
Operating system concepts

Memory management

2

Memory management

 RAM (Random Access Memory) is subject to memory

management subsystem (MM),
 RAM is a (temporary) data storage many times faster than

other storage media (e.g. hard disk)

 other storage media is used as:
 permanent storage (disk, cd-rom, …) for files

 supplementary storage (when there is not enough RAM)

 Everything in computer system passes through memory
 operating system code and data must first be loaded into

memory at system startup

 to start programs, they must be loaded into memory first

 input and output data for programs are loaded or created

in memory (and loaded or stored to other media)

 data cache (from slower devices) is placed in memory

3

Storage for operating system code and data

 Must be protected from user programs (threads)

 Should be available only to operating system operations

(mostly only for kernel functions)

 Preferably always resident in RAM
 it’s frequently used

 kernel functions must be fast
 while in kernel function, interrupts are disabled!

 if some data or code must be loaded for kernel operations,

this will significantly prolong function duration

 Main OS data parts: data for handling

threads/processes, memory, I/O management, network

subsystem/data, file system tables/data/cache, …

4

Storage for programs

 Program loaded into memory becomes a process

 Memory used by the process is divided into:
 code segment – program instructions (processor instr.)

 data segment – variables, heap (dynamic memory)

 stack – required for many purposes (e.g. subroutine calls)

 For process management, process descriptor must be

created in kernel space
 contains all data for process: ID, priority, scheduling policy,

used memory locations, file descriptors used by process,

I/O caches, …

 Processes must be/should be protected from each other

5

Memory management problems

 How to organize memory layout?
 Where to put kernel/program data/code/…

 How to protect memory segments
 from unprivileged usage (e.g. from software errors, from

malicious code)

 access from another process

 What if the whole program can’t fit into memory?

 What are hardware requirements for MM?

 Dynamic memory allocation – operations like malloc and

free (new, delete) are not covered in this presentation!

6

Simple systems

 Simple systems:
a) single program (OS and application are coupled)

b) single program at a time systems
 e.g. simple devices as handhelds, mobile phones, …

 Divide memory into (b) only):
 OS part

 load OS data and code, and reserve space for rest

 application part
 load program code, data and create stack

KERNEL

SPACE

A B C D

7

Simple systems

 When changing programs (processes) “big” context

switch occurs:
 one program is removed form memory (and stored on

other media if not finished)

 other program is loaded in memory

 Usable only when very long context switching time is

acceptable
 only for simple systems

 Other systems require that more than one program

resides in memory (at least their essential parts)

8

Memory management requirements

 OS and (some) programs must be in memory

 More than one program should be simultaneously

present in memory
 if required, “big” context switch can happen “in the

background”, e.g. performed by DMA device

 Processes should be separated – protected from each

other
 threads from same process can share its process address

space – use it for communication…

 threads from different processes should be separated

9

Memory management requirements

 Mechanisms for executing programs that do not fit

completely in available memory

 Fragmentation should be minimal

 Hardware requirements should be minimal

 Transparent for programmers – don’t require special

procedures for using memory

10

Memory management techniques

 Static memory management
 divide memory in partitions (one for each application)

 may use hardware support (for protection)

 Dynamic memory management
 use dynamic memory allocation for process placement

 require hardware support (for address translation)

 Virtual memory; paging
 divide programs into pages

 divide memory into frames
 (frame size and page size is equal)

 load pages into frames

 translate relative address (from process perspective) to

physical address using tables and hardware translators

11

Relative and absolute (physical) addresses

SA+L-1 L-1

0

relative
address

absolute
address

kernel
space

SA

EA

0

L-1

program in
relative address

space

12

(start)

.

LDR R0, (100)

LDR R1, (104)

ADD R2, R0, R1

STR R2, (120)

B 80

.

.

CMP R0, R3

.

.

DD 5

DD 7

.

DD 0

0

20

24

28

32

34

80

100

104

120

program (on hard

drive, before starting,

relative addresses)

(start)

.

LDR R0, (1100)

LDR R1, (1104)

ADD R2, R0, R1

STR R2, (1120)

B 1080

.

.

CMP R0, R3

.

.

DD 5

DD 7

.

DD 0

.

(top of stack)

1000

1020

1024

1028

1032

1034

1080

1100

1104

1120

1500

process (loaded at

start address = 1000,

absolute addresses)

(start)

.

LDR R0, (100)

LDR R1, (104)

ADD R2, R0, R1

STR R2, (120)

B 80

.

.

CMP R0, R3

.

.

DD 5

DD 7

.

DD 0

.

(top of stack)

0

20

24

28

32

34

80

100

104

120

500

process (loaded

somewhere, but still

in relative addresses)

Relative – absolute addressing, example

13

Static memory management - partitions

 Memory reserved for programs is divided into partitions

with same or different sizes

 For every partition a set of programs are prepared on

secondary storage (processes)
 or just one which is permanently loaded into it

 If active process (from one partition) is finished or

blocked – another one from other partition is activated
 while the other is running, “big” context switch can be

performed in first partition, e.g. using DMA
 no “down” time for the processor!

 No special hardware support is required!

14

P
a

rt
it
io

n
s
 (

d
e
fi
n
e
d
 b

y
 s

ta
rt

 a
d
d
re

s
s
 –

 S
A

)

kernel
space

SA1

256 KB

SA2

SA3

SA4

SA5

256 KB

512 KB

1 MB

1 MB

partition 1

partition 2

partition 3

partition 4

partition 5

on other media (hard drive)

Static memory management (example)

Process 1 Process 2 Process 3

Process 4 Process 5

Process 6 Process 7 Process 8

15

Static memory management problems

 Protection isn’t available
 no guarantees if hardware support isn’t present

 Fragmentation
 internal – some programs may not use all partition space

 external – all processes allocated to the same partition

may be blocked – still, the partition can’t be used by other

processes!

 Can’t execute processes that don’t fit in memory (in the

largest partition)

16

Dynamic memory management

 Processes always remain in relative address space

 Requires hardware support:
 adder that will add start address to relative address given

by the program

 Process can be reloaded anywhere
 base register must be loaded with start address of the

memory segment where the process is loaded

relative address

+

start address

absolute
(physical)
address

processor memory

17

Dynamic memory management - summary

 Better than static
 less internal and external fragmentation

 process stay in relative address space

 With additional comparators – memory protection
 basic memory protection unit

 Problems
 fragmentation:

 in dynamic environment memory might become fragmented -

a program might not fit into largest available segment

because of fragmentation

 still can’t execute processes that don’t fit in memory

18

Virtual memory (VM) and paging

 MM is not simple !

 To solve all problems a sophisticated hardware must be

used

 Basic ideas:
 divide programs into pages, memory into frames

 one page fits into one frame

 load into memory only parts of programs that are required
 at run time load pages that are required (demanded)

 others are stored on secondary storage (hard drive)

 if more memory is available, all pages are loaded in memory

(faster)

 program uses relative addressing, process stays relative

 protect process and kernel for unintended access by

translation mechanism

19

Virtual memory – concept

page
number

relative
addresses

3

2

1

0

7

6

5

4

absolute
addresses

3

2

1

0

frame
number

A

B

C

D

E

F

G

H

E

C

H

translating page to frame

program

memory

20

Address translation

 Relative to absolute address
 relative address length: m bits

 absolute address length: n bits

 generally m might be different

from n

 Relative address consists of:
 page number: r bits

 location inside page: p bits

 Page identification is used to

translate page number to frame

number
 translation table is used

 hardware based translation

relative
address

table

2r  q

m

r p

r p

q

q p

q+p = n
absolute
address

21

Example

page
number

relative
address
space

program

D

C

B

A

H

G

F

E

3

2

1

0

7

6

5

4

memory

F

A

D

3

2

1

0

frame
number 3

2

1

0

7

6

5

4

0

2

3

1

0

0

1

0

0

1

0

page table
valid bit

H

B

G

D

C

F

E

A

secondary
memory

(hard drive)

22

1 0 0 1 1 1 0 1

relative address page directory

address

page

directory

+

0 1 0 1

0 1 1 0

0 1 1 1

1 1 0 1

0 1 0 1

0 1 1 0

0 1 1 1

1 1 0 1

0 1 0 1

0 1 1 0

0 1 1 1

1 1 0 1

0 1 0 1

0 1 1 0

0 1 1 1

1 1 0 1

+

1 1 1 0 1 1 0 1

absolute address

1 1 1 0

address

that apears

on the bus

Example two-level address

translation, as in x86 architecture

(only shorter addresses)

00

01

10

11

00

01

10

11

00

01

23

Example:
Intel x86 MMU

page tables in
kernel space

PA

CR3
10 10

12 20

20

32

LA

TLB
address of

page
directory

page
tables

1K
address

1K
address

1K
address

1
 K

 p
a
g
e
s

page
directory

1K
pointers

processor

24

Page table

 For every page used by the process there is a row in the

process page table:
 map page to frame: frame number

 flags; example for x86:

 secondary storage address (if not in memory)

31 12 11 10 9 8 7 6 5 4 3 2 1 0

frame number

Gl D A W
t

O W V

Flags:
V present
W write protect
O for operating system
Wt write throught

A accessed
D dirty
Gl global

25

Page fault

 When requested address is not in memory –

corresponding page is not in memory, page fault occurs

 Page fault triggers an interrupt
 in interrupt processing the required page is loaded in

memory and page table is updated

 instruction that caused page fault is then repeated

 Page fault is costly for faulting process
 access time for page on disk is measured in milliseconds

(comparing to micro/nano seconds for accessing memory!)

 Demand paging
 load pages only when they are required

26

LD M

page in
frame (in
memory)

empty
frame

page on
disk

0

1

address M belongs to page
that is not in memory

2
page fault
triggers interrupt

3

fetch page from
disk

4

load page into
an empty frame

5

update
page table

6
restart thread

page
table

kernel

1

27

Page replacement

 When all frames are in use and page faults occurs, some

frame must be emptied and loaded by requested page
 which frame? how to choose?

 An approximation to LRU (least recently used) algorithm

is often used
 remove pages that are not used recently

 probability that they will soon be requested is less than for

others (based on a typical application behavior)

 clock algorithm (also known as second chance algorithm)

is mostly used
 flag A (accessed) from frame descriptors is checked in a

circular manner

 if A is zero (not accessed recently), replace it

 otherwise, set it to zero and move to next frame (give a

second chance to recently used frames)

28

Page table

0
0

99
2 1

1
100

199
0 1

2
200

299
 0

3
300

399
6 1

4
400

499
 0

5
500

599
 0

frames

0 1

1 x

2 0

3 x

4 x

5 x

6 3

7 x

8 x

9 x

Instructions

1: LDR R1, (508)

2: LDR R2, (332)

3: LDR R3, (256)

0

0

5

0

6

0

7

1

8

0

9

1

4

1

1

1

3

1

2

0

x – page from

other process

flag A of frames

0

0

5

1

6

0

7

1

8

0

9

1

4

0

1

1

3

1

2

0

0

0

5

1

6

1

7

1

8

0

9

1

4

0

1

1

3

1

2

0

0

0

5

0

6

0

7

0

8

1

9

1

4

0

1

1

3

1

2

0

a) after 1. instr. b) after 2. instr. c) after 3. instr.

Clock algorithm

example

29

Virtual memory - summary

 Memory management unit (MMU) is required

 Operating system and MMU handle memory translation

 Benefits:
 no fragmentation

 process protection
 processes are separated, each in its own address space

(virtual and physical)

 large programs can be executed using demand paging

 Disadvantages:
 cost (additional space on processor chip is required for

MMU)

 slowdown (if frequent page faults occur)

 All general operating systems support VM
 Real-Time and embedded system are exceptions

30

Programming for Virtual memory systems

 In theory no program change/preparation is required
 memory management is transparent for program –

completely managed by operating system and MMU

 But VM awareness can significantly improve program

performance:
 page faults are very expensive – avoid them!

 principle is “simple”: manipulate with data in sequential

manner, avoid random data access
 principle of locality: temporal and spatial locality

 same principle will benefit from all cache mechanisms

embedded in hardware and software components, from disk

to L1 cache !!!

31

When programming for Real-Time

 Use API for locking particular pages in memory

 E.g. POSIX:
 lock memory segment:

 int mlock (const void * addr, size_t len);
http://www.opengroup.org/onlinepubs/9699919799/functions/mlock.html

 lock whole process (and more):
 int mlockall (int flags);
http://www.opengroup.org/onlinepubs/9699919799/functions/mlockall.html

 E.g. Win32
 VirtualLock (lpAddress, dwSize);
http://msdn.microsoft.com/en-us/library/aa366895(VS.85).aspx

 SetProcessWorkingSetSize (hProcess, Min, Max)
http://msdn.microsoft.com/en-us/library/ms686234(v=VS.85).aspx

http://www.opengroup.org/onlinepubs/9699919799/functions/mlock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mlockall.html
http://msdn.microsoft.com/en-us/library/aa366895%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms686234%28v=VS.85%29.aspx

