
Operating system concepts

Concepts vs Implementation

POSIX Threads

2

Concept vs real implementations

 implementation behavior?

 extensions?

 restrictions?

Presentation overview

 POSIX Threads
 introduction

 creating, ending, managing

 thread private data

 Synchronization
 mutex, conditional variables

 read-write locks, barrier, spinlocks

 POSIX semaphores

 UNIX semaphores

3

POSIX

 Before POSIX:
 many vendor standards – every UNIX distribution had own

interface – wasn’t portable!!!

 Portable Operating System Interface [for Unix]

 A family of related standards specified by the IEEE to define

the application programming interface (API), …

 fundamental POSIX interfaces are functionally similar to other

OS interfaces (e.g. Win32)

 Emerged from a project that began ~1985

 IEEE Std 1003, ISO/IEC 9945

 http://en.wikipedia.org/wiki/POSIX (short overview)

 http://www.unix.org/2008edition
 http://www.opengroup.org

http://en.wikipedia.org/wiki/POSIX
http://www.unix.org/2008edition
http://www.opengroup.org/

4

POSIX Threads

 POSIX defines interfaces
 e.g. http://www.opengroup.org/onlinepubs/9699919799/ba-

sedefs/pthread.h.html

 Implementations may not (need not to) implement all

interfaces or functionality

 Why threads in focus, and not processes?

http://www.opengroup.org/onlinepubs/9699919799/ba-sedefs/pthread.h.html
http://www.opengroup.org/onlinepubs/9699919799/ba-sedefs/pthread.h.html
http://www.opengroup.org/onlinepubs/9699919799/ba-sedefs/pthread.h.html

5

Thread vs Process: system resources

 New thread in current process use far less system

resources than new process

Process & single thread Process & multiple threads

6

Thread vs Process: creation times

 Creation timings: 50,000 process/thread creation time

(in seconds, source: https://computing.llnl.gov/tutorials/pthreads/)

Platform

fork()
pthread_

create()

real user sys real user sys

AMD 2.4 GHz Opteron (8cpus/node) 17.6 2.2 15.7 1.4 0.3 1.3

IBM 4.0 GHz POWER6 (8cpus/node) 9.5 0.6 8.8 1.6 0.1 0.4

INTEL 2.4 GHz Xeon (2 cpus/node) 54.9 1.5 20.8 1.6 0.7 0.9

INTEL 1.4 GHz Itanium2 (4 cpus/node) 54.5 1.1 22.2 2.0 1.2 0.6

https://computing.llnl.gov/tutorials/pthreads/

7

Thread vs Process

 Threads are “light-weight”
 fewer OS resources

 significantly lower overhead for thread creation

 faster context switching

 easiest and faster inter-thread communication

 shared data (all process address space)
 unprotected changes may be fatal !!!

 Threads are less secure
 one thread may crash whole process

 if threads work on different tasks and their work is not

connected, they could be in their own processes
 example: Google Chrome creates new process for each

“tab” – each Web page is rendered in different process;

when we Web page is closed – all data related to it is

automatically released; if one crashes – others will not

8

Creating threads

 With process creation, main (first, initial) thread is

created

 From C programmer perspective:
 main thread starts with “main” function

int main (…)

{

 …

}

 If required, all other threads must be explicitly created by

existing thread(s)!

 POSIX interface for thread creation: pthread_create

9

pthread_create - parameters

int pthread_create (

 pthread_t *thread_id,

 pthread_attr_t *attr,

 void *(*start_routine)(void*),

 void *arg);

 thread_id – address where to store handle of created

thread
 attr – various attributes for thread creation

(priority/scheduling, stack, …)

 start_routine – starting routine for created thread

(like “main” for first thread)
 arg – only argument passed to starting routine

10

Creating thread – example (pthread_create.c)

#include <pthread.h>

#include <stdio.h>

void *new_thread (void *p) {

 int *n = p;

 int num = *n;

 printf("In thread %d\n", num);

 return p; //or pthread_exit(p);

}

int main () {

 pthread_t t1, t2;

 int n1 = 1, n2 = 5, *status1, *status2;

 pthread_create(&t1, NULL, new_thread, (void *) &n1);

pthread_create(&t2, NULL, new_thread, (void *) &n2);

 pthread_join(t1, (void *) &status1); //wait till thread t1 ends

 pthread_join(t2, (void *) &status2);

 printf("Collected status: %d %d\n", *status1, *status2);

 return 0;

}

Compiling:
#gcc e1.c –lpthread

#./a.out

In thread 1

In thread 5

Collected status: 1 5

Returning value to calling thread

Parameter to starting routine

Returning value to calling process (usually command shell)

11

Passing parameters to new thread

 Don’t pass address of loop variable!
 for (i = 0; i < N; i++)

 pthread_create(&t, NULL, thr_func, (void *) &i);

 Loop variable changes and intended value is not sent (usually all
threads get N)!

 Pass value (if it is integer – address is also a number!):
 for (i = 0; i < N; i++)

 pthread_create(&t, NULL, thr_func, (void *) i);

 In thread function get value:
void * thr_func (void *p) {

 int num = (int) p;

 ...

 If more parameters are required, put them into structure, e.g.:
 struct params { int a, b, c; double d; … } p[N];

 for (i = 0; i < N; i++) {

 //initialize p[i] with data for thread ‘i’

 pthread_create(&t[i],NULL,thr_func, (void *)&p[i]);

 }

12

Managing created threads

 Created thread ends its execution (“voluntarily”) with:
 exiting from its starting function
 calling to pthread_exit

 e.g. thread is not in starting function

 Parent thread (or any other) may wait for thread end with
 pthread_join

 Thread can (“forcefully”) terminate other thread:
 sending a signal to that thread

 pthread_kill (thread, signal)

 and in thread handling function pthread_exit is called

 request for thread cancelation
 pthread_cancel (thread)

 If main thread end – process ends (with all its threads)!!!

13

Reusing thread resources

 Resources are reserved for every created thread:
 thread descriptor in kernel data structures

 stack and private data in process address space

 When thread ends, its resources are not always released

automatically!

 They are released when:
 pthread_join is performed on them (by other thread),

or

 thread is marked as “detachable”
 with attr at thread creation or later with pthread_detach

 when detachable thread ends, its resources are automatically

reclaimed

 the detached thread can act as a daemon thread (while the

main thread performs other operations – process must exist!)

14

Example: threads in Web server

int main() {

 //initialization in main thread that waits on connections
 pthread_attr_t attr;

 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

 //with this flag, upon finishing their processing, thread resources will be freed
 ...

 //main loop – waiting on connections and forwarding them to processing threads
 while (not_end) {

 client = malloc(sizeof(struct Client));

 client->socket = accept(srv, &client->addr, &client->len);

 pthread_create(&tid,&attr, service_thread, (void *)client);

 }

 ...

}

//service thread function
void *service_thread (void *p) {

 struct Client *client = p;

 //service this client request

 ...

}

15

Private thread data

 “Per-thread” user data – accessible for general purposes
 for storing problem related data

 When do we need “private” thread data?
 principle is similar to global variables, but available only to

single / specific thread

 reduce parameter number/size when calling functions

 use when parameters can’t be sent, e.g. processing of

asynchronous events like signals

16

Private thread data – example (pthread_specific.c)

#include <pthread.h>

pthread_key_t thr_stat, thr_buffer;//global variables, shared among threads

...

//main thread – initialization of ‘keys’, basis for thread specific data
pthread_key_create(&thr_stat, free_data);

pthread_key_create(&thr_buffer, free_data);

//initially, value NULL is associated with each key for all threads
...

pthread_create...

...

//worker thread - initialization
stat = malloc(sizeof(struct ThrStat)); //stat - local variable

buffer = malloc(sizeof(struct ThrBuffer)); //buffer - local variable

//associate stat with key thr_stat for current thread only!!!

pthread_setspecific(thr_stat, stat);

pthread_setspecific(thr_buffer, buffer);

...

//worker thread – in some function
s = pthread_getspecific(thr_stat); //get data associated with key thr_stat

b = pthread_getspecific(thr_buffer);

... //use ‘s’ and ‘b’

void *free_data (void *d) {

 if (d != NULL)

 free(d);

 return NULL;

}

17

Synchronization

 Available mechanisms:
 Mutex:

 pthread_mutex_lock/unlock/init

 Conditional variable
 pthread_cond_wait/signal/broadcast/init

 Reader/Writer lock

 Barrier

 Spin lock

 Semaphore (Real-time extension)

 UNIX semaphore

 Demonstration through examples

18

Monitor example – Old Bridge problem

 Old bridge (over river) puts restrictions on traffic:
at all times:

 cars can drive over bridge only in same direction
 bridge is too narrow

 no more than three cars may be crossing it
 bridge construction is fragile (old)

 Simulate cars with threads
 synchronize threads with monitor (mutex and cond. var.)

 simulation must preserve given restrictions

 In following implementation bridge state is described with
 number of cars currently on bridge - cars_on_bridge

 direction of cars on bridge - dir_on_bridge

19

Old Bridge – solution (Old_bridge.c)

void *car_thread (void *p) {

 struct CarInfo *car = p;

 pthread_mutex_lock(&m);

 while(cars_on_bridge > 2 || (dir_on_bridge!=-1 && dir_on_bridge != car->dir))

 pthread_cond_wait(cq[car->dir], &m);

 //go on bridge
 cars_on_bridge++;

 dir_on_bridge = car->dir;

 pthread_mutex_unlock(&m);

 //drive over bridge

 usleep(5000000);//sleep 5 seconds

 //drive off bridge

 pthread_mutex_lock(&m);

 cars_on_bridge--;

 if (cars_on_bridge > 0) {

 pthread_cond_signal(cq[car->dir]);

 }

 else {

 dir_on_bridge = -1;

 pthread_cond_broadcast(cq[1-car->dir]);

 }

 pthread_mutex_unlock(&m);

 free(car);

}

int main () {

 pthread_attr_t attr;

 pthread_attr_init(&attr);

 pthread_attr_setdetachstate(

 &attr, PTHREAD_CREATE_DETACHED);

 while (1) {

 car = malloc(sizeof(struct CarInfo));

 car->id = ++car_id;

 car->dir = rand() & 1;

 pthread_create(&thr_id, &attr,

 car_thread, (void *) car);

 usleep(2000000);

 }

 return 0;

}

This solution is not very fair!

Fairness would require counting

crosses.

20

Reader/Writer locks (ReaderWriter.c)

void *reader (int p) {

 while (1) {

 pthread_rwlock_rdlock(&rwlock);

 num_readers++;

 usleep(2000000);

 num_readers--;

 pthread_rwlock_unlock(&rwlock);

 usleep(1000000 * p);

 }

}

void *writer (int p) {

 while (1) {

 pthread_rwlock_wrlock(&rwlock);

 num_writters++;

 usleep(1000000);

 num_writters--;

 pthread_rwlock_unlock(&rwlock);

 usleep(1000000 * p * 5);

 }

}

Reader/writer locking principles:

 When reader acquire lock, only

readers can pass through locking

 When writer locks, nor reader nor

writer will pass

 When writer is waiting, no more

readers are allowed to lock - even

if reader thread is currently

owning the lock

21

Barrier (Barrier.c)

pthread_barrier_t barrier;

void *thread (int p) {

 while (1) {

 usleep(1000000 * p);

 at_barrier++;

 pthread_barrier_wait(&barrier);

 at_barrier--;

 if(!at_barrier)

 printf("---Barrier passed---\n");

 usleep(1000000 * p);

 }

}

int main () {

 ...

 pthread_barrier_init(&barrier, NULL, 5);
 pthread_create(&thr_id, &attr, thread, (void *) 1);

 ...

 pthread_create(&thr_id, &attr, thread, (void *) 5);

 usleep(50000000); //simulation time

 return 0;

}

 Barrier will block threads until

all threads come to barrier
 when last thread comes

to barrier - all threads are

released and barrier is

reset

 At barrier initialization number

of threads must be provided

22

Spinlock (Spinlock.c)

pthread_spinlock_t lock;

void *thread (int p) {

 while (1) {

 printf("Thread %d ready\n", p);

 pthread_spin_lock(&lock);

 printf("Thread %d inside C.S.\n", p);

 usleep(1000000 * p);

 printf("Thread %d leaving C.S.\n", p);

 pthread_spin_unlock(&lock);

 usleep(1000000);

 }

}

int main () {

 pthread_t thr_id;

 pthread_spin_init(&lock, PTHREAD_PROCESS_PRIVATE);

 pthread_create(&thr_id, NULL, thread, (void *) 1);

 ...

 pthread_create(&thr_id, NULL, thread, (void *) 6);

 usleep(50000000); //simulation time

 return 0;

}

Look at CPU usage! (high)

23

Semaphore (Semaphore.c)

#include <semaphore.h> //POSIX RT extension

sem_t sem;

void *thread (int p) {

 while (1) {

 printf("Thread %d ready\n", p);

 sem_wait(&sem);

 printf("Thread %d inside C.S.\n", p);

 usleep(1000000 * p);

 printf("Thread %d leaving C.S.\n", p);

 sem_post(&sem);

 usleep(1000000);

 }

}

int main () {

 pthread_t thr_id;

 sem_init(&sem, 0, 1);

 pthread_create(&thr_id, NULL, thread, (void *) 1);

 ...

 pthread_create(&thr_id, NULL, thread, (void *) 6);

 usleep(50000000); //simulation time

 return 0;

}

Look at CPU usage! (low)

Initial semaphore value

24

UNIX semaphore (Sys_sem.c)

#include <sys/sem.h>

int sem;

void *thread (int p) {

 struct sembuf op;

 op.sem_num = 0;//first semaphore in set

 op.sem_flg = 0;

 while (1) {

 op.sem_op = -1; //decrement semaphore value => SemWait

 semop(sem, &op, 1);

 printf("Thread %d inside C.S.\n", p);

 usleep(1000000 * p);

 printf("Thread %d leaving C.S.\n", p);

 op.sem_op = 1; //increment semaphore value => SemPost

 semop(sem, &op, 1);

 usleep(1000000);

 }

}

int main () {

 sem = semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT);

 semctl(sem, 0, SETVAL, 1);

 ...

semop (sem_id, sem_ops, no)

 sem_id – semaphores set identifier

 sem_ops – array of semaphore

operations (to be performed as

atomic operation)
 no – number of operations

Initial semaphore value

Get semaphore set (with only 1 semaphore)

25

Extended functionality

 “Timed” wait on locks or queue
 pthread_mutex_timedlock(mutex, time)

 pthread_cond_timedwait

 pthread_rwlock_timedrdlock/timedwrlock

 sem_timedwait

 will not wait more than specified on lock/queue
 if that time elapses and lock is not obtained, error is returned

 Non-blocking “try” functions:
 pthread_mutex_trylock

 pthread_rwlock_tryrdlock/trywrlock

 pthread_spin_trylock

 sem_trywait, semop with IPC_NOWAIT flag

 if locking can’t be done – if it is already locked, will not

block thread – instead will return error code

26

Programming problem: thread-safe functions

 Thread-safe, MT-safe (MultiThreading), reentrant ?
 functions can be simultaneously (or even in parallel) called

by different threads, and still produce valid results (same

as if called only by single thread, sequentially)

 Some library or other functions may not be thread-safe
(e.g. gethostbyname, rand)!

 they use (internally) global variables (buffers, pointers…)

 check function description (“man pages”)!
 e.g. http://www.opengroup.org/onlinepubs/9699919799/func-

tions/V2_chap02.html#tag_15_09

 manually protect those “unsafe” function (e.g. with mutex)

 Build thread-safe functions
 avoid global variables, or use them only in monitors

http://www.opengroup.org/onlinepubs/9699919799/func-tions/V2_chap02.html
http://www.opengroup.org/onlinepubs/9699919799/func-tions/V2_chap02.html
http://www.opengroup.org/onlinepubs/9699919799/func-tions/V2_chap02.html

