2) must be set (in

signaled state)

Thread I:

while(1) {

 BSemWait(s1);

 thread_I_turn();

 BSemSignal(s2);

}

Thread J:

while(1) {

 BSemWait(s2);

 thread_J_turn();

 BSemSignal(s1);

}

20

Semaphore (general)

 Semaphore is used for counting available resources
 e.g. numbers of messages in queue, list elements, …

 Semaphore value:
 if value = 0, then semaphore is in non-signaled state

 will block all threads that require resource it protect (threads

will be put in queue)

 if value > 0, then semaphore is in signaled state
 at least one thread will pass over semaphore without

blocking

 E.g. a consumer thread processes messages from buffer
which is protected with counting semaphore sb:

…
SemWait(sb); //blocks thread if buffer is empty

(get next message from buffer)

…

21

Semaphore example: producer/consumer

 Producer/consumer problem demonstrate usage of

semaphores when producer and consumer communicate

through buffer with size N (in messages).

 Producer produce messages and puts them into queue

 Consumer reads messages form buffer and consumes

them

 Producer must be blocked if message buffer is full!

 Consumer must be blocked if message buffer is empty!

Producer
Consumer Message buffer

22

Semaphore example: producer/consumer

 Initial value of semaphores: s_empty=N; s_full=0;

Producer:

while(1) {

 P = produce();

 SemWait(s_empty);

 PutIntoBuffer(P);

 SemSignal(s_full);

}

Consumer:

while(1) {

 SemWait(s_full);

 R = GetFromBuffer();

 SemSignal(s_empty);

 consume(R);

}

23

Semaphore problems

 Semaphores are the most used mechanisms for simple

synchronizations:
 supported by all OS-es (some even with more interfaces!)

 simple semantic and usage

 If the problem is not simple, more than one semaphore

is required
 if more than one resource is needed – more semaphores

must be acquired simultaneously

 semantic for such synchronization is not obvious – coding

is very difficult

 more semaphores – greater the chance for deadlock!

24

Producers and consumers

 If same example from before were extended with more

producers and consumers
 producers must not simultaneously put message in buffer

 buffer manipulation require additional variables

 some messages may be overwritten

 additional semaphore is required (will function as binary)

 similar problems with consumers
 additional semaphore is required

Producers
Consumers Message buffer

25

Producers/consumers – wrong solution

 The same binary semaphore s_buffer is used for

buffer protection both for producers and consumers,

initialized to 1

 When buffer becomes full, next producer will block on
s_empty, while holding lock on s_buffer: deadlock!

Producers:

while(1) {

 P = produce();

 SemWait(s_buffer);

 SemWait(s_empty);

 putintobuffer(P);

 SemSignal(s_full);

 SemSignal(s_buffer);

}

Consumers:

while(1) {

 SemWait(s_full);

 SemWait(s_buffer);

 R = getfrombuffer();

 SemSignal(s_buffer);

 SemSignal(s_empty);

 consume(R);

}

26

Deadlock – typical scenario

 Two (or more) threads, two (or more) resources

DEADLOCK!

Thread I:

 ...

 SemWait(s1);

 ...

 SemWait(s2);

 ...

 ...

 SemSignal(s1);

 ...

 SemSignal(s2);

 ...

Thread J:

 ...

 ...

 SemWait(s2);

 ...

 SemWait(s1);

 ...

 SemSignal(s1);

 ...

 SemSignal(s2);

 ...

27

Deadlock – possible prevention

 Some operating systems have interfaces that can

perform multiple operations on multiple semaphores as

an atomic operation – if any one operation cannot be

performed, none are performed

 example (UNIX*):
 semop (id, array_of_op, number_of_op);

 with this interface all resources can be obtained at once

or none will be reserved and the thread is blocked

 use of other synchronization mechanisms
 monitors (or equivalent)

28

Monitors

 operate on sensitive data (shared data/resources) in a

controlled environment – in “monitor functions”

 monitor functions are critical sections where:
 only one thread can be running (active or in ready state)

 thread can perform critical operations

 thread can check for resource availability – in user space,

using adequate data structures
 if resources are available – take them and continue,

 if resources are not available – block thread and “virtually”

leave monitor function

 thread can release resources
 if threads are waiting for them, release the first thread (or all)

 released threads must acquire lock on monitor before

continuing (otherwise more than one function may be

active in monitor!)

29

Monitors

 monitor may be supported implicitly by programming

language (i.e. keyword synchronized in Java)

 the interface must include:
 a mechanism for protected monitor entrance

 a mechanism for leaving the monitor (and releasing the

thread waiting on entrance)

 a mechanism for blocking the thread inside monitor and

temporarily releasing the monitor

 a mechanism for releasing blocked thread inside monitor

 in most environments monitors are implemented with:
 mutexes (from: mutual exclusion object) and

 conditional variables

30

Mutex

 Mutex is very similar to binary semaphore

 But binary semaphore
 is rarely offered through OS interface

 is only a concept, realized through other sync. funct.
 general semaphore (and careful initialization and usage)

 mutex

 Mutex interface:
 MutexLock(m_id) (synonyms: acquire, enter)

 MutexUnlock(m_id) (synonyms: release, leave)

 Difference with binary semaphore:
 designed only for critical section synchronization

 extra functionality when used with conditional variables:

monitors

31

Conditional variables

 Sometimes there is a need for a mechanism which will

just put a thread to queue
 thread may find that conditions for its continuing execution

are inappropriate (e.g. through checking state variables)

and therefore ask to be blocked, put in particular queue

 only when conditions are improved, at some point in future,

thread should be unblocked (by the thread that changed

conditions)

 since checking and changing conditions through shared

objects is critical operation, it should usually be done in

critical section
 but, blocking thread in critical section is one step from

deadlock!

 blocking must be accompanied with temporary release of

critical section object (if its acquired)

 The described mechanism is called a conditional variable

32

Conditional variables

 Conditional variables may be used without (companion)

critical section objects, but its potential is fully valuable

when used with mutexes.

 Conditional variables interface:

 CondWait(cond_id, m_id) (synonym: wait)

 put thread in queue and release mutex object

 CondSignal(cond_id) (synonym: signal)

 release first thread form queue

 CondSignalAll(Cond_id) (synonym: broadcast)

 release all threads form queue

33

Typical monitor usage scenario – acquire

m-function get_resources()

{

 MutexLock(m_id)

 while (not all resources are available) //not “if”

 CondWait(cond_id, m_id);

 mark resources as used - give them to thread;

 (or just use resources here, inside monitor)

 MutexUnlock(m_id);

}

Complex condition

34

Typical monitor usage scenario - release

m-function release_resources()

{

 MutexLock(m_id)

 mark resources as free;

 if (threads are waiting for resources)

 CondSignal(cond_id);

 (signaling can be done even without checking if some threads are
waiting, or even with CondSignalAll(cond_id), if “Acquire”

function is made with “while” instead of “if”)

 MutexUnlock(m_id);

}

35

Monitor example - messages

 Monitors may be used for simple and complex

synchronization problems

 Because of “clear” synchronization objectives (given

through explicit state variables checking), monitors are

preferred synchronization primitives

 Example “problem and environment”
 In an example system, several threads wait on messages

 All messages come through the same channel and should

be forwarded to the appropriate thread

 Forwarding is not performed explicitly – threads are

activated to check if the message belongs to either of them

 A single message is intended only for one thread (other

threads don’t have interest in it)

36

Monitor example - messages

 Threads:

 Delivery thread

 waits on device – source of the message

 when message arrives, wakes processing threads

 Processing threads
 each thread waits for particular message type

 upon examining the message header thread will take it or

leave it (for the next thread)

 Threads are cyclic; they repeat their operations until end
is signaled with job_not_finished function (or

variable)

37

Monitor example - messages

 Data structure:
 monitor:

 mutex m1 (monitor function guard)

 conditional variables c1 and c2

 c1 – queue for threads that are waiting on message to

be delivered (by delivery thread)

 c2 – queue for delivery thread which is waiting for signal

that the message has been taken

 msg_assigned – shared variable (global) that shows if

last arrived message is taken by some thread or not yet
 if “false” threads will inspect last message contents

38

Monitor example – handling messages

Delivery_thread ()

{

 msg_assigned = true; // shared variable!

 while (job_not_finished()) {

 wait_for_message;

 MutexLock(m1);

 msg_assigned = false;

 CondSignalAll(c1);

 // wait till some thread gets message
 while (msg_assigned == false)// will work even without

 CondWait(c2, m1);

 MutexUnlock(m1);

 }

}

39

Monitor example – handling messages

Thread_I()

{

 MutexLock(m1);

 while (job_not_finished()) {

 if (msg_assigned == false &&

 (received message belongs to thread I)) {

 take_message();

 msg_assigned = true;

 CondSignal(c2);

 MutexUnlock(m1);

 process_message();

 MutexLock(m1);

 } else

 CondWait(c1, m1);

 }

 MutexUnlock(mfm);

}

Complex condition

40

Same problem with semaphores?

Delivery_thread ()

{

 msg_assigned = true; // shared variable!

 while (job_not_finished()) {

 wait_for_message;

 msg_assigned = false;

 for i = 1 to number_of_threads

 SemSignal(s1);

 // or SemSignal(s1, number_of_threads); if supported

 SemWait(s2);

 }

}

41

Same problem with semaphores?

Thread_I()

{

 while (job_not_finished()) {

 if (msg_assigned == false &&

 (received message belongs to thread I)) {

 take_message();

 msg_assigned = true;

 SemSignal(s2);

 process_message();

 } else

 SemWait(s1);

 }

}

 Problems: many; Solutions: many; Good solutions?
 try: assign separate semaphore to each thread (instead of
s1)

 “thinking like in monitors” might sometimes work even with
semaphores

42

Other examples with monitors

 Dining philosophers

 Several problems:

http://www.cs.berkeley.edu/~kubitron/courses/cs162-

F06/hand-outs/synch-problems.html

 and solutions:

http://www.cs.berkeley.edu/~kubitron/courses/cs162-

F06/hand-outs/synch-solutions.html

 More on synchronization:

http://www.zemris.fer.hr/~leonardo/unofficial/radovi/Sinkroni

zacija_MIPRO07.pdf (in Croatian)

http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.zemris.fer.hr/~leonardo/unofficial/radovi/Sinkronizacija_MIPRO07.pdf
http://www.zemris.fer.hr/~leonardo/unofficial/radovi/Sinkronizacija_MIPRO07.pdf

