
Operating system concepts

Process and thread management:

Communication

2

Inter process/thread communication principles

 Processes or threads that cooperate on common task:
 operate on particular data set

 share data between them, and/or

 exchange data/messages/events/signals…, and/or

 synchronize themselves (with some sync. mechanism)

 Basic communication principles include:
 shared memory

 messages (sending and receiving messges)

 pipe (sending data into pipe, reading from pipe)

 signals (events detected/generated by source thread that

also require attention from receiving thread)

 files (“offline” communication)

3

Shared memory

 All threads inside single process share that process

address space – shared memory for threads

 Threads from different processes may create shared

memory objects through system calls
 part of address space of one process is used to map

address space of shared object

Process address
space

Unused address
segment

Process address
space

Unused address
segment

shared memory object
address space

Unused memory space of

a process can be reserved

as address segment for

shared memory object

using system functions.

4

Shared memory – system interfaces

 The usual interface can be described with:

get_shared_segment (name, size, address, flags)

 name – identification for new or existing segment

 might be number or string (even filename)

 must be unique in given system

 size – required shared memory size

 address – where to place shared memory in process

address space
 flags – permissions, “create if doesn’t exist” flag, …

 Function returns status or starting address or descriptor

 UNIX: shmget, shmat

 POSIX: shm_open, ftruncate, mmap
 Win32: CreateFileMapping, MapViewOfFile

http://www.opengroup.org/onlinepubs/9699919799/functions/shmget.html
http://www.opengroup.org/onlinepubs/9699919799/functions/shm_open.html
http://msdn.microsoft.com/en-us/library/aa366551%28VS.85%29.aspx

5

Shared memory - protection

 Shared memory must be protected from simultaneous

access (change) or data corruption may occur

 Critical section mechanisms, like mutex, binary

semaphore, reader/writter locks, … can be used

 Shared memory may be the fastest communication

method between threads (if synchronization is

minimized)

 Shared memory may be the source of hard to detect

errors, due to neglected unprotected modification

6

Messages

 Message is a short information block sent from one

thread to another

 Message is not directly delivered from thread to thread,

operating system is used as communication channel

instead

 When sending a message, message is put into message

queue

 When receiving a message, message is taken from

message queue

 Message queues are managed through operating

system: creation, deletion, sending, receiving, statistic

 In some systems (i.e. Real-Time) for every thread there

is an automatically created queue – messages are the

primary communication mechanism

7

Message queues

 messages can be of different sizes and types

 message queues are First In First Out structures, first

message put into queue will be first to be read and removed

form queue
 with some interface it is possible to read message of a specific

type (even if is not first in queue)

 message header:

length and type

message

content

newest

message

in queue

oldest

message

in queue –

first to be

read

8

Messages – system interfaces

 Creating message queue:
 get_message_queue (name, flags)

 name – identification for new or existing message queue

 might be number or string (even filename)

 must be unique in given system

 flags – permissions, “create if don’t exist” flag, …

 returns descriptor (ID) of created message queue

 Sending or receiving messages:
 send_message(queue_id, pdata, len, flags)

 receive_message(queue_id, pdata, len, flags)

 pdata – pointer to message to send or where to save

received message

 len – length of message

 flags – e.g. whether to block thread if queue is full/empty

9

Messages - implementations

 UNIX
 msgget, msgsnd, msgrcv

 POSIX
 mq_open, mq_send, mq_receive

 Win32
 MQCreateQueue, MQSendMessag,

MQReceiveMessage

http://www.opengroup.org/onlinepubs/9699919799/functions/msgget.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mq_open.html
http://msdn.microsoft.com/en-us/library/ms701768%28VS.85%29.aspx

10

Pipe

 Pipe is a FIFO structure (like message queue)
 FIFO is the only way to send and read data (no searching)

 Pipe has two sides: input and output

 Data is sent to pipe through input side, and read from

output side
 pipe has two descriptors – one for each side

 There is no granularity and type (unlike with messages)

 Reading from pipe removes read data

input output

data in pipe

11

Pipe – system interface

 Accessing pipes is similar to files: open, read/write, close

 Creating/opening pipe:

 create_pipe (name, descriptor(s), flags)

 name – identification for new or existing pipe

 might be number or string (even filename)

 must be unique in given system

 may not be supported in all implementations!

 descriptor(s) – descriptor for requested pipe side, or

both descriptors

 flags – “which side: input or output or both”, “block until

other side is open?”, permissions, …

12

Pipe – system interface

 Reading/writing to/from pipes

write_to_pipe (input_desc, data,size,flags)

read_from_pipe (output_desc,data,size,flags)

 input/output_desc – input/output pipe descriptor

 data – address of data to be sent to pipe, or where to be

put if reading from pipe
 size – “data” size to be written to pipe or read from

 flags – “block if full/empty or not”, …

 returned value is usually data size sent to or read from

pipe, or error code if unsuccessful

 Implicit pipes in shell
 e.g.: cat file1 | grep name | sort > file2

13

Pipe - implementations

 UNIX
 pipe – anonymous pipes

 processes must be related (parent – child) to use

 mknod, open, close – named pipes

 name exists in file system, processes do not have to be

related

 read, write

 Win32
 CreatePipe – anonymous pipes

 CreateNamedPipe – named pipes

 CreateFile, CloseHandle

 ReadFile, WriteFile

http://www.opengroup.org/onlinepubs/9699919799/functions/pipe.html
http://msdn.microsoft.com/en-us/library/aa365781%28v=VS.85%29.aspx

14

Signals

 Signals announce asynchronous events

 Similarity with interrupts:
 interrupts are used on hardware level, where they signal

the processor with request for “special” processing
 devices generate interrupts – processor (OS) handles them

 signals are used on operating system level
 OS or threads generate them – targeted threads handle them

 OS send signal to process to request special processing

from threads – as reaction to event
 e.g. when key is pressed on keyboard, interrupt is generated;

in interrupt processing routine a signal is sent to thread

 Thread can send a signal to another thread (through OS

interface, not directly), e.g. to ask for termination

15

Signals

 Thread can react on signal in several ways:
 ignore signal

 handle signal with user defined function

 handle signal with default function (most default behaviors

include thread/process termination!)

 hold signal for now (delay its handling until some future

time when behavior changes)

 Signals usually don’t carry additional information – only

signal number
 In extended interfaces (e.g. Real-Time), signal may carry

additional value or pointer

16

Signals - interface

 Define “signal mask” – behavior for particular signals

signal_set (signal_id, pfunction, param)

 signal_id – signal identification number

 pfunction – signal processing function – called on signal

reception, or may be an constant indicating:
 ignore signal

 handle signal with default function

 hold signal

 param – optional parameter to function

17

Signals - interface

 Send signal to another thread

signal_create (task_id, signal_id, param)

 task_id – target task whom signal will be sent

 signal_id – signal to be sent

 param – optional parameter to be sent with signal

18

Signals - implementations

 On some (UNIX) systems signals are process oriented –

mask is defined for the process

 Thread signal handling is a newer principle
 differently implemented on different systems

 read manuals carefully!

 interfaces are defined, but rarely fully implemented (or as

specified!)

 UNIX/POSIX
 signal, sigset, sigaction – define behavior for

particualr signal
 kill, sigqueue, raise, pthread_kill – send a

particular signal to thread/process

http://www.opengroup.org/onlinepubs/9699919799/basedefs/signal.h.html

19

Files as communication mechanism ?!

 Communicating using files:
 sender thread creates file and fills it with data

 receiver thread (later) opens file and read its content

 Communication is “static”
 sender must produce all data and only then send them to

receiver (through file system)

 thread synchronization might be required – receiver must

wait till sender complete its operation

 Positive aspects
 data in file can wait for receiver much longer than with

other communication mechanisms
 it will persist even if computer goes offline or is restarted

 data size may be much larger than with other comm.

