
Operating system concepts

Concepts vs Implementation

POSIX Threads

2

Concept vs real implementations

 implementation behavior?

 extensions?

 restrictions?

Presentation overview

 POSIX Threads
 introduction

 creating, ending, managing

 thread private data

 Synchronization
 mutex, conditional variables

 read-write locks, barrier, spinlocks

 POSIX semaphores

 UNIX semaphores

3

POSIX

 Before POSIX:
 many vendor standards – every UNIX distribution had own

interface – wasn’t portable!!!

 Portable Operating System Interface [for Unix]

 A family of related standards specified by the IEEE to define

the application programming interface (API), …

 fundamental POSIX interfaces are functionally similar to other

OS interfaces (e.g. Win32)

 Emerged from a project that began ~1985

 IEEE Std 1003, ISO/IEC 9945

 http://en.wikipedia.org/wiki/POSIX (short overview)

 http://www.unix.org/2008edition
 http://www.opengroup.org

http://en.wikipedia.org/wiki/POSIX
http://www.unix.org/2008edition
http://www.opengroup.org/

4

POSIX Threads

 POSIX defines interfaces
 e.g. http://www.opengroup.org/onlinepubs/9699919799/ba-

sedefs/pthread.h.html

 Implementations may not (need not to) implement all

interfaces or functionality

 Why threads in focus, and not processes?

http://www.opengroup.org/onlinepubs/9699919799/ba-sedefs/pthread.h.html
http://www.opengroup.org/onlinepubs/9699919799/ba-sedefs/pthread.h.html
http://www.opengroup.org/onlinepubs/9699919799/ba-sedefs/pthread.h.html

5

Thread vs Process: system resources

 New thread in current process use far less system

resources than new process

Process & single thread Process & multiple threads

6

Thread vs Process: creation times

 Creation timings: 50,000 process/thread creation time

(in seconds, source: https://computing.llnl.gov/tutorials/pthreads/)

Platform

fork()
pthread_

create()

real user sys real user sys

AMD 2.4 GHz Opteron (8cpus/node) 17.6 2.2 15.7 1.4 0.3 1.3

IBM 4.0 GHz POWER6 (8cpus/node) 9.5 0.6 8.8 1.6 0.1 0.4

INTEL 2.4 GHz Xeon (2 cpus/node) 54.9 1.5 20.8 1.6 0.7 0.9

INTEL 1.4 GHz Itanium2 (4 cpus/node) 54.5 1.1 22.2 2.0 1.2 0.6

https://computing.llnl.gov/tutorials/pthreads/

7

Thread vs Process

 Threads are “light-weight”
 fewer OS resources

 significantly lower overhead for thread creation

 faster context switching

 easiest and faster inter-thread communication

 shared data (all process address space)
 unprotected changes may be fatal !!!

 Threads are less secure
 one thread may crash whole process

 if threads work on different tasks and their work is not

connected, they could be in their own processes
 example: Google Chrome creates new process for each

“tab” – each Web page is rendered in different process;

when we Web page is closed – all data related to it is

automatically released; if one crashes – others will not

8

Creating threads

 With process creation, main (first, initial) thread is

created

 From C programmer perspective:
 main thread starts with “main” function

int main (…)

{

 …

}

 If required, all other threads must be explicitly created by

existing thread(s)!

 POSIX interface for thread creation: pthread_create

9

pthread_create - parameters

int pthread_create (

 pthread_t *thread_id,

 pthread_attr_t *attr,

 void *(*start_routine)(void*),

 void *arg);

 thread_id – address where to store handle of created

thread
 attr – various attributes for thread creation

(priority/scheduling, stack, …)

 start_routine – starting routine for created thread

(like “main” for first thread)
 arg – only argument passed to starting routine

10

Creating thread – example (pthread_create.c)

#include <pthread.h>

#include <stdio.h>

void *new_thread (void *p) {

 int *n = p;

 int num = *n;

 printf("In thread %d\n", num);

 return p; //or pthread_exit(p);

}

int main () {

 pthread_t t1, t2;

 int n1 = 1, n2 = 5, *status1, *status2;

 pthread_create(&t1, NULL, new_thread, (void *) &n1);

pthread_create(&t2, NULL, new_thread, (void *) &n2);

 pthread_join(t1, (void *) &status1); //wait till thread t1 ends

 pthread_join(t2, (void *) &status2);

 printf("Collected status: %d %d\n", *status1, *status2);

 return 0;

}

Compiling:
#gcc e1.c –lpthread

#./a.out

In thread 1

In thread 5

Collected status: 1 5

Returning value to calling thread

Parameter to starting routine

Returning value to calling process (usually command shell)

11

Passing parameters to new thread

 Don’t pass address of loop variable!
 for (i = 0; i < N; i++)

 pthread_create(&t, NULL, thr_func, (void *) &i);

 Loop variable changes and intended value is not sent (usually all
threads get N)!

 Pass value (if it is integer – address is also a number! ):
 for (i = 0; i < N; i++)

 pthread_create(&t, NULL, thr_func, (void *) i);

 In thread function get value:
void * thr_func (void *p) {

 int num = (int) p;

 ...

 If more parameters are required, put them into structure, e.g.:
 struct params { int a, b, c; double d; … } p[N];

 for (i = 0; i < N; i++) {

 //initialize p[i] with data for thread ‘i’

 pthread_create(&t[i],NULL,thr_func, (void *)&p[i]);

 }

12

Managing created threads

 Created thread ends its execution (“voluntarily”) with:
 exiting from its starting function
 calling to pthread_exit

 e.g. thread is not in starting function

 Parent thread (or any other) may wait for thread end with
 pthread_join

 Thread can (“forcefully”) terminate other thread:
 sending a signal to that thread

 pthread_kill (thread, signal)

 and in thread handling function pthread_exit is called

 request for thread cancelation
 pthread_cancel (thread)

 If main thread end – process ends (with all its threads)!!!

13

Reusing thread resources

 Resources are reserved for every created thread:
 thread descriptor in kernel data structures

 stack and private data in process address space

 When thread ends, its resources are not always released

automatically!

 They are released when:
 pthread_join is performed on them (by other thread),

or

 thread is marked as “detachable”
 with attr at thread creation or later with pthread_detach

 when detachable thread ends, its resources are automatically

reclaimed

 the detached thread can act as a daemon thread (while the

main thread performs other operations – process must exist!)

14

Example: threads in Web server

int main() {

 //initialization in main thread that waits on connections
 pthread_attr_t attr;

 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

 //with this flag, upon finishing their processing, thread resources will be freed
 ...

 //main loop – waiting on connections and forwarding them to processing threads
 while (not_end) {

 client = malloc(sizeof(struct Client));

 client->socket = accept(srv, &client->addr, &client->len);

 pthread_create(&tid,&attr, service_thread, (void *)client);

 }

 ...

}

//service thread function
void *service_thread (void *p) {

 struct Client *client = p;

 //service this client request

 ...

}

15

Private thread data

 “Per-thread” user data – accessible for general purposes
 for storing problem related data

 When do we need “private” thread data?
 principle is similar to global variables, but available only to

single / specific thread

 reduce parameter number/size when calling functions

 use when parameters can’t be sent, e.g. processing of

asynchronous events like signals

16

Private thread data – example (pthread_specific.c)

#include <pthread.h>

pthread_key_t thr_stat, thr_buffer;//global variables, shared among threads

...

//main thread – initialization of ‘keys’, basis for thread specific data
pthread_key_create(&thr_stat, free_data);

pthread_key_create(&thr_buffer, free_data);

//initially, value NULL is associated with each key for all threads
...

pthread_create...

...

//worker thread - initialization
stat = malloc(sizeof(struct ThrStat)); //stat - local variable

buffer = malloc(sizeof(struct ThrBuffer)); //buffer - local variable

//associate stat with key thr_stat for current thread only!!!

pthread_setspecific(thr_stat, stat);

pthread_setspecific(thr_buffer, buffer);

...

//worker thread – in some function
s = pthread_getspecific(thr_stat); //get data associated with key thr_stat

b = pthread_getspecific(thr_buffer);

... //use ‘s’ and ‘b’

void *free_data (void *d) {

 if (d != NULL)

 free(d);

 return NULL;

}

17

Synchronization

 Available mechanisms:
 Mutex:

 pthread_mutex_lock/unlock/init

 Conditional variable
 pthread_cond_wait/signal/broadcast/init

 Reader/Writer lock

 Barrier

 Spin lock

 Semaphore (Real-time extension)

 UNIX semaphore

 Demonstration through examples

18

Monitor example – Old Bridge problem

 Old bridge (over river) puts restrictions on traffic:
at all times:

 cars can drive over bridge only in same direction
 bridge is too narrow

 no more than three cars may be crossing it
 bridge construction is fragile (old)

 Simulate cars with threads
 synchronize threads with monitor (mutex and cond. var.)

 simulation must preserve given restrictions

 In following implementation bridge state is described with
 number of cars currently on bridge - cars_on_bridge

 direction of cars on bridge - dir_on_bridge

19

Old Bridge – solution (Old_bridge.c)

void *car_thread (void *p) {

 struct CarInfo *car = p;

 pthread_mutex_lock(&m);

 while(cars_on_bridge > 2 || (dir_on_bridge!=-1 && dir_on_bridge != car->dir))

 pthread_cond_wait(cq[car->dir], &m);

 //go on bridge
 cars_on_bridge++;

 dir_on_bridge = car->dir;

 pthread_mutex_unlock(&m);

 //drive over bridge

 usleep(5000000);//sleep 5 seconds

 //drive off bridge

 pthread_mutex_lock(&m);

 cars_on_bridge--;

 if (cars_on_bridge > 0) {

 pthread_cond_signal(cq[car->dir]);

 }

 else {

 dir_on_bridge = -1;

 pthread_cond_broadcast(cq[1-car->dir]);

 }

 pthread_mutex_unlock(&m);

 free(car);

}

int main () {

 pthread_attr_t attr;

 pthread_attr_init(&attr);

 pthread_attr_setdetachstate(

 &attr, PTHREAD_CREATE_DETACHED);

 while (1) {

 car = malloc(sizeof(struct CarInfo));

 car->id = ++car_id;

 car->dir = rand() & 1;

 pthread_create(&thr_id, &attr,

 car_thread, (void *) car);

 usleep(2000000);

 }

 return 0;

}

This solution is not very fair!

Fairness would require counting

crosses.

20

Reader/Writer locks (ReaderWriter.c)

void *reader (int p) {

 while (1) {

 pthread_rwlock_rdlock(&rwlock);

 num_readers++;

 usleep(2000000);

 num_readers--;

 pthread_rwlock_unlock(&rwlock);

 usleep(1000000 * p);

 }

}

void *writer (int p) {

 while (1) {

 pthread_rwlock_wrlock(&rwlock);

 num_writters++;

 usleep(1000000);

 num_writters--;

 pthread_rwlock_unlock(&rwlock);

 usleep(1000000 * p * 5);

 }

}

Reader/writer locking principles:

 When reader acquire lock, only

readers can pass through locking

 When writer locks, nor reader nor

writer will pass

 When writer is waiting, no more

readers are allowed to lock - even

if reader thread is currently

owning the lock

21

Barrier (Barrier.c)

pthread_barrier_t barrier;

void *thread (int p) {

 while (1) {

 usleep(1000000 * p);

 at_barrier++;

 pthread_barrier_wait(&barrier);

 at_barrier--;

 if(!at_barrier)

 printf("---Barrier passed---\n");

 usleep(1000000 * p);

 }

}

int main () {

 ...

 pthread_barrier_init(&barrier, NULL, 5);
 pthread_create(&thr_id, &attr, thread, (void *) 1);

 ...

 pthread_create(&thr_id, &attr, thread, (void *) 5);

 usleep(50000000); //simulation time

 return 0;

}

 Barrier will block threads until

all threads come to barrier
 when last thread comes

to barrier - all threads are

released and barrier is

reset

 At barrier initialization number

of threads must be provided

22

Spinlock (Spinlock.c)

pthread_spinlock_t lock;

void *thread (int p) {

 while (1) {

 printf("Thread %d ready\n", p);

 pthread_spin_lock(&lock);

 printf("Thread %d inside C.S.\n", p);

 usleep(1000000 * p);

 printf("Thread %d leaving C.S.\n", p);

 pthread_spin_unlock(&lock);

 usleep(1000000);

 }

}

int main () {

 pthread_t thr_id;

 pthread_spin_init(&lock, PTHREAD_PROCESS_PRIVATE);

 pthread_create(&thr_id, NULL, thread, (void *) 1);

 ...

 pthread_create(&thr_id, NULL, thread, (void *) 6);

 usleep(50000000); //simulation time

 return 0;

}

Look at CPU usage! (high)

23

Semaphore (Semaphore.c)

#include <semaphore.h> //POSIX RT extension

sem_t sem;

void *thread (int p) {

 while (1) {

 printf("Thread %d ready\n", p);

 sem_wait(&sem);

 printf("Thread %d inside C.S.\n", p);

 usleep(1000000 * p);

 printf("Thread %d leaving C.S.\n", p);

 sem_post(&sem);

 usleep(1000000);

 }

}

int main () {

 pthread_t thr_id;

 sem_init(&sem, 0, 1);

 pthread_create(&thr_id, NULL, thread, (void *) 1);

 ...

 pthread_create(&thr_id, NULL, thread, (void *) 6);

 usleep(50000000); //simulation time

 return 0;

}

Look at CPU usage! (low)

Initial semaphore value

24

UNIX semaphore (Sys_sem.c)

#include <sys/sem.h>

int sem;

void *thread (int p) {

 struct sembuf op;

 op.sem_num = 0;//first semaphore in set

 op.sem_flg = 0;

 while (1) {

 op.sem_op = -1; //decrement semaphore value => SemWait

 semop(sem, &op, 1);

 printf("Thread %d inside C.S.\n", p);

 usleep(1000000 * p);

 printf("Thread %d leaving C.S.\n", p);

 op.sem_op = 1; //increment semaphore value => SemPost

 semop(sem, &op, 1);

 usleep(1000000);

 }

}

int main () {

 sem = semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT);

 semctl(sem, 0, SETVAL, 1);

 ...

semop (sem_id, sem_ops, no)

 sem_id – semaphores set identifier

 sem_ops – array of semaphore

operations (to be performed as

atomic operation)
 no – number of operations

Initial semaphore value

Get semaphore set (with only 1 semaphore)

25

Extended functionality

 “Timed” wait on locks or queue
 pthread_mutex_timedlock(mutex, time)

 pthread_cond_timedwait

 pthread_rwlock_timedrdlock/timedwrlock

 sem_timedwait

 will not wait more than specified on lock/queue
 if that time elapses and lock is not obtained, error is returned

 Non-blocking “try” functions:
 pthread_mutex_trylock

 pthread_rwlock_tryrdlock/trywrlock

 pthread_spin_trylock

 sem_trywait, semop with IPC_NOWAIT flag

 if locking can’t be done – if it is already locked, will not

block thread – instead will return error code

26

Programming problem: thread-safe functions

 Thread-safe, MT-safe (MultiThreading), reentrant ?
 functions can be simultaneously (or even in parallel) called

by different threads, and still produce valid results (same

as if called only by single thread, sequentially)

 Some library or other functions may not be thread-safe
(e.g. gethostbyname, rand)!

 they use (internally) global variables (buffers, pointers…)

 check function description (“man pages”)!
 e.g. http://www.opengroup.org/onlinepubs/9699919799/func-

tions/V2_chap02.html#tag_15_09

 manually protect those “unsafe” function (e.g. with mutex)

 Build thread-safe functions
 avoid global variables, or use them only in monitors

http://www.opengroup.org/onlinepubs/9699919799/func-tions/V2_chap02.html
http://www.opengroup.org/onlinepubs/9699919799/func-tions/V2_chap02.html
http://www.opengroup.org/onlinepubs/9699919799/func-tions/V2_chap02.html

