Operating system concepts

Kernel basics

OS kernel

accessible through interrupts
consists of data and code

protected from user threads by memory protection and
processor modes

main responsibilities:
thread management (scheduling, synchronization and
communication)
resource management (memory, Ul, CPU time)

Kernel data structures

for thread management:

thread descriptors:
thread id,
priority, scheduling parameters (policy, timings),

memory locations (stack, private thread data, ...)
context, ...

thread states — thread lists:

active thread — currently running (more on multiprocessors)
ready threads (usually sorted by priorities)

blocked threads: delayed, synchronization related, Ul related
passive threads — threads that finished its programs or were
terminated (e.g. due to an error)

Kernel data structures

for process management:

process descriptors:
memory locations - code, data, stack(s), virtual memory data
resource descriptors - id’s of used system resources
Ul devices
synchronization and communication mechanisms
file descriptors

owner information (user, id of parent process, ...)
priority, scheduling parameters
thread list

other resources — memory, Ul, file systems, network...
memory locations, buffers, lists for blocked threads...

Kernel functions

called through interrupt mechanism
processing is performed with disabled interrupts (at least
parts of it)

typical processing scenario:
Interrupt signal (or instruction)

accepting interrupt, processor behavior:
disable interrupts,
change processor operation mode,
save minimal context on stack,
jump to interrupt processing routine

Interrupt processing routine:
save full context
determine and call required kernel function
restore context, restore thread (interrupted or other)

Kernel functions example — binary semaphore

a simple synchronization primitive

per semaphore data (for Sem[1d]):
value — current value: zero or one
queue — queue for blocked threads

k—=function BSemWait (id)
{

if (Sem[id].value == 1) {
Sem|[i1d] .value = 0;

}

else {

Enqueue (ActiveThread, Sem[1d].queue);
ActiveThread = GetFirst (ReadyQueue) ;

Kernel functions example — binary semaphore

k—-function BSemSignal (1d)
{
1f (Sem[id].queue 1s not empty) {
Enqueue (ActiveThread, ReadyQueue) ;
first = GetFirst(Sem[1d] .queue) ;
Enqueue (first, ReadyQueue);
ActiveThread = GetFirst (ReadyQueue) ;
}
else {
Sem|[i1d] .value = 1;

Only basic functionality is presented! More on this later.

7

Kernel functions

Most of kernel functions may use the same principles as
shown on previous example
synchronization functions

time management
Ul, ...

Multiprocessor kernel support ?

kernel data must reside in shared memory space
critical section can’t be secured by disabling interrupts
(calling through interrupt is not enough)

Test and Set (or similar) instruction is used in spinlock

spinlock: TAS lock 1id, reg;
if reg == 1 then goto spinlock;

TAS uses two consecutive bus cycles to:
read given memory location into register in first cycle
store value 1 in same location in second cycle

“busy waiting” is unavoidable in multiprocessor systems

Multiprocessor kernel extension example

k—-function BSemSignal (1d) {

klock: TAS kernel lock, reg;
if reg == 1 then goto klock;

1f (Sem[id].queue 1s not empty) {
Enqueue (ActiveThread[P], ReadyQueue) ;
first = GetFirst(Sem[1d] .queue) ;
Enqueue (first, ReadyQueue);
ActiveThread[P] = GetFirst (ReadyQueue)

}

else {
Sem|[i1d] .value = 1;

}

kernel lock = 0;

}

°
4

10

Kernel practices

ready threads are placed into multilevel queues, one
level for each priority — higher priority threads are
scheduled first

In (today) multiprocessors, ready threads are allocated

per processor (not in single ready queue/structure)

performance related decision — maximize cache usage
“hot-cache” objective — returning thread may find some of its
data still in processor cache

balancing issue — if ready queues over multiple processors
are not balanced, scheduling would not be fair!

kernel overhead
switching tasks (saving/restoring context)
processor operation mode switch (not insignificant!)

11

Thread management

Synchronization

Need for synchronization?

Many tasks — few resources
only limited number of tasks may use available resources
at the same time
in most cases, “limited number”’ equals one!

only a single task may use a resource at a time, ALL other
tasks must wait (be blocked)!

Single task with multiple threads
threads share common objects - using a shared object is
a critical operation, must be performed sequentially
threads cooperate on single operation — might require
synchronization (e.g. when dividing work between them)
“pipe-line” synchronization
results from first task are input for next

13

Available synchronization through OS

Most effective synchronization is through OS interface
others require spinlocks!

Critical section (CS), mutual exclusion synchronization
Disable/enable interrupts! (on single processor systems)
Binary semaphore
Mutex (CS object)

Counter type synchronization (number of resources > 1)
Semaphores (general)

Complex synchronizations
Semaphores (more than one!)
Monitors (mutex + conditional variables)

14

Disabling/enabling interrupts

Disabling and enabling interrupt is privileged operation
requires that program runs on high privilege level

Must be used VERY carefully:
blocking in critical section protected by disabled
Interrupts stops everything (system deadlock)!

Very simple, very effective when used appropriately
appropriate use: only for very short critical sections

Mostly used only in:
kernel
embedded systems (and RT systems)

15

Disabling/enabling interrupts — example

(non-critical section)
Aisable_interrupt();
CRITICAL SECTION; (only one thread may be here)
enable interrupt();

(non-critical section)

16

Binary semaphore — basic operations

BSemWait (s _id)
synonyms: acquire, lock
operation: lock semaphore object identified with s_id
locks only this object!
programmers view: locking a semaphore gives access to a
single resource (semaphore < resource)
not a global lock(like with disabling interrupts!)

If the semaphore is already locked (owned by other thread):
calling thread is blocked — put in queue associated with
semaphore

BSemSignal (s_id)
synonyms: release, unlock, post
operation: release semaphore object
If semaphore queue is not empty (threads are waiting):
assign semaphore to first thread in queue — release thread

form queue (move it to ready thread queue)
otherwise (empty queue): mark semaphore as free (signaledy

Binary semaphore — CS example

(non-critical section)
éSemWait(sl);
CRITICAL SECTION; (only one thread may be here)
BSemSignal (sl) ;

(non-critical section)

18

Binary semaphore — forcing alternation

Except for crit. sect. binary semaphore can be used for
synchronization where two (or more) threads must
alternate through their crit. sect.

Thread I:
while (1) { while (1) {
BSemWait (sl) ; BSemWait (s2) ;

thread I turn();

BSemSignal (s2) ; BSemSignal (s1) ;
} }

Initially only one semaphore (s1 or s2) must be set (in
signaled state)

Semaphore (general)

Semaphore is used for counting available resources
e.g. numbers of messages in queue, list elements, ...
Semaphore value:

If value = 0, then semaphore is in non-signaled state
will block all threads that require resource it protect (threads
will be put in queue)

If value > 0, then semaphore is in signaled state
at least one thread will pass over semaphore without
blocking

E.g. a consumer thread processes messages from buffer
which is protected with counting semaphore sb:

SemWait (sb) ; IIblocks thread if buffer is empty
(get next message from buffer)

20

Semaphore example: producer/consumer

Producer/consumer problem demonstrate usage of
semaphores when producer and consumer communicate
through buffer with size N (in messages).

Producer produce messages and puts them into queue
Consumer reads messages form buffer and consumes
them

Producer must be blocked if message buffer is full!
Consumer must be blocked if message buffer is empty!

Message buffer Consumer

Producer O

21

Semaphore example: producer/consumer

Producer: Consumer:

while (1) { while (1) {
P = produce() ; SemWait (s full);
SemWait () ; R = GetFromBuffer () ;
PutIntoBuffer (P) ; SemSignal () ;
SemSignal (s full); consume (R) ;

Initial value of semaphores: =N; s full=0;

22

Semaphore problems

Semaphores are the most used mechanisms for simple
synchronizations:
supported by all OS-es (some even with more interfaces!)
simple semantic and usage

If the problem is not simple, more than one semaphore
IS required
If more than one resource is needed — more semaphores
must be acquired simultaneously
semantic for such synchronization is not obvious — coding
IS very difficult
more semaphores — greater the chance for deadlock!

23

Producers and consumers

If same example from before were extended with more

producers and consumers
producers must not simultaneously put message in buffer
buffer manipulation require additional variables
some messages may be overwritten
additional semaphore is required (will function as binary)
similar problems with consumers
additional semaphore is required

Producers Message buffer Cc?nsumers

24

Producers/consumers — wrong solution

The same binary semaphore s buffer is used for

buffer protection both for producers and consumers,
Initialized to 1

Producers: Consumers:

while (1) { while (1) {
P = produce() ; SemWait (s full);
SemWait (s _buffer); SemWait (s _buffer);

R = getfrombuffer () ;

SemWait (s empty) ;
(s_empty) SemSignal (s_buffer) ;

putintobuffer (P) ;
SemSignal (s_full); SemSignal (s_empty) ;
SemSignal (s _buffer) ; consume (R) ;

} }

When buffer becomes full, next producer will block on
s_empty, while holding lock on s_buffer: deadlock!,

Deadlock — typical scenario

Two (or more) threads, two (or more) resources

Thread I: Thread J:
SemWait (sl) ; “ ..
SemWait (s2) ;
SemWait (s2) ;
SemWait (sl) ;
SemSignal (sl) ; SemSignal (sl) ;
SemSignal (s2) ; SemSignal (s2) ;

DEADILOCK!

26

Deadlock — possible prevention

Some operating systems have interfaces that can
perform multiple operations on multiple semaphores as
an atomic operation — if any one operation cannot be
performed, none are performed

example (UNIX*):
semop (id, array of op, number of op);

with this interface all resources can be obtained at once
or none will be reserved and the thread is blocked

use of other synchronization mechanisms
monitors (or equivalent)

27

Monitors

operate on sensitive data (shared data/resources) in a
controlled environment — in “monitor functions”

monitor functions are critical sections where:
only one thread can be running (active or in ready state)
thread can perform critical operations
thread can check for resource availability — in user space,
using adequate data structures
If resources are available — take them and continue,

If resources are not available — block thread and “virtually”
leave monitor function
thread can release resources
If threads are waiting for them, release the first thread (or all)
released threads must acquire lock on monitor before
continuing (otherwise more than one function may be
active in monitor!)

28

Monitors

monitor may be supported implicitly by programming
language (i.e. keyword synchronized in Java)

the interface must include:
a mechanism for protected monitor entrance
a mechanism for leaving the monitor (and releasing the

thread waiting on entrance)
a mechanism for blocking the thread inside monitor and

temporarily releasing the monitor
a mechanism for releasing blocked thread inside monitor

IN most environments monitors are implemented with:
mutexes (from: mutual exclusion object) and
conditional variables

29

Mutex

Mutex is very similar to binary semaphore

But binary semaphore
Is rarely offered through OS interface

IS only a concept, realized through other sync. funct.
general semaphore (and careful initialization and usage)
mutex

Mutex interface:
MutexLock (m_id) (Synonyms: acquire, enter)
MutexUnlock (m_id) (synonyms: release, leave)

Difference with binary semaphore:
designed only for critical section synchronization
extra functionality when used with conditional variables:
monitors

30

Conditional variables

Sometimes there is a need for a mechanism which will

just put a thread to queue
thread may find that conditions for its continuing execution
are inappropriate (e.g. through checking state variables)
and therefore ask to be blocked, put in particular queue
only when conditions are improved, at some point in future,
thread should be unblocked (by the thread that changed
conditions)
since checking and changing conditions through shared
objects is critical operation, it should usually be done In
critical section
but, blocking thread in critical section is one step from
deadlock!

blocking must be accompanied with temporary release of
critical section object (if its acquired)

The described mechanism is called a conditional variable
31

Conditional variables

Conditional variables may be used without (companion)
critical section objects, but its potential is fully valuable
when used with mutexes.

Conditional variables interface:

CondWait (cond id, m id) (synonym: wait)
put thread in queue and release mutex object

CondSignal (cond id) (synonym: signal)
release first thread form queue

CondSignalAll (Cond id) (synonym: broadcast)
release all threads form queue

32

Typical monitor usage scenario — acquire

m-function get resources()

{ o
MutexLock (m id) Com plex condition

4

while (not all resources are available) //not “if”
CondWait (cond id, m id);

mark resources as used - give them to thread;
(or just use resources here, inside monitor)

MutexUnlock (m id) ;

33

Typical monitor usage scenario - release

m-function release resources|()

{

MutexLock (m id)
mark resources as free;

if (threads are waiting for resources)
CondSignal (cond id);

(signaling can be done even without checking if some threads are
waiting, or even with CondSignalAll (cond id), if “Acquire”
function is made with “while” instead of “i£")

MutexUnlock (m id) ;

34

Monitor example - messages

Monitors may be used for simple and complex
synchronization problems

Because of “clear” synchronization objectives (given
through explicit state variables checking), monitors are
preferred synchronization primitives

Example “problem and environment”
In an example system, several threads wait on messages
All messages come through the same channel and should
be forwarded to the appropriate thread
Forwarding is not performed explicitly — threads are
activated to check if the message belongs to either of them
A single message is intended only for one thread (other
threads don’t have interest in it)

35

Monitor example - messages

Threads:

Delivery thread
waits on device — source of the message
when message arrives, wakes processing threads

Processing threads
each thread waits for particular message type
upon examining the message header thread will take it or
leave it (for the next thread)

Threads are cyclic; they repeat their operations until end

IS sighaled with job_not finished function (or
variable)

36

Monitor example - messages

Data structure:

monitor:
mutex m1 (monitor function guard)

conditional variables ¢1 and c2
cl — queue for threads that are waiting on message to
be delivered (by delivery thread)

c2 — queue for delivery thread which is waiting for signal
that the message has been taken

msg_assigned — shared variable (global) that shows if

last arrived message is taken by some thread or not yet
if “false” threads will inspect last message contents

37

Monitor example — handling messages

Delivery thread ()

{
msg_assigned = true; //shared variable!

while (job not finished()) ({
wait for message;

MutexLock (ml) ;

msg _assigned = false;
CondSignalAll (cl) ;

/[wait till some thread gets message

while (msg assigned == false)// will work even without

CondWait (c2, ml) ;
MutexUnlock (ml) ;

38

Monitor example — handling messages

Thread I()
{
MutexLock (ml) ; Complex condition
while (job not finished()) ({ e
if (msg assigned == false &&

(received message belongs to thread I)) {
take message();
msg assigned = true;
CondSignal (c2) ;
MutexUnlock (ml) ;
process message () ;
MutexLock (ml) ;
} else
CondWait (cl, ml) ;

}
MutexUnlock (mfm) ;

39

Same problem with semaphores?

Delivery thread ()
{
msg_assigned = true; //shared variable!

while (job not finished()) ({
wait for message;

msg _assigned = false;
for i = 1 to number of threads
SemSignal (sl) ;

/[or SemSignal(sl, number of threads) ; if supported

SemWait (s2) ;

40

Same problem with semaphores?

Thread I()
{
while (job not finished()) ({
if (msg assigned == false &&
(received message belongs to thread I)) {
take message() ;
msg assigned = true;
SemSignal (s2) ;
process message () ;
} else
SemWait(sl) ;
}
}
Problems: many; Solutions: many; Good solutions?
try: assign separate semaphore to each thread (instead of
sl)
“thinking like in monitors”™ might sometimes work even with
semaphores

41

Other examples with monitors

Dining philosophers

Several problems:
http://www.cs.berkeley.edu/~kubitron/courses/cs162-
FO6/hand-outs/synch-problems.html

and solutions:
http://www.cs.berkeley.edu/~kubitron/courses/cs162-
FO6/hand-outs/synch-solutions.html

More on synchronization:
http://www.zemris.fer.hr/~leonardo/unofficial/radovi/Sinkroni
zacija_MIPROO7.pdf (in Croatian)

42

http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-problems.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F06/hand-outs/synch-solutions.html
http://www.zemris.fer.hr/~leonardo/unofficial/radovi/Sinkronizacija_MIPRO07.pdf
http://www.zemris.fer.hr/~leonardo/unofficial/radovi/Sinkronizacija_MIPRO07.pdf

