
Operating system concepts

Kernel basics

2

OS kernel

 accessible through interrupts

 consists of data and code

 protected from user threads by memory protection and

processor modes

 main responsibilities:
 thread management (scheduling, synchronization and

communication)

 resource management (memory, UI, CPU time)

3

Kernel data structures

 for thread management:
 thread descriptors:

 thread id,

 priority, scheduling parameters (policy, timings),

 memory locations (stack, private thread data, …)

 context, …

 thread states – thread lists:
 active thread – currently running (more on multiprocessors)

 ready threads (usually sorted by priorities)

 blocked threads: delayed, synchronization related, UI related

 passive threads – threads that finished its programs or were

terminated (e.g. due to an error)

4

Kernel data structures

 for process management:
 process descriptors:

 memory locations - code, data, stack(s), virtual memory data

 resource descriptors - id’s of used system resources

 UI devices

 synchronization and communication mechanisms

 file descriptors

 …

 owner information (user, id of parent process, …)

 priority, scheduling parameters

 thread list

 …

 other resources – memory, UI, file systems, network…
 memory locations, buffers, lists for blocked threads…

5

Kernel functions

 called through interrupt mechanism

 processing is performed with disabled interrupts (at least

parts of it)

 typical processing scenario:
 interrupt signal (or instruction)

 accepting interrupt, processor behavior:
 disable interrupts,

 change processor operation mode,

 save minimal context on stack,

 jump to interrupt processing routine

 interrupt processing routine:
 save full context

 determine and call required kernel function

 restore context, restore thread (interrupted or other)

6

Kernel functions example – binary semaphore

 a simple synchronization primitive
 per semaphore data (for Sem[id]):

 value – current value: zero or one
 queue – queue for blocked threads

k-function BSemWait(id)

{

 if (Sem[id].value == 1) {

 Sem[id].value = 0;

 }

 else {

 Enqueue(ActiveThread, Sem[id].queue);

 ActiveThread = GetFirst(ReadyQueue);

 }

}

7

Kernel functions example – binary semaphore

k-function BSemSignal(id)

{

 if (Sem[id].queue is not empty) {

 Enqueue(ActiveThread, ReadyQueue);

 first = GetFirst(Sem[id].queue);

 Enqueue(first, ReadyQueue);

 ActiveThread = GetFirst(ReadyQueue);

 }

 else {

 Sem[id].value = 1;

 }

}

 Only basic functionality is presented! More on this later…

8

Kernel functions

 Most of kernel functions may use the same principles as

shown on previous example
 synchronization functions

 time management

 UI, …

9

Multiprocessor kernel support ?

 kernel data must reside in shared memory space

 critical section can’t be secured by disabling interrupts

(calling through interrupt is not enough)

 Test and Set (or similar) instruction is used in spinlock

spinlock: TAS lock_id, reg;

 if reg == 1 then goto spinlock;

 TAS uses two consecutive bus cycles to:
 read given memory location into register in first cycle

 store value 1 in same location in second cycle

 “busy waiting” is unavoidable in multiprocessor systems

10

Multiprocessor kernel extension example

k-function BSemSignal(id) {

 klock: TAS kernel_lock, reg;

 if reg == 1 then goto klock;

 if (Sem[id].queue is not empty) {

 Enqueue(ActiveThread[P], ReadyQueue);

 first = GetFirst(Sem[id].queue);

 Enqueue(first, ReadyQueue);

 ActiveThread[P] = GetFirst(ReadyQueue);

 }

 else {

 Sem[id].value = 1;

 }

 kernel_lock = 0;

}

11

Kernel practices

 ready threads are placed into multilevel queues, one

level for each priority – higher priority threads are

scheduled first

 in (today) multiprocessors, ready threads are allocated

per processor (not in single ready queue/structure)
 performance related decision – maximize cache usage

 “hot-cache” objective – returning thread may find some of its

data still in processor cache

 balancing issue – if ready queues over multiple processors

are not balanced, scheduling would not be fair!

 kernel overhead
 switching tasks (saving/restoring context)

 processor operation mode switch (not insignificant!)

Thread management

Synchronization

13

Need for synchronization?

 Many tasks – few resources
 only limited number of tasks may use available resources

at the same time

 in most cases, “limited number” equals one!
 only a single task may use a resource at a time, ALL other

tasks must wait (be blocked)!

 Single task with multiple threads
 threads share common objects using a shared object is

a critical operation, must be performed sequentially

 threads cooperate on single operation – might require

synchronization (e.g. when dividing work between them)

 “pipe-line” synchronization
 results from first task are input for next

 …

14

Available synchronization through OS

 Most effective synchronization is through OS interface
 others require spinlocks!

 Critical section (CS), mutual exclusion synchronization
 Disable/enable interrupts! (on single processor systems)

 Binary semaphore

 Mutex (CS object)

 Counter type synchronization (number of resources 1)
 Semaphores (general)

 Complex synchronizations
 Semaphores (more than one!)

 Monitors (mutex + conditional variables)

15

Disabling/enabling interrupts

 Disabling and enabling interrupt is privileged operation
 requires that program runs on high privilege level

 Must be used VERY carefully:
 blocking in critical section protected by disabled

interrupts stops everything (system deadlock)!

 Very simple, very effective when used appropriately
 appropriate use: only for very short critical sections

 Mostly used only in:
 kernel

 embedded systems (and RT systems)

16

Disabling/enabling interrupts – example

.

. (non-critical section)

.

disable_interrupt();

CRITICAL_SECTION; (only one thread may be here)

enable_interrupt();

.

. (non-critical section)

.

17

Binary semaphore – basic operations

 BSemWait(s_id)

 synonyms: acquire, lock
 operation: lock semaphore object identified with s_id

 locks only this object!

 programmers view: locking a semaphore gives access to a

single resource (semaphore resource)

 not a global lock(like with disabling interrupts!)

 if the semaphore is already locked (owned by other thread):

 calling thread is blocked – put in queue associated with
semaphore

 BSemSignal(s_id)

 synonyms: release, unlock, post

 operation: release semaphore object
 if semaphore queue is not empty (threads are waiting):

assign semaphore to first thread in queue – release thread

form queue (move it to ready thread queue)

 otherwise (empty queue): mark semaphore as free (signaled)

18

Binary semaphore – CS example

.

. (non-critical section)

.

BSemWait(s1);

CRITICAL_SECTION; (only one thread may be here)

BSemSignal(s1);

.

. (non-critical section)

.

19

Binary semaphore – forcing alternation

 Except for crit. sect. binary semaphore can be used for

synchronization where two (or more) threads must

alternate through their crit. sect.

 Initially only one semaphore (s1 or s2) must be set (in

signaled state)

Thread I:

while(1) {

 BSemWait(s1);

 thread_I_turn();

 BSemSignal(s2);

}

Thread J:

while(1) {

 BSemWait(s2);

 thread_J_turn();

 BSemSignal(s1);

}

20

Semaphore (general)

 Semaphore is used for counting available resources
 e.g. numbers of messages in queue, list elements, …

 Semaphore value:
 if value = 0, then semaphore is in non-signaled state

 will block all threads that require resource it protect (threads

will be put in queue)

 if value > 0, then semaphore is in signaled state
 at least one thread will pass over semaphore without

blocking

 E.g. a consumer thread processes messages from buffer
which is protected with counting semaphore sb:

…
SemWait(sb); //blocks thread if buffer is empty

(get next message from buffer)

…

21

Semaphore example: producer/consumer

 Producer/consumer problem demonstrate usage of

semaphores when producer and consumer communicate

through buffer with size N (in messages).

 Producer produce messages and puts them into queue

 Consumer reads messages form buffer and consumes

them

 Producer must be blocked if message buffer is full!

 Consumer must be blocked if message buffer is empty!

Producer
Consumer Message buffer

22

Semaphore example: producer/consumer

 Initial value of semaphores: s_empty=N; s_full=0;

Producer:

while(1) {

 P = produce();

 SemWait(s_empty);

 PutIntoBuffer(P);

 SemSignal(s_full);

}

Consumer:

while(1) {

 SemWait(s_full);

 R = GetFromBuffer();

 SemSignal(s_empty);

 consume(R);

}

23

Semaphore problems

 Semaphores are the most used mechanisms for simple

synchronizations:
 supported by all OS-es (some even with more interfaces!)

 simple semantic and usage

 If the problem is not simple, more than one semaphore

is required
 if more than one resource is needed – more semaphores

must be acquired simultaneously

 semantic for such synchronization is not obvious – coding

is very difficult

 more semaphores – greater the chance for deadlock!

24

Producers and consumers

 If same example from before were extended with more

producers and consumers
 producers must not simultaneously put message in buffer

 buffer manipulation require additional variables

 some messages may be overwritten

 additional semaphore is required (will function as binary)

 similar problems with consumers
 additional semaphore is required

Producers
Consumers Message buffer

25

Producers/consumers – wrong solution

 The same binary semaphore s_buffer is used for

buffer protection both for producers and consumers,

initialized to 1

 When buffer becomes full, next producer will block on
s_empty, while holding lock on s_buffer: deadlock!

Producers:

while(1) {

 P = produce();

 SemWait(s_buffer);

 SemWait(s_empty);

 putintobuffer(P);

 SemSignal(s_full);

 SemSignal(s_buffer);

}

Consumers:

while(1) {

 SemWait(s_full);

 SemWait(s_buffer);

 R = getfrombuffer();

 SemSignal(s_buffer);

 SemSignal(s_empty);

 consume(R);

}

26

Deadlock – typical scenario

 Two (or more) threads, two (or more) resources

DEADLOCK!

Thread I:

 ...

 SemWait(s1);

 ...

 SemWait(s2);

 ...

 ...

 SemSignal(s1);

 ...

 SemSignal(s2);

 ...

Thread J:

 ...

 ...

 SemWait(s2);

 ...

 SemWait(s1);

 ...

 SemSignal(s1);

 ...

 SemSignal(s2);

 ...

27

Deadlock – possible prevention

 Some operating systems have interfaces that can

perform multiple operations on multiple semaphores as

an atomic operation – if any one operation cannot be

performed, none are performed

 example (UNIX*):
 semop (id, array_of_op, number_of_op);

 with this interface all resources can be obtained at once

or none will be reserved and the thread is blocked

 use of other synchronization mechanisms
 monitors (or equivalent)

28

Monitors

 operate on sensitive data (shared data/resources) in a

controlled environment – in “monitor functions”

 monitor functions are critical sections where:
 only one thread can be running (active or in ready state)

 thread can perform critical operations

 thread can check for resource availability – in user space,

using adequate data structures
 if resources are available – take them and continue,

 if resources are not available – block thread and “virtually”

leave monitor function

 thread can release resources
 if threads are waiting for them, release the first thread (or all)

 released threads must acquire lock on monitor before

continuing (otherwise more than one function may be

active in monitor!)

29

Monitors

 monitor may be supported implicitly by programming

language (i.e. keyword synchronized in Java)

 the interface must include:
 a mechanism for protected monitor entrance

 a mechanism for leaving the monitor (and releasing the

thread waiting on entrance)

 a mechanism for blocking the thread inside monitor and

temporarily releasing the monitor

 a mechanism for releasing blocked thread inside monitor

 in most environments monitors are implemented with:
 mutexes (from: mutual exclusion object) and

 conditional variables

30

Mutex

 Mutex is very similar to binary semaphore

 But binary semaphore
 is rarely offered through OS interface

 is only a concept, realized through other sync. funct.
 general semaphore (and careful initialization and usage)

 mutex

 Mutex interface:
 MutexLock(m_id) (synonyms: acquire, enter)

 MutexUnlock(m_id) (synonyms: release, leave)

 Difference with binary semaphore:
 designed only for critical section synchronization

 extra functionality when used with conditional variables:

monitors

31

Conditional variables

 Sometimes there is a need for a mechanism which will

just put a thread to queue
 thread may find that conditions for its continuing execution

are inappropriate (e.g. through checking state variables)

and therefore ask to be blocked, put in particular queue

 only when conditions are improved, at some point in future,

thread should be unblocked (by the thread that changed

conditions)

 since checking and changing conditions through shared

objects is critical operation, it should usually be done in

critical section
 but, blocking thread in critical section is one step from

deadlock!

 blocking must be accompanied with temporary release of

critical section object (if its acquired)

 The described mechanism is called a conditional variable

32

Conditional variables

 Conditional variables may be used without (companion)

critical section objects, but its potential is fully valuable

when used with mutexes.

 Conditional variables interface:

 CondWait(cond_id, m_id) (synonym: wait)

 put thread in queue and release mutex object

 CondSignal(cond_id) (synonym: signal)

 release first thread form queue

 CondSignalAll(Cond_id) (synonym: broadcast)

 release all threads form queue

33

Typical monitor usage scenario – acquire

m-function get_resources()

{

 MutexLock(m_id)

 while (not all resources are available) //not “if”

 CondWait(cond_id, m_id);

 mark resources as used - give them to thread;

 (or just use resources here, inside monitor)

 MutexUnlock(m_id);

}

Complex condition

34

Typical monitor usage scenario - release

m-function release_resources()

{

 MutexLock(m_id)

 mark resources as free;

 if (threads are waiting for resources)

 CondSignal(cond_id);

 (signaling can be done even without checking if some threads are
waiting, or even with CondSignalAll(cond_id), if “Acquire”

function is made with “while” instead of “if”)

 MutexUnlock(m_id);

}

35

Monitor example - messages

 Monitors may be used for simple and complex

synchronization problems

 Because of “clear” synchronization objectives (given

through explicit state variables checking), monitors are

preferred synchronization primitives

 Example “problem and environment”
 In an example system, several threads wait on messages

 All messages come through the same channel and should

be forwarded to the appropriate thread

 Forwarding is not performed explicitly – threads are

activated to check if the message belongs to either of them

 A single message is intended only for one thread (other

threads don’t have interest in it)

36

Monitor example - messages

 Threads:

 Delivery thread

 waits on device – source of the message

 when message arrives, wakes processing threads

 Processing threads
 each thread waits for particular message type

 upon examining the message header thread will take it or

leave it (for the next thread)

 Threads are cyclic; they repeat their operations until end
is signaled with job_not_finished function (or

variable)

37

Monitor example - messages

 Data structure:
 monitor:

 mutex m1 (monitor function guard)

 conditional variables c1 and c2

 c1 – queue for threads that are waiting on message to

be delivered (by delivery thread)

 c2 – queue for delivery thread which is waiting for signal

that the message has been taken

 msg_assigned – shared variable (global) that shows if

last arrived message is taken by some thread or not yet
 if “false” threads will inspect last message contents

38

Monitor example – handling messages

Delivery_thread ()

{

 msg_assigned = true; // shared variable!

 while (job_not_finished()) {

 wait_for_message;

 MutexLock(m1);

 msg_assigned = false;

 CondSignalAll(c1);

 // wait till some thread gets message
 while (msg_assigned == false)// will work even without

 CondWait(c2, m1);

 MutexUnlock(m1);

 }

}

39

Monitor example – handling messages

Thread_I()

{

 MutexLock(m1);

 while (job_not_finished()) {

 if (msg_assigned == false &&

 (received message belongs to thread I)) {

 take_message();

 msg_assigned = true;

 CondSignal(c2);

 MutexUnlock(m1);

 process_message();

 MutexLock(m1);

 } else

 CondWait(c1, m1);

 }

 MutexUnlock(mfm);

}

Complex condition

40

Same problem with semaphores?

Delivery_thread ()

{

 msg_assigned = true; // shared variable!

 while (job_not_finished()) {

 wait_for_message;

 msg_assigned = false;

 for i = 1 to number_of_threads

 SemSignal(s1);

 // or SemSignal(s1, number_of_threads); if supported

 SemWait(s2);

 }

}

41

Same problem with semaphores?

Thread_I()

{

 while (job_not_finished()) {

 if (msg_assigned == false &&

 (received message belongs to thread I)) {

 take_message();

 msg_assigned = true;

 SemSignal(s2);

 process_message();

 } else

 SemWait(s1);

 }

}

 Problems: many; Solutions: many; Good solutions?
 try: assign separate semaphore to each thread (instead of
s1)

 “thinking like in monitors” might sometimes work even with
semaphores

42

Other examples with monitors

 Dining philosophers

 Several problems:

http://www.cs.berkeley.edu/~kubitron/courses/cs162-

F06/hand-outs/synch-problems.html

 and solutions:

http://www.cs.berkeley.edu/~kubitron/courses/cs162-

F06/hand-outs/synch-solutions.html

 More on synchronization:

http://www.zemris.fer.hr/~leonardo/unofficial/radovi/Sinkroni

zacija_MIPRO07.pdf (in Croatian)

http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.zemris.fer.hr/~leonardo/unofficial/radovi/Sinkronizacija_MIPRO07.pdf
http://www.zemris.fer.hr/~leonardo/unofficial/radovi/Sinkronizacija_MIPRO07.pdf

