
Operating system concepts

Task scheduling

2

Task scheduling (thread scheduling)

 Target of scheduling are ready tasks

 Active task – currently running on processor

 Ready tasks – ready to be put on processor

 Blocked tasks – wait for some resource (IO, semaphore)

 Passive tasks – finished or not started tasks

ACTIVE

TASK

READY

TASKS

BLOCKED

TASKS

PASSIVE

TASKS

3

Task scheduling problem

 System has more ready tasks than processors

 Main problem:
 how to divide processor(s) time to available ready tasks?

 How to schedule different tasks?
 tasks have different properties and expectations from the

scheduler

 use per task “type” handling, or use same principles for all

(general principles)?

 how to measure scheduling quality? scheduling metric?

4

Scheduling environments

 Different environments have different tasks, different

requirements, different primary objectives

 Real-Time Systems (RTS), Embedded Systems
 monitor, control “real process” – time management is crucial

 Personal Computers, Workstations
 user oriented (interactivity)

 Servers
 service oriented, process requests from different clients

 Mobile devices (handhelds, phones, multimedia players)
 single user and mostly only single task at a time

5

Scheduling quality

 In RTS, failure in scheduling can have serious

consequences!

 In “normal” (other) systems (example quality measures)
 multimedia player must timely provide audio/video

subsystems with data or perception of quality may not be

satisfactory

 user interface should respond timely to user commands
 e.g. mouse movements, text/commands entry, …

 mathematic calculations, data compression, file transfers

and similar activities that take time to complete could be

delayed if required by other task types, with very small or

no observable penalty for user/system

6

Task types

 Tasks may be divided into categories by many criteria's

 “How a task should be scheduled” categories:
 “normal” tasks – the user programs

 perform standard operations

 don’t require special privileges

 don’t have strict time constrains

 may use system resources – through operating system

 “system” tasks – perform system operations (services)
 require special privileges

 might have some (soft) time constrains

 time constrained tasks (RT tasks, multimedia players)
 deadline (must) be met – or system failure happens

 if a task is periodic, it must get enough time to finish periodic

processing before the start of next period (“implicit deadline”)

7

RT periodic task – characteristic times

ta tr ts te ta+T

t

td

Legend:

ta – arrival time

tr – ready time

ts – start time

te – end time

td – deadline

T – period

task processing implicit deadline

8

Task scheduling decisions

 Static scheduling
 behavior is defined before system is started

 decisions may be “hard coded” in system

 statically define task execution order and follow it

 assign priorities to tasks at task creation and schedule

tasks by priority (always the highest priority task first)

 Dynamic scheduling
 decisions are made at run time

 system state is evaluated (including tasks) and next task to

be scheduled is chosen

 examples:
 consumed CPU time for all tasks is compared and task with

lowest consumption is chosen (to obtain fairness)

 deadlines are compared and task with nearest deadline is

chosen (to meet all constraints)

9

Basic scheduling principles

 First Come First Served – FCFS
 usually known as: First In First Out – FIFO

 adequate for servers – requests are processed in receiving

order

 Priority based scheduling
 tasks with higher priority have precedence over lower

priority tasks

 a higher priority task will always preempt lower prior. task!

 adequate for RTS, priority reflects task relevance

 Time share based scheduling – Round Robin and similar
 tasks share (fairly) processors’ time

 adequate for multi-user workstations and servers
 e.g. terminal based servers (basic shell or with GUI)

10

Principal RTS scheduling principles

 Rate Monotonic Scheduling – RMS (mostly used!)
 also known as Rate Monotonic Priority Assignment –

RMPA

 assigns priorities to tasks according to their period lengths

– frequent tasks (with shorter periods) get higher priority

 RMS only predefines task priorities (base priority) – actual

scheduling is performed later using priorities

 Deadline Driven Scheduling – DDS
 task with nearest deadline is scheduled first (aka EDF,

EDD)

 Sporadic scheduling
 periodic task within single period can run “budget time”

with defined higher priority, and if that is not enough, the

rest of processing in this period is performed with lower

priority

11

D1

D2

D3

 t

T1

T3

T2

DDS/EDF

D1

D2

D3

 t

T1

T3

T2

RMPA

RMPA and DDS examples

12

Sporadic scheduling example

Image from: http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/sys_arch/kernel.html

13

Mostly implemented scheduling principle

 Non-RTS have distinction between normal tasks and RT

tasks – scheduling is different!

 RT task scheduling (implemented also on non-RTS)
 priority is the main scheduling principle

 higher priority task always preempts lower ones

 tasks are organized into priority levels
 tasks with same priority are in the same level (queue)

 if more than one thread of the same priority exists then

scheduler will schedule them by principle:
 FIFO – first task will execute until its completed or until it

becomes blocked (not ready)

 Round Robin – each task will be given only a “time slice” of

CPU before it is put at the end of queue, and first one from

the queue is chosen next

14

p
rio

rity

(lo
w

er n
u
m

b
er h

a
s h

ig
h
er p

rio
rity

I

idle task

ready tasks with currently

highest priority

ready tasks with

currently lowest priority
n

k

j

i+1

i

i-1

2

1

0

G H

F

C D E

A B

pointer to last task in level

pointer to first task in level

highest priority level (currently no task of this priority exist in system)

Priority levels – typical ready task organization

15

Example system state and scheduling

0

1

2

3

Task A1

Task C3 Task D3 Task E3

Ready task

queues

Semaphore

queues

S0

S1

S2

Task B2

Task F3

Active task 0

1

2

3

Task A1

Task C3 Task D3 Task E3

Ready task

queues

Semaphore

queues

S0

S1

S2

Task B2

Task F3

Active task 0

1

2

3

Task B2

Task C3 Task D3 Task E3

Ready task

queues

Semaphore

queues

S0

S1

S2

Task A1

Task F3

Active task

0

1

2

3 Task D3 Task E3

Ready task

queues

Semaphore

queues

S0

S1

S2

Task B2

Task F3

Active task

Task C3:

signal(S0)

Task A1:

wait(S1)

After timer

interrupt (RR)

0

1

2

3

Task A1

Task D3 Task E3 Task C3

Ready task

queues

Semaphore

queues

S0

S1

S1

Task B2

Task F3

Active task

Task C3 finishes

Task A1

0

1

2

3 Task D3 Task E3

Ready task

queues

Semaphore

queues

S0

S1

S2

Task B2

Task F3

Active task

Task A1

Task D3:

signal(S2)

a) b) c)

d) e) f)

16

Example scheduling

0

1

2

3

Task A1

Task C3 Task D3 Task E3

Ready task

queues

Semaphore

queues

S0

S1

S2

Task B2

Task F3

Active task 0

1

2

3

Task A1

Task C3 Task D3 Task E3

Ready task

queues

Semaphore

queues

S0

S1

S2

Task B2

Task F3

Active task

Task A1:

wait(S1)

a) b)

superscripts indicate
tasks priority

priority levels

17

Example scheduling

0

1

2

3

Task A1

Task C3 Task D3 Task E3

Ready task

queues

Semaphore

queues

S0

S1

S2

Task B2

Task F3

Active task 0

1

2

3

Task B2

Task C3 Task D3 Task E3

Ready task

queues

Semaphore

queues

S0

S1

S2

Task A1

Task F3

Active task

Task C3:

signal(S0)

b) c)

18

Example scheduling

0

1

2

3

Task A1

Task C3 Task D3 Task E3

Ready task

queues

Semaphore

queues

S0

S1

S2

Task B2

Task F3

Active task

After timer

interrupt (RR)

0

1

2

3

Task A1

Task D3 Task E3 Task C3

Ready task

queues

Semaphore

queues

S0

S1

S1

Task B2

Task F3

Active task

b) d)

19

Example scheduling

0

1

2

3

Task A1

Task C3 Task D3 Task E3

Ready task

queues

Semaphore

queues

S0

S1

S2

Task B2

Task F3

Active task 0

1

2

3 Task D3 Task E3

Ready task

queues

Semaphore

queues

S0

S1

S2

Task B2

Task F3

Active task

Task C3 finishes

Task A1

b) e)

20

Example scheduling

0

1

2

3 Task D3 Task E3

Ready task

queues

Semaphore

queues

S0

S1

S2

Task B2

Task F3

Active task

Task A1

0

1

2

3 Task D3 Task E3

Ready task

queues

Semaphore

queues

S0

S1

S2

Task B2

Task F3

Active task

Task A1

Task D3:

signal(S2)

e) f)

21

Scheduling in non-real-time environments

 Scheduling “normal” tasks

 What is a “normal” task?
 task with “soft time constraint”, or with no time constrains

 soft time constraint – allowed delay is e.g. > 100 ms

 nothing critical will happen if some time constraint

occasionally is not met

 however, significant or frequent delays in responses will

degrade user experience (satisfaction with computer system)

 “worker” tasks – perform CPU intensive operations
 time to completion is measured in (at least several) seconds

 don’t interact with user (at least not frequently)

 don’t require IO devices, don’t control or monitor them

22

Non-RT scheduling principles examples

 Fairness – share CPU(s) time fair to all tasks in system
 respect tasks priorities – higher priority = more CPU time

 Processor utilization
 the more the better – more jobs are performed

 Tasks throughput
 finish more tasks (“favor short tasks”)

 Minimize queue waiting times
 shorten length of “time slice”, but …

 Response time
 favor “interactive tasks” – they mostly don’t use CPU, but

when they are activated (e.g. on keystroke) give them

CPU as soon as possible

 “Hot cache” optimization on multiprocessors
 maintain same tasks on same processors – they might find

their data still in cache even after context change

23

Multilevel feedback queue

 Theoretical scheduling that is used in today’s operating

systems (basic ideas at least) is called multilevel

feedback queue

Multilevel feedback queue (from Wikipedia)

 In computer science, a multilevel feedback queue is a

scheduling algorithm.

 It is intended to meet the following design requirements

for multimode systems:
 Give preference to short jobs.

 Give preference to I/O bound processes.

 Quickly establish the nature of a process and schedule

the process accordingly.

24

Multilevel feedback queue (from Wikipedia, cont)

 Multiple FIFO queues are used and the operation is as

follows:
 A new process is positioned at the end of the top-level

FIFO queue.

 At some stage the process reaches the head of the queue

and is assigned the CPU.

 If the process is completed it leaves the system.

 If the process voluntarily relinquishes control it leaves

the queuing network, and when the process becomes

ready again it enters the system on the same queue

level.

 If the process uses all the quantum time, it is pre-empted

and positioned at the end of the next lower level queue.

 This will continue until the process completes or it reaches

the base level queue.

25

Multilevel feedback queue (from Wikipedia, cont)

 At the base level queue the processes circulate in round

robin fashion until they complete and leave the system.

 Optionally, if a process blocks for I/O, it is 'promoted'

one level, and placed at the end of the next-higher

queue. This allows I/O bound processes to be favored by

the scheduler and allows processes to 'escape' the base

level queue.

 In the multilevel feedback queue, a process is given just

one chance to complete at a given queue level before it

is forced down to a lower level queue.

26

Scheduling of normal tasks in Linux

 Linux uses Completely Fair Scheduler - CFS
 in use since kernel 2.6.23 (2007.)

 Basic CFS principles (theory)
 if there are N processors and M tasks (N < M), each task

should get N/M percent of computing time

 for every task, “wait runtime” is tracked (“deserved time”

minus “used time”)

 task with highest wait runtime is chosen by scheduler

 Example (all tasks have same priority – “nice level”):
 Task 1 gets time slice T. After the slice is consumed,

scheduler updates wait runtimes for all tasks:
 wr1 = wr1 + T/N – T – wait runtime is reduced!

 wr2 = wr2 + T/N – wait runtime is increased

 wr3 = wr3 + T/N – wait runtime is increased

 …

 “Red-black trees” are used for task organization
 wait runtime parameter defines task position

27

Win32 scheduling

 Thread base priority is calculated from its process

priority class and thread priority level
 in range from 1 to 15 for normal tasks (16-31 are for RT)

 Priority can be boosted for:
 “Foreground” (in focus) thread

 IO bound threads (they rarely use CPU time)

 Priority can be lowered for CPU intensive threads
 but only to its base priority

 Threads are scheduled to run based on their scheduling

priority – highest priority thread gets most of the time
 others get little, just to prevent starvation

 The system treats all threads with the same priority as

equal

 The system assigns time slices in a round-robin fashion

to all threads with the highest priority

http://msdn.microsoft.com/en-us/library/ms685100(VS.85).aspx

28

Comparing FIFO, RR and normal task scheduling

 Example (From book: Operacijski sustavi, L. Budin i ostali, 2010. (in Croatian)):
 four tasks A, B, C and D with processing times TP(A) = 5,

TP(B) = 5, TP(C) = 3 and TP(D) = 2 (time units)

 priorities are shown on picture (lower number – higher

priority)

0

1

2

3

4

N

5

A

B C D

Idle

29

Comparing FIFO, RR and normal task scheduling

a) FIFO

b) Round Robin

• ‘time slice’ is 1

• B, C and D have same priority and use RR

A B C Idle

0 5 10 15 t

A B Idle

0 5 10 15 t

C D B C D B C B B

A ends B ends C ends D ends

A ends D ends C ends B ends

D

A B Idle

0 5 10 15 t

C D B C D B C B B

A ends

D ends C ends B ends

A A

c) Normal task scheduling

• higher priority task gets more time

• more time in this example is achieved

with a longer time slice

30

Priority inversion problem (RT scheduling)

A

B

A

B

A

B

C

t

t

t

 p

a) high priority task A preempts lower priority task B (as excpected)

b) high priority task A is blocked while lower priority task B, who has locked resource

continues (as excpected!) priority inversion!
 p

 p

c) high priority task A is blocked while lower priority task C further delays task A (not as

excpected!) priority inversion!

31

Priority inversion - solutions

 Priority inheritance protocol
 when a higher priority task A is blocked on resource that is

owned by a lower priority task B, then temporarily boost
priority of B to the level of A, until B releases the resource,
then return task B to original priority (that it had before
boosting)

 intermediate tasks will not further delay high priority task!
 Priority ceiling protocol

 as task acquires resource X, raise task’s priority to level
defined in e.g. array priority_ceiling[X]

 as task releases the resource, return previous priority to
task

 Both protocols are embedded into synchronization

functions (e.g. mutex_lock, mutex_unlock)
 Protocols are essential for RTS!

32

Priority inheritance protocol example

B

A

t

 p

C

D

E

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Event description:

1 – task A, as only ready task start executing (active task)

2 – task A acquire S1 (vertical lines marks S1 ownership)

3 – task B starts and preempt task A (higher priority at the moment)

4 – task C starts and preempt task B

5 – task C acquire S2 (horizontal lines marks S1 ownership)

6 – task C requires S1 owned by task A and is blocked on it; task A inherit task C

priority and continue its execution (with priority of task C)

7 – task D starts and preempt task A

8 – task E starts and preempt task D

9 – task E requires S2 owned by task C and is blocked on it; task C inherit task E

priority, but since task C is blocked by task A, task A inherits new priority of

task C – priority of task E (implicitly task A inherits task E priority)

10 – task A releases S1, and original priority is returned to task A (as it was before

acquiring resource S1); task C is released, S1 is given to it; task C continues

execution (highest priority ready task – inherited priority of blocked task E)

11 – task C releases S2, and original priority is returned to task C; task E is released, S2

is given to it; task E continues executing

12 – task E releases S2 and continues executing

13 – task E finishes; task D continues executing

14 – task D finishes; task C continues executing

15 – task C releases S1 continues executing

16 – task C finishes; task B continues executing

17 – task B finishes; task A continues executing

18 – task A finishes

Source for example: nas_prio.c

nas_prio.c

33

Scheduling - summary

 RT tasks:
 Priority based scheduling is widely used as primary

scheduling principle

 When more tasks with same highest priority are ready:

FIFO or Round Robin are used

 FIFO and RR are implemented on most (all) systems
 on all systems the implementation is identical (in respect to

scheduling decisions)

 Normal tasks:
 Fair-share principle is used (adjusted with priority)

 Higher priority provides more CPU time

 It doesn’t guarantee immediate preemption of lower priority

tasks

 Differently implemented on different systems

Task scheduling

POSIX interface

35

Thread scheduling: policy and priority

 Scheduling is defined by:

 thread scheduling policy:
 SCHED_FIFO

 SCHED_RR

 SCHED_SPORADIC

 SCHED_OTHER

 thread priority
 number in system specific range

 int sched_get_priority_min(int policy);

 int sched_get_priority_max(int policy);

 Policy and priority may be set on thread creation and/or

changed later

36

Setting scheduling parameters for new thread

 Parameter of type pthread_attr_t that is passed at

thread creation (pthread_create) contain scheduling

attributes

 Changing/setting scheduling parameters function
 pthread_attr_setinheritsched

 inherit parameters from parent thread
(PTHREAD_INHERIT_SCHED, PTHREAD_EXPLICIT_SCHED)?

 pthread_attr_setschedpolicy
 set policy (SCHED_FIFO, SCHED_RR, SCHED_SPORADIC or

SCHED_OTHER)

 pthread_attr_setschedparam

 set thread priority

37

Changing scheduling parameters for thread

 Change policy and priority:
 pthread_setschedparam(

 pthread_t thread,

 int policy,

 const struct sched_param *param)

 or just priority
 pthread_setschedprio(

 pthread_t thread,

 int prio);

 Equivalent behavior on process level:
 sched_setscheduler(pid, policy, param)

 sched_setparam(pid, param)

38

Synchronization that influence scheduling

 For mutex (pthread_mutex_lock/unlock)

 priority inheritance or priority ceiling can be set:

int pthread_mutexattr_setprotocol(

 pthread_mutexattr_t *attr,

 int protocol);

 values for protocol:

PTHREAD_PRIO_INHERIT – priority inheritance

PTHREAD_PRIO_PROTECT – priority ceiling

PTHREAD_PRIO_NONE

 Setting value for priority ceiling:
int pthread_mutex_setprioceiling(

 pthread_mutex_t *mutex,

 int prioceiling,

 int *old_ceiling);

