Operating system concepts

Memory management

Memory management

RAM (Random Access Memory) is subject to memory

management subsystem (MM),
RAM is a (temporary) data storage many times faster than
other storage media (e.g. hard disk)

other storage media is used as:
permanent storage (disk, cd-rom, ...) for files
supplementary storage (when there is not enough RAM)

Everything in computer system passes through memory
operating system code and data must first be loaded into
memory at system startup
to start programs, they must be loaded into memory first
iInput and output data for programs are loaded or created
In memory (and loaded or stored to other media)
data cache (from slower devices) is placed in memory

Storage for operating system code and data

Must be protected from user programs (threads)

Should be available only to operating system operations
(mostly only for kernel functions)

Preferably always resident in RAM
it's frequently used

kernel functions must be fast
while in kernel function, interrupts are disabled!
If some data or code must be loaded for kernel operations,
this will significantly prolong function duration

Main OS data parts: data for handling
threads/processes, memory, /O management, network
subsystem/data, file system tables/data/cache, ...

Storage for programs

Program loaded into memory becomes a process

Memory used by the process is divided into:
code segment — program instructions (processor instr.)
data segment — variables, heap (dynamic memory)
stack — required for many purposes (e.g. subroutine calls)

For process management, process descriptor must be

created in kernel space
contains all data for process: ID, priority, scheduling policy,
used memory locations, file descriptors used by process,
/O caches, ...

Processes must be/should be protected from each other

Memory management problems

How to organize memory layout?
Where to put kernel/program data/code/...

How to protect memory segments
from unprivileged usage (e.g. from software errors, from
malicious code)
access from another process

What if the whole program can't fit into memory?
What are hardware requirements for MM?

Dynamic memory allocation — operations like malloc and
free (new, delete) are not covered in this presentation!

Simple systems

Simple systems:
single program (OS and application are coupled)
single program at a time systems
e.g. simple devices as handhelds, mobile phones, ...
Divide memory into (b) only):
OS part
load OS data and code, and reserve space for rest
application part
load program code, data and create stack

KERNEL
SPACE

A B C D

Simple systems

When changing programs (processes) “big” context
switch occurs:
one program is removed form memory (and stored on
other media if not finished)
other program is loaded in memory

Usable only when very long context switching time is

acceptable
only for simple systems

Other systems require that more than one program
resides in memory (at least their essential parts)

Memory management requirements

OS and (some) programs must be in memory

More than one program should be simultaneously
present in memory
if required, “big” context switch can happen “in the
background”, e.g. performed by DMA device

Processes should be separated — protected from each
other
threads from same process can share its process address
space — use it for communication...
threads from different processes should be separated

Memory management requirements

Mechanisms for executing programs that do not fit
completely in available memory

Fragmentation should be minimal
Hardware requirements should be minimal

Transparent for programmers — don'’t require special
procedures for using memory

Memory management techniques

Static memory management
divide memory in partitions (one for each application)
may use hardware support (for protection)

Dynamic memory management
use dynamic memory allocation for process placement
require hardware support (for address translation)

Virtual memory; paging
divide programs into pages
divide memory into frames
(frame size and page size is equal)
load pages into frames
translate relative address (from process perspective) to
physical address using tables and hardware translators

10

Relative and absolute (physical) addresses

absolute
address
SA
SA+L-1

EA

kernel
> space

relative
address

program in
relative address

space

11

20
24
28
32
34

80

100

104

120

program (on hard
drive, before starting,
relative addresses)

Relative — absolute addressing, example

(start)

LDR RO,
LDR R1,
ADD R2,
STR R2,
B 80

CMP RO,
DD 5
DD 7

DD O

R3

process (loaded at

start address = 1000,

absolute addresses)

1000
1020
1024
1028

1032
1034

1080

1100
1104
1120

1500

(start)

LDR RO, (1100)
LDR R1, (1104)
ADD R2, RO, R1
STR R2, (1120)
B 1080

CMP RO, R3

DD 5

DD 7/

DD O

(top of stack)

process (loaded
somewhere, but still

in relative addresses)

0
20
24
28

32
34

80

100
104
120

500

(start)

LDR RO, (100)
LDR R1, (104)
ADD R2, RO, R1
STR R2, (120)
B 80

CMP RO, R3

DD 5

DD 7

DD O

(top of stdeék)

Static memory management - partitions

Memory reserved for programs is divided into partitions
with same or different sizes

For every partition a set of programs are prepared on

secondary storage (processes)
or just one which is permanently loaded into it

If active process (from one partition) is finished or

blocked — another one from other partition is activated
while the other is running, “big” context switch can be

performed in first partition, e.g. using DMA
no “down” time for the processor!

No special hardware support is required!

13

Partitions (defined by start address — SA)

2
>
|

wm
>
N

wm
>
W

nw o
> >
a s

256 KB

kernel
> Space

A Static memory management (example)

on other media (hard drive)

B

Process 4

Process 6

Process 5

Process 7

Static memory management problems

Protection isn’t available
no guarantees if hardware support isn’'t present

Fragmentation
Internal — some programs may not use all partition space
external — all processes allocated to the same partition
may be blocked — still, the partition can’t be used by other
processes!

Can’t execute processes that don't fit in memory (in the
largest partition)

15

Dynamic memory management

Processes always remain in relative address space

Requires hardware support:
adder that will add start address to relative address given
by the program

processor memory

relative address
J/

/7 :/-\ / R

, g +) 7
absolute
(physical)

start address address

~

Process can be reloaded anywhere
base register must be loaded with start address of the
memory segment where the process is loaded

16

Dynamic memory management - summary

Better than static
less internal and external fragmentation
process stay in relative address space

With additional comparators — memory protection
basic memory protection unit

Problems

fragmentation:
In dynamic environment memory might become fragmented -
a program might not fit into largest available segment
because of fragmentation

still can’t execute processes that don't fit in memory

17

Virtual memory (VM) and paging

MM is not simple !
To solve all problems a sophisticated hardware must be
used

Basic ideas:

divide programs into pages, memory into frames
one page fits into one frame

load into memory only parts of programs that are required
at run time load pages that are required (demanded)
others are stored on secondary storage (hard drive)
If more memory is available, all pages are loaded in memory
(faster)

program uses relative addressing, process stays relative

protect process and kernel for unintended access by
translation mechanism

18

Virtual memory — concept

page translating page to frame
number
0 A ,
rame

1 B number

2 C £ 0

3 D C]

4 E)

6 G absolute

7 H addresses
memory

program

19

Address translation

Relative to absolute address m
relative address length: m bits
absolute address length: n bits
generally m might be different

from n ;-\

: : I 1P
Relative address consists of: <! table
page number: r bits r
: o : 2" x g
location inside page: p bits
. e g4
Page identification is used to ?
translate page number to frame 7 ,
number
translation table is used absolute -
address qtp=n

hardware based translation
20

Example page table

sage /{ valid bit]

number 0 2 1
1 0
0 A 2 0 frame
1 B 3 0 1 number
2 C 4 0 0 D
5 3 1
3D 6 0 !
4 E 7 0 2 A
5 F 3 F
6 G — T memory
7 H R —
relative
address D £
space H
- secondary
memory
program B (hard drive)
C
G A
—— —> .

page

relative address zggfeggecmry directory ! absolute address
1[ol0][0 e 00 1[1[2]o[1]1]o]1
B9 - - [
01 address
10 e that apears
1 on the bus

Example two-level address ™
translation, as in x86 architecture
(only shorter addresses)

22

processor page tables in

Example: I - kernel space

Intel x86 MMU %
A4
20 12 page ™
tables
1K
address
TLB
20 address of
page
directory 1K
page address
LA directory
32 }
10 10
CR3
1K
1K address
pointers

23

Page table

For every page used by the process there is a row in the
process page table:

map page to frame: frame number

flags; example for x86:

31 1211 10 9 8 7 6 5 4 3 2 1 O

frame number

Gl D A WtOWV

Flags:
V present A accessed
W write protect D dirty

O for operating system Gl global
W, write throught

secondary storage address (if not in memory)

24

Page fault

When requested address is not in memory —
corresponding page is not in memory, page fault occurs

Page fault triggers an interrupt

In interrupt processing the required page is loaded Iin
memory and page table is updated
Instruction that caused page fault is then repeated

Page fault is costly for faulting process

access time for page on disk is measured in milliseconds
(comparing to micro/nano seconds for accessing memory!)

Demand paging
load pages only when they are required

25

address M belongs to page

that is not in memory empty
page in @ T frame
frame (in
memen) — ’ : \
e \
’\/
update page fault
page table triggers interrupt

load page into

an empty frame
4(page on

fetch page from disk
disk 26

Page replacement

When all frames are in use and page faults occurs, some

frame must be emptied and loaded by requested page
which frame? how to choose?

An approximation to LRU (least recently used) algorithm
IS often used
remove pages that are not used recently

probability that they will soon be requested is less than for
others (based on a typical application behavior)

clock algorithm (also known as second chance algorithm)
IS mostly used
flag A (accessed) from frame descriptors is checked in a
circular manner
If A'is zero (not accessed recently), replace it
otherwise, set it to zero and move to next frame (give a
second chance to recently used frames)

27

Page table frames
0

s |1 Instructions flag A of frames
99 011 1: LDR R1, (508)
100 0 |1 2: LDR R2, (332)
1 X 3: LDR R3, (250) 3
B Clock algorithm
2 2|0 0 example
6 1 9 1
399 3| x
400 1
0 8 2
: 4| x 0 0
0
599 5 | x
7 3
6 | 3 1 1
X — page from 6 4
other process 7 | x 0 8 1
Ik
G

28

Virtual memory - summary

Memory management unit (MMU) Is required
Operating system and MMU handle memory translation

Benefits:
no fragmentation

process protection
processes are separated, each in its own address space
(virtual and physical)

large programs can be executed using demand paging

Disadvantages:
cost (additional space on processor chip is required for
MMU)
slowdown (if frequent page faults occur)

All general operating systems support VM
Real-Time and embedded system are exceptions

29

Programming for Virtual memory systems

In theory no program change/preparation is required
memory management is transparent for program —
completely managed by operating system and MMU

But VM awareness can significantly improve program

performance:
page faults are very expensive — avoid them!

principle is “simple”: manipulate with data in sequential

manner, avoid random data access
principle of locality: temporal and spatial locality

same principle will benefit from all cache mechanisms
embedded in hardware and software components, from disk

to L1 cache !l

30

When programming for Real-Time

Use API for locking particular pages in memory

E.g. POSIX:

lock memory segment:

int mlock (const void * addr, size t 1len);
http://www.opengroup.org/onlinepubs/9699919799/functions/mlock.html

lock whole process (and more):
int mlockall (int flags)

http://www.opengroup.org/onlinepubs/9699919799/functions/mlockall.html

E.g. WIn32
VirtuallLock (lpAddress, dwSize);

http://msdn.microsoft.com/en-us/library/aa366895 (VS.85) .aspx

SetProcessWorkingSetSize (hProcess, Min, Max)
http://msdn.microsoft.com/en-us/library/ms686234 (v=VS.85) .aspx

http://www.opengroup.org/onlinepubs/9699919799/functions/mlock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mlockall.html
http://msdn.microsoft.com/en-us/library/aa366895%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms686234%28v=VS.85%29.aspx

