Operating system concepts

Concepts vs Implementation

POSIX Threads

Concept vs real implementations
Implementation behavior?
extensions?
restrictions?

Presentation overview

POSIX Threads
Introduction
creating, ending, managing
thread private data

Synchronization
mutex, conditional variables
read-write locks, barrier, spinlocks
POSIX semaphores
UNIX semaphores

POSIX

Before POSIX:

many vendor standards — every UNIX distribution had own
Interface — wasn'’t portable!!!

Portable Operating System Interface [for Unix]

A family of related standards specified by the IEEE to define
the application programming interface (API), ...

fundamental POSIX interfaces are functionally similar to other
OS interfaces (e.g. Win32)

Emerged from a project that began ~1985
IEEE Std 1003, ISO/IEC 9945

http://en.wikipedia.org/wiki/POSIX (short overview)
http://www.unix.orq/2008edition
http://www.openqgroup.orq

http://en.wikipedia.org/wiki/POSIX
http://www.unix.org/2008edition
http://www.opengroup.org/

POSIX Threads

POSIX defines interfaces
e.g. http://www.opengroup.org/onlinepubs/9699919799/ba-
sedefs/pthread.h.html

Implementations may not (need not to) implement all
Interfaces or functionality

Why threads in focus, and not processes?

http://www.opengroup.org/onlinepubs/9699919799/ba-sedefs/pthread.h.html
http://www.opengroup.org/onlinepubs/9699919799/ba-sedefs/pthread.h.html
http://www.opengroup.org/onlinepubs/9699919799/ba-sedefs/pthread.h.html

Thread vs Process: system resources

= New thread in current process use far less system
resources than new process

User Address Space User Address Space

Stack Pointer Thread 2 routine? () warl Stack Pointer
Prgm. Counter stack war2 Prgrm. Counter
Registers war3 Registers

stack routinel warl ()
war2 ()

Thread 1 routinel () warl Stack Pointer
wvarz Prgrm. Counter

Registers
main ()
text routinal ()

routinaZ ()

taxt main ()
routinel (}
routine? ()

data arrayh

arrayB

Process & single thread Process & multiple threads

Thread vs Process: creation times

Creation timings: 50,000 process/thread creation time
(in seconds, SOUrce: nttps://computing.linl.gov/tutorials/pthreads/)

fork() pthread_
create()
Platform
real | user | sys | real | user | sys
AMD 2.4 GHz Opteron (8cpus/node) 176 | 22 | 157 | 14| 03 | 1.3
IBM 4.0 GHz POWERG6 (8cpus/node) 95 | 0.6 88 | 16| 01 (04
INTEL 2.4 GHz Xeon (2 cpus/node) 549 | 1.5 | 208 |16 | 0.7 | 0.9
INTEL 1.4 GHz Itanium2 (4 cpus/node) 545 | 11 | 222 | 20| 1.2 | 0.6

https://computing.llnl.gov/tutorials/pthreads/

Thread vs Process

Threads are “light-weight”
fewer OS resources
significantly lower overhead for thread creation
faster context switching
easiest and faster inter-thread communication

shared data (all process address space)
unprotected changes may be fatal !!!

Threads are less secure
one thread may crash whole process
If threads work on different tasks and their work is not
connected, they could be in their own processes
example: Google Chrome creates new process for each
“tab” — each Web page is rendered in different process;

when we Web page is closed — all data related to it is
automatically released; if one crashes — others will not

Creating threads

With process creation, main (first, initial) thread is
created

From C programmer perspective:
main thread starts with “main” function

int main (..)

{

}

If required, all other threads must be explicitly created by
existing thread(s)!

POSIX interface for thread creation: pthread create

pthread create - parameters

int pthread create (
pthread t *thread id,
pthread attr t *attr,
void * (*start routine) (void¥),
void *arqg);

thread id - address where to store handle of created

thread
attr — various attributes for thread creation

(priority/scheduling, stack, ...)

start routine — starting routine for created thread

(like “main” for first thread)
arg — only argument passed to starting routine

Creating thread — example (pthread_create.c)

] Compiling:
#include <pthread.h> #gcc el.c -lpthread
#include <stdio.h> #./a.out
void *new thread (void *p) ({ In thread 1
int *n = p; In thread 5
int num = *n: Collected status: 1 5
printf ("In thread %d\n", num); #
return p; </ /or pthread exit(p);
} \ — Parameter to starting routine

' . Returning value to calling thread
int main () { T

pthread t tl1, t2; :
int n1 =1, n2 = 5, *statusl, (*status2;
pthread create(&tl, NULL, new;thread, (void *) &nl);

pthread create(&t2, NULL, new,thread, (void *) &n2);

I
\ 4

pthread join(tl, (void *) &statusl) ; //waittill thread t1 ends
pthread join(t2, (void *) &status2);
printf ("Collected status: %d %d\n", *statusl, *status2);

t 0;
\ recurn \

Returning value to calling process (usually command shell)

10

Passing parameters to new thread

Don’t pass address of loop variable!
\fUr—(—i—:_Q; i < N: i++)

pthread create(&t, NULL, thr func, (void *)—&i)5
Loop variable changes and intended value is not sent (usually all
threads get N)!
Pass value (if it is integer — address is also a number! ©):
for (1 = 0; i < N; 1i++4)

pthread create(&t, NULL, thr func, (void *) i);

In thread function get value:

void * thr func (void *p) {
int num = (int) p;

If more parameters are required, put them into structure, e.g.:
struct params { int a, b, c; double d4d; .. } p[N];
for (1 = 0; i < N; i++) {

//initialize p[i] with data for thread ‘i’

pthread create(&t[i] ,NULL,thr func, (void *)é&p[i]);

Managing created threads

Created thread ends its execution (“voluntarily”) with:
exiting from its starting function
calling to pthread exit
e.g. thread is not in starting function

Parent thread (or any other) may wait for thread end with
pthread join

Thread can (“forcefully”) terminate other thread:

sending a signal to that thread
pthread kill (thread, signal)

and in thread handling function pthread exit is called

request for thread cancelation
pthread cancel (thread)

If main thread end — process ends (with all its threads)!!!
12

Reusing thread resources

Resources are reserved for every created thread:

thread descriptor in kernel data structures

stack and private data in process address space
When thread ends, its resources are not always released
automatically!

They are released when:

pthread join is performed on them (by other thread),
or

thread is marked as “detachable”

with attr at thread creation or later with pthread detach

when detachable thread ends, its resources are automatically
reclaimed

the detached thread can act as a daemon thread (while the
main thread performs other operations — process must exist!)

13

Example: threads in Web server

int main() {
/linitialization in main thread that waits on connections
pthread attr t attr;
pthread attr setdetachstate (sattr, PTHREAD CREATE DETACHED) ;
/Iwith this flag, upon finishing their processing, thread resources will be freed

//main loop — waiting on connections and forwarding them to processing threads
while (not _end) ({

client = malloc(sizeof (struct Client));
client->socket = accept(srv, &client->addr, &client->len);
pthread create(&tid, &attr, service thread, (void *)client)

}

/[service thread function

void *service thread (void *p) {
struct Client *client = p;
//service this client request

.
4

14

Private thread data

“Per-thread” user data — accessible for general purposes
for storing problem related data

When do we need “private” thread data?
principle is similar to global variables, but available only to
single / specific thread
reduce parameter number/size when calling functions
use when parameters can’t be sent, e.g. processing of
asynchronous events like signals

private l— thread
thread Y
/ thread
private
private |

thread) 15

thread }

Private thread data — example (pthread_specific.c)

#include <pthread.h>
pthread key t thr stat, thr buffer;//global variables, shared among threads

/Imain thread — initialization of ‘keys’, basis for thread specific data
pthread key create(&thr stat, free data);

pthread key create(&thr buffer, free data); void *free data (void *d) ({
/linitially, value NULL is associated with each key for all threads if (d ’f= N‘?:;;)
ree ;

return NULL;

pthread create... }

/[lworker thread - initialization
stat = malloc(sizeof (struct ThrStat)); /[stat - local variable
buffer = malloc(sizeof (struct ThrBuffer)) ; /lbuffer - local variable

/lassociate stat with key thr_stat for current thread only!!!
pthread setspecific(thr stat, stat);
pthread setspecific(thr buffer, buffer);

/Iworker thread — in some function
s = pthread getspecific(thr stat); //get data associated with key thr stat

b = pthread getspecific(thr buffer);

... lluse ‘s’and b’
16

Synchronization

Available mechanisms:

Mutex:
pthread _mutex_lock/unlock/init

Conditional variable
pthread cond_wait/signal/broadcast/init

Reader/Writer lock

Barrier

Spin lock

Semaphore (Real-time extension)

UNIX semaphore

Demonstration through examples

17

Monitor example — Old Bridge problem

Old bridge (over river) puts restrictions on traffic:
at all times:

cars can drive over bridge only in same direction
bridge is too narrow

no more than three cars may be crossing it
bridge construction is fragile (old)

Simulate cars with threads
synchronize threads with monitor (mutex and cond. var.)
simulation must preserve given restrictions

In following implementation bridge state is described with
number of cars currently on bridge - cars_on_bridge
direction of cars on bridge - dir on bridge

18

Old Bridge — solution (old_bridge.c)

void *car_ thread (void *p) {
struct CarInfo *car = p;
pthread mutex lock (&m);
while (cars _on bridge > 2 || (dir on bridge!=-1 && dir on bridge != car->dir))
pthread cond wait(cq[car->dir], &m);
//go on bridge

cars_on bridge++;

dir on bridge = car->dir;

pthread mutex unlock (&m) ;

/[drive over bridge

usleep (5000000) ;//sleep 5 seconds

/[drive off bridge

pthread mutex lock (&m);

cars_on_bridge--;

if (cars_on bridge > 0) {
pthread cond signal (cql[car->dir]);

} }

else { return 0;

dir on bridge = -1; }

int main () {
pthread attr_t attr;
pthread attr init(&attr);
pthread attr setdetachstate(
&attr, PTHREAD CREATE DETACHED) ;
while (1) {
car = malloc(sizeof (struct CarInfo));
car->id = ++car_id;
car->dir = rand() & 1;
pthread create(&thr_id, s&attr,
car_thread, (void *) car);
usleep (2000000) ;

pthread cond broadcast(cq[l-car->dir]) ;
} This solution is not very fair!

pthread mutex unlock (&m);
free(car) ;

Fairness would require counting
Crosses.

19

Reader/Writer locks (Readerwriter.c)

void *reader (int p) {

while (1) { Reader/writer locking principles:
pthread rwlock rdlock (&rwlock) ;
num_readers++; When reader acquire lock, only
usleep (2000000) ; readers can pass through locking
num readers--;
pthread rwlock unlock (&rwlock) ; When writer locks, nor reader nor
usleep (1000000 * p); writer will pass
}
} When writer is waiting, no more
void *writer (int p) { readers are allowed to lock - even
while (1) { if reader thread is currently
pthread rwlock wrlock (srwlock) ; owning the lock
num writters++;
usleep (1000000) ;

num writters--;
pthread rwlock unlock (&rwlock) ;
usleep (1000000 * p * 5);

20

Barrier (Barrier.c)

pthread barrier t barrier;
void *thread (int p) {
while (1) {

usleep (1000000 * p);
at barrier++;
pthread barrier wait (&barrier);
at barrier--;
if (!'at barrier)

/’

Barrier will block threads until

all threads come to barrier
when last thread comes
to barrier - all threads are
released and barrier is
reset

At barrier initialization number

of threads must be provided
/

printf ("---Barrier passed---\n");

usleep (1000000 * p);

}
}

int main () {

pthread barrier init(&barrier, NULL, 5);

pthread create(&thr id, &attr, thread,

(void *) 1) ;

pthread create(&thr_ id, &attr, thread, (void *) 5);

usleep (50000000); //simulation time
return O;

21

Spinlock (spinlock.c)

pthread spinlock t lock; Look at CPU usage! (high)

void *thread (int p) {
while (1) {
printf ("Thread %d ready\n", p);
pthread spin lock(&lock) ;
printf ("Thread %d inside C.S.\n", p);
usleep (1000000 * p);
printf ("Thread %d leaving C.S.\n", p);
pthread spin unlock(&lock) ;
usleep (1000000) ;
}
}

int main () {
pthread t thr id;
pthread spin init(&lock, PTHREAD PROCESS PRIVATE) ;
pthread create(&thr id, NULL, thread, (void *) 1);

pthread create(&thr id, NULL, thread, (void *) 6);

usleep (50000000); //simulation time
return O;

22

Semaphore (semaphore.c)

#include <semaphore.h> //POSIX RT extension Look at CPU usage! (low)

sem t sem;
void *thread (int p) {
while (1) {

printf ("Thread %d ready\n", p);
sem wait (&sem) ;
printf ("Thread %d inside C.S.\n", p);
usleep (1000000 * p);
printf ("Thread %d leaving C.S.\n", p):
sem post (&sem) ;
usleep (1000000) ;

}

}
int main () { Initial semaphore value

pthread t thr id;
sem init(&sem, 0, 1);
pthread create(&thr id, NULL, thread, (void *) 1);

pthread create(&thr id, NULL, thread, (void *) 6);
usleep (50000000) ; //simulation time
return O;

23

UNIX semaphore (Sys_sem.c)

#include <sys/sem.h>

int sem;

void *thread (int p) {

struct sembuf op;

op.sem num = 0;//first semaphore in set
op.sem flg = 0;

}

int main () {
= semget (IPC_PRIVATE, 1% 0600 | IPC_CREAT) ;

semop (sem _id, sem ops, no)
sem_id — semaphores set identifier
sem ops — array of semaphore
operations (to be performed as

atomic operation)
no — number of operations

while (1) {

}

op.sem op = -1; //decrement semaphore value => SemWait
semop (sem, &op, 1) ;

printf ("Thread %d inside C.S.\n", p);

usleep (1000000 * p);

printf ("Thread %d leaving C.S.\n", p);
op.sem op = 1; //increment semaphore value => SemPost
semop (sem, &op, 1) ;

usleep (1000000) ;

Get semaphore set (with only 1 semaphore)
__—

semctl (sem, 0, SETVAL, 1);

\ Initial semaphore value 24

Extended functionality

“Timed” wait on locks or queue
pthread mutex timedlock (mutex, time)
pthread cond timedwait
pthread rwlock timedrdlock/timedwrlock
sem timedwait

will not wait more than specified on lock/queue
If that time elapses and lock is not obtained, error is returned

Non-blocking “try” functions:
pthread mutex trylock

pthread rwlock tryrdlock/trywrlock
pthread spin trylock

sem trywait, semop with IPC_NOWAIT flag

if locking can’t be done — if it is already locked, will not
block thread — instead will return error code

25

Programming problem: thread-safe functions

Thread-safe, MT-safe (MultiThreading), reentrant ?
functions can be simultaneously (or even in parallel) called
by different threads, and still produce valid results (same
as if called only by single thread, sequentially)

Some library or other functions may not be thread-safe
(e.g. gethostbyname, rand)!
they use (internally) global variables (buffers, pointers...)

check function description (“man pages”)!
e.g. http://www.opengroup.org/onlinepubs/9699919799/func-
tions/V2_ chap02.html#tag 15 09

manually protect those “unsafe” function (e.g. with mutex)

Build thread-safe functions
avoid global variables, or use them only in monitors

26

http://www.opengroup.org/onlinepubs/9699919799/func-tions/V2_chap02.html
http://www.opengroup.org/onlinepubs/9699919799/func-tions/V2_chap02.html
http://www.opengroup.org/onlinepubs/9699919799/func-tions/V2_chap02.html

