
Operating system concepts

Process and thread management:

Communication

2

Inter process/thread communication principles

 Processes or threads that cooperate on common task:
 operate on particular data set

 share data between them, and/or

 exchange data/messages/events/signals…, and/or

 synchronize themselves (with some sync. mechanism)

 Basic communication principles include:
 shared memory

 messages (sending and receiving messges)

 pipe (sending data into pipe, reading from pipe)

 signals (events detected/generated by source thread that

also require attention from receiving thread)

 files (“offline” communication)

3

Shared memory

 All threads inside single process share that process

address space – shared memory for threads

 Threads from different processes may create shared

memory objects through system calls
 part of address space of one process is used to map

address space of shared object

Process address
space

Unused address
segment

Process address
space

Unused address
segment

shared memory object
address space

Unused memory space of

a process can be reserved

as address segment for

shared memory object

using system functions.

4

Shared memory – system interfaces

 The usual interface can be described with:

get_shared_segment (name, size, address, flags)

 name – identification for new or existing segment

 might be number or string (even filename)

 must be unique in given system

 size – required shared memory size

 address – where to place shared memory in process

address space
 flags – permissions, “create if doesn’t exist” flag, …

 Function returns status or starting address or descriptor

 UNIX: shmget, shmat

 POSIX: shm_open, ftruncate, mmap
 Win32: CreateFileMapping, MapViewOfFile

http://www.opengroup.org/onlinepubs/9699919799/functions/shmget.html
http://www.opengroup.org/onlinepubs/9699919799/functions/shm_open.html
http://msdn.microsoft.com/en-us/library/aa366551%28VS.85%29.aspx

5

Shared memory - protection

 Shared memory must be protected from simultaneous

access (change) or data corruption may occur

 Critical section mechanisms, like mutex, binary

semaphore, reader/writter locks, … can be used

 Shared memory may be the fastest communication

method between threads (if synchronization is

minimized)

 Shared memory may be the source of hard to detect

errors, due to neglected unprotected modification

6

Messages

 Message is a short information block sent from one

thread to another

 Message is not directly delivered from thread to thread,

operating system is used as communication channel

instead

 When sending a message, message is put into message

queue

 When receiving a message, message is taken from

message queue

 Message queues are managed through operating

system: creation, deletion, sending, receiving, statistic

 In some systems (i.e. Real-Time) for every thread there

is an automatically created queue – messages are the

primary communication mechanism

7

Message queues

 messages can be of different sizes and types

 message queues are First In First Out structures, first

message put into queue will be first to be read and removed

form queue
 with some interface it is possible to read message of a specific

type (even if is not first in queue)

 message header:

length and type

message

content

newest

message

in queue

oldest

message

in queue –

first to be

read

8

Messages – system interfaces

 Creating message queue:
 get_message_queue (name, flags)

 name – identification for new or existing message queue

 might be number or string (even filename)

 must be unique in given system

 flags – permissions, “create if don’t exist” flag, …

 returns descriptor (ID) of created message queue

 Sending or receiving messages:
 send_message(queue_id, pdata, len, flags)

 receive_message(queue_id, pdata, len, flags)

 pdata – pointer to message to send or where to save

received message

 len – length of message

 flags – e.g. whether to block thread if queue is full/empty

9

Messages - implementations

 UNIX
 msgget, msgsnd, msgrcv

 POSIX
 mq_open, mq_send, mq_receive

 Win32
 MQCreateQueue, MQSendMessag,

MQReceiveMessage

http://www.opengroup.org/onlinepubs/9699919799/functions/msgget.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mq_open.html
http://msdn.microsoft.com/en-us/library/ms701768%28VS.85%29.aspx

10

Pipe

 Pipe is a FIFO structure (like message queue)
 FIFO is the only way to send and read data (no searching)

 Pipe has two sides: input and output

 Data is sent to pipe through input side, and read from

output side
 pipe has two descriptors – one for each side

 There is no granularity and type (unlike with messages)

 Reading from pipe removes read data

input output

data in pipe

11

Pipe – system interface

 Accessing pipes is similar to files: open, read/write, close

 Creating/opening pipe:

 create_pipe (name, descriptor(s), flags)

 name – identification for new or existing pipe

 might be number or string (even filename)

 must be unique in given system

 may not be supported in all implementations!

 descriptor(s) – descriptor for requested pipe side, or

both descriptors

 flags – “which side: input or output or both”, “block until

other side is open?”, permissions, …

12

Pipe – system interface

 Reading/writing to/from pipes

write_to_pipe (input_desc, data,size,flags)

read_from_pipe (output_desc,data,size,flags)

 input/output_desc – input/output pipe descriptor

 data – address of data to be sent to pipe, or where to be

put if reading from pipe
 size – “data” size to be written to pipe or read from

 flags – “block if full/empty or not”, …

 returned value is usually data size sent to or read from

pipe, or error code if unsuccessful

 Implicit pipes in shell
 e.g.: cat file1 | grep name | sort > file2

13

Pipe - implementations

 UNIX
 pipe – anonymous pipes

 processes must be related (parent – child) to use

 mknod, open, close – named pipes

 name exists in file system, processes do not have to be

related

 read, write

 Win32
 CreatePipe – anonymous pipes

 CreateNamedPipe – named pipes

 CreateFile, CloseHandle

 ReadFile, WriteFile

http://www.opengroup.org/onlinepubs/9699919799/functions/pipe.html
http://msdn.microsoft.com/en-us/library/aa365781%28v=VS.85%29.aspx

14

Signals

 Signals announce asynchronous events

 Similarity with interrupts:
 interrupts are used on hardware level, where they signal

the processor with request for “special” processing
 devices generate interrupts – processor (OS) handles them

 signals are used on operating system level
 OS or threads generate them – targeted threads handle them

 OS send signal to process to request special processing

from threads – as reaction to event
 e.g. when key is pressed on keyboard, interrupt is generated;

in interrupt processing routine a signal is sent to thread

 Thread can send a signal to another thread (through OS

interface, not directly), e.g. to ask for termination

15

Signals

 Thread can react on signal in several ways:
 ignore signal

 handle signal with user defined function

 handle signal with default function (most default behaviors

include thread/process termination!)

 hold signal for now (delay its handling until some future

time when behavior changes)

 Signals usually don’t carry additional information – only

signal number
 In extended interfaces (e.g. Real-Time), signal may carry

additional value or pointer

16

Signals - interface

 Define “signal mask” – behavior for particular signals

signal_set (signal_id, pfunction, param)

 signal_id – signal identification number

 pfunction – signal processing function – called on signal

reception, or may be an constant indicating:
 ignore signal

 handle signal with default function

 hold signal

 param – optional parameter to function

17

Signals - interface

 Send signal to another thread

signal_create (task_id, signal_id, param)

 task_id – target task whom signal will be sent

 signal_id – signal to be sent

 param – optional parameter to be sent with signal

18

Signals - implementations

 On some (UNIX) systems signals are process oriented –

mask is defined for the process

 Thread signal handling is a newer principle
 differently implemented on different systems

 read manuals carefully!

 interfaces are defined, but rarely fully implemented (or as

specified!)

 UNIX/POSIX
 signal, sigset, sigaction – define behavior for

particualr signal
 kill, sigqueue, raise, pthread_kill – send a

particular signal to thread/process

http://www.opengroup.org/onlinepubs/9699919799/basedefs/signal.h.html

19

Files as communication mechanism ?!

 Communicating using files:
 sender thread creates file and fills it with data

 receiver thread (later) opens file and read its content

 Communication is “static”
 sender must produce all data and only then send them to

receiver (through file system)

 thread synchronization might be required – receiver must

wait till sender complete its operation

 Positive aspects
 data in file can wait for receiver much longer than with

other communication mechanisms
 it will persist even if computer goes offline or is restarted

 data size may be much larger than with other comm.

