
Operating system concepts

Memory management

2

Memory management

 RAM (Random Access Memory) is subject to memory

management subsystem (MM),
 RAM is a (temporary) data storage many times faster than

other storage media (e.g. hard disk)

 other storage media is used as:
 permanent storage (disk, cd-rom, …) for files

 supplementary storage (when there is not enough RAM)

 Everything in computer system passes through memory
 operating system code and data must first be loaded into

memory at system startup

 to start programs, they must be loaded into memory first

 input and output data for programs are loaded or created

in memory (and loaded or stored to other media)

 data cache (from slower devices) is placed in memory

3

Storage for operating system code and data

 Must be protected from user programs (threads)

 Should be available only to operating system operations

(mostly only for kernel functions)

 Preferably always resident in RAM
 it’s frequently used

 kernel functions must be fast
 while in kernel function, interrupts are disabled!

 if some data or code must be loaded for kernel operations,

this will significantly prolong function duration

 Main OS data parts: data for handling

threads/processes, memory, I/O management, network

subsystem/data, file system tables/data/cache, …

4

Storage for programs

 Program loaded into memory becomes a process

 Memory used by the process is divided into:
 code segment – program instructions (processor instr.)

 data segment – variables, heap (dynamic memory)

 stack – required for many purposes (e.g. subroutine calls)

 For process management, process descriptor must be

created in kernel space
 contains all data for process: ID, priority, scheduling policy,

used memory locations, file descriptors used by process,

I/O caches, …

 Processes must be/should be protected from each other

5

Memory management problems

 How to organize memory layout?
 Where to put kernel/program data/code/…

 How to protect memory segments
 from unprivileged usage (e.g. from software errors, from

malicious code)

 access from another process

 What if the whole program can’t fit into memory?

 What are hardware requirements for MM?

 Dynamic memory allocation – operations like malloc and

free (new, delete) are not covered in this presentation!

6

Simple systems

 Simple systems:
a) single program (OS and application are coupled)

b) single program at a time systems
 e.g. simple devices as handhelds, mobile phones, …

 Divide memory into (b) only):
 OS part

 load OS data and code, and reserve space for rest

 application part
 load program code, data and create stack

KERNEL

SPACE

A B C D

7

Simple systems

 When changing programs (processes) “big” context

switch occurs:
 one program is removed form memory (and stored on

other media if not finished)

 other program is loaded in memory

 Usable only when very long context switching time is

acceptable
 only for simple systems

 Other systems require that more than one program

resides in memory (at least their essential parts)

8

Memory management requirements

 OS and (some) programs must be in memory

 More than one program should be simultaneously

present in memory
 if required, “big” context switch can happen “in the

background”, e.g. performed by DMA device

 Processes should be separated – protected from each

other
 threads from same process can share its process address

space – use it for communication…

 threads from different processes should be separated

9

Memory management requirements

 Mechanisms for executing programs that do not fit

completely in available memory

 Fragmentation should be minimal

 Hardware requirements should be minimal

 Transparent for programmers – don’t require special

procedures for using memory

10

Memory management techniques

 Static memory management
 divide memory in partitions (one for each application)

 may use hardware support (for protection)

 Dynamic memory management
 use dynamic memory allocation for process placement

 require hardware support (for address translation)

 Virtual memory; paging
 divide programs into pages

 divide memory into frames
 (frame size and page size is equal)

 load pages into frames

 translate relative address (from process perspective) to

physical address using tables and hardware translators

11

Relative and absolute (physical) addresses

SA+L-1 L-1

0

relative
address

absolute
address

kernel
space

SA

EA

0

L-1

program in
relative address

space

12

(start)

.

LDR R0, (100)

LDR R1, (104)

ADD R2, R0, R1

STR R2, (120)

B 80

.

.

CMP R0, R3

.

.

DD 5

DD 7

.

DD 0

0

20

24

28

32

34

80

100

104

120

program (on hard

drive, before starting,

relative addresses)

(start)

.

LDR R0, (1100)

LDR R1, (1104)

ADD R2, R0, R1

STR R2, (1120)

B 1080

.

.

CMP R0, R3

.

.

DD 5

DD 7

.

DD 0

.

(top of stack)

1000

1020

1024

1028

1032

1034

1080

1100

1104

1120

1500

process (loaded at

start address = 1000,

absolute addresses)

(start)

.

LDR R0, (100)

LDR R1, (104)

ADD R2, R0, R1

STR R2, (120)

B 80

.

.

CMP R0, R3

.

.

DD 5

DD 7

.

DD 0

.

(top of stack)

0

20

24

28

32

34

80

100

104

120

500

process (loaded

somewhere, but still

in relative addresses)

Relative – absolute addressing, example

13

Static memory management - partitions

 Memory reserved for programs is divided into partitions

with same or different sizes

 For every partition a set of programs are prepared on

secondary storage (processes)
 or just one which is permanently loaded into it

 If active process (from one partition) is finished or

blocked – another one from other partition is activated
 while the other is running, “big” context switch can be

performed in first partition, e.g. using DMA
 no “down” time for the processor!

 No special hardware support is required!

14

P
a

rt
it
io

n
s
 (

d
e
fi
n
e
d
 b

y
 s

ta
rt

 a
d
d
re

s
s
 –

 S
A

)

kernel
space

SA1

256 KB

SA2

SA3

SA4

SA5

256 KB

512 KB

1 MB

1 MB

partition 1

partition 2

partition 3

partition 4

partition 5

on other media (hard drive)

Static memory management (example)

Process 1 Process 2 Process 3

Process 4 Process 5

Process 6 Process 7 Process 8

15

Static memory management problems

 Protection isn’t available
 no guarantees if hardware support isn’t present

 Fragmentation
 internal – some programs may not use all partition space

 external – all processes allocated to the same partition

may be blocked – still, the partition can’t be used by other

processes!

 Can’t execute processes that don’t fit in memory (in the

largest partition)

16

Dynamic memory management

 Processes always remain in relative address space

 Requires hardware support:
 adder that will add start address to relative address given

by the program

 Process can be reloaded anywhere
 base register must be loaded with start address of the

memory segment where the process is loaded

relative address

+

start address

absolute
(physical)
address

processor memory

17

Dynamic memory management - summary

 Better than static
 less internal and external fragmentation

 process stay in relative address space

 With additional comparators – memory protection
 basic memory protection unit

 Problems
 fragmentation:

 in dynamic environment memory might become fragmented -

a program might not fit into largest available segment

because of fragmentation

 still can’t execute processes that don’t fit in memory

18

Virtual memory (VM) and paging

 MM is not simple !

 To solve all problems a sophisticated hardware must be

used

 Basic ideas:
 divide programs into pages, memory into frames

 one page fits into one frame

 load into memory only parts of programs that are required
 at run time load pages that are required (demanded)

 others are stored on secondary storage (hard drive)

 if more memory is available, all pages are loaded in memory

(faster)

 program uses relative addressing, process stays relative

 protect process and kernel for unintended access by

translation mechanism

19

Virtual memory – concept

page
number

relative
addresses

3

2

1

0

7

6

5

4

absolute
addresses

3

2

1

0

frame
number

A

B

C

D

E

F

G

H

E

C

H

translating page to frame

program

memory

20

Address translation

 Relative to absolute address
 relative address length: m bits

 absolute address length: n bits

 generally m might be different

from n

 Relative address consists of:
 page number: r bits

 location inside page: p bits

 Page identification is used to

translate page number to frame

number
 translation table is used

 hardware based translation

relative
address

table

2r q

m

r p

r p

q

q p

q+p = n
absolute
address

21

Example

page
number

relative
address
space

program

D

C

B

A

H

G

F

E

3

2

1

0

7

6

5

4

memory

F

A

D

3

2

1

0

frame
number 3

2

1

0

7

6

5

4

0

2

3

1

0

0

1

0

0

1

0

page table
valid bit

H

B

G

D

C

F

E

A

secondary
memory

(hard drive)

22

1 0 0 1 1 1 0 1

relative address page directory

address

page

directory

+

0 1 0 1

0 1 1 0

0 1 1 1

1 1 0 1

0 1 0 1

0 1 1 0

0 1 1 1

1 1 0 1

0 1 0 1

0 1 1 0

0 1 1 1

1 1 0 1

0 1 0 1

0 1 1 0

0 1 1 1

1 1 0 1

+

1 1 1 0 1 1 0 1

absolute address

1 1 1 0

address

that apears

on the bus

Example two-level address

translation, as in x86 architecture

(only shorter addresses)

00

01

10

11

00

01

10

11

00

01

23

Example:
Intel x86 MMU

page tables in
kernel space

PA

CR3
10 10

12 20

20

32

LA

TLB
address of

page
directory

page
tables

1K
address

1K
address

1K
address

1
 K

 p
a
g
e
s

page
directory

1K
pointers

processor

24

Page table

 For every page used by the process there is a row in the

process page table:
 map page to frame: frame number

 flags; example for x86:

 secondary storage address (if not in memory)

31 12 11 10 9 8 7 6 5 4 3 2 1 0

frame number

Gl D A W
t

O W V

Flags:
V present
W write protect
O for operating system
Wt write throught

A accessed
D dirty
Gl global

25

Page fault

 When requested address is not in memory –

corresponding page is not in memory, page fault occurs

 Page fault triggers an interrupt
 in interrupt processing the required page is loaded in

memory and page table is updated

 instruction that caused page fault is then repeated

 Page fault is costly for faulting process
 access time for page on disk is measured in milliseconds

(comparing to micro/nano seconds for accessing memory!)

 Demand paging
 load pages only when they are required

26

LD M

page in
frame (in
memory)

empty
frame

page on
disk

0

1

address M belongs to page
that is not in memory

2
page fault
triggers interrupt

3

fetch page from
disk

4

load page into
an empty frame

5

update
page table

6
restart thread

page
table

kernel

1

27

Page replacement

 When all frames are in use and page faults occurs, some

frame must be emptied and loaded by requested page
 which frame? how to choose?

 An approximation to LRU (least recently used) algorithm

is often used
 remove pages that are not used recently

 probability that they will soon be requested is less than for

others (based on a typical application behavior)

 clock algorithm (also known as second chance algorithm)

is mostly used
 flag A (accessed) from frame descriptors is checked in a

circular manner

 if A is zero (not accessed recently), replace it

 otherwise, set it to zero and move to next frame (give a

second chance to recently used frames)

28

Page table

0
0

99
2 1

1
100

199
0 1

2
200

299
 0

3
300

399
6 1

4
400

499
 0

5
500

599
 0

frames

0 1

1 x

2 0

3 x

4 x

5 x

6 3

7 x

8 x

9 x

Instructions

1: LDR R1, (508)

2: LDR R2, (332)

3: LDR R3, (256)

0

0

5

0

6

0

7

1

8

0

9

1

4

1

1

1

3

1

2

0

x – page from

other process

flag A of frames

0

0

5

1

6

0

7

1

8

0

9

1

4

0

1

1

3

1

2

0

0

0

5

1

6

1

7

1

8

0

9

1

4

0

1

1

3

1

2

0

0

0

5

0

6

0

7

0

8

1

9

1

4

0

1

1

3

1

2

0

a) after 1. instr. b) after 2. instr. c) after 3. instr.

Clock algorithm

example

29

Virtual memory - summary

 Memory management unit (MMU) is required

 Operating system and MMU handle memory translation

 Benefits:
 no fragmentation

 process protection
 processes are separated, each in its own address space

(virtual and physical)

 large programs can be executed using demand paging

 Disadvantages:
 cost (additional space on processor chip is required for

MMU)

 slowdown (if frequent page faults occur)

 All general operating systems support VM
 Real-Time and embedded system are exceptions

30

Programming for Virtual memory systems

 In theory no program change/preparation is required
 memory management is transparent for program –

completely managed by operating system and MMU

 But VM awareness can significantly improve program

performance:
 page faults are very expensive – avoid them!

 principle is “simple”: manipulate with data in sequential

manner, avoid random data access
 principle of locality: temporal and spatial locality

 same principle will benefit from all cache mechanisms

embedded in hardware and software components, from disk

to L1 cache !!!

31

When programming for Real-Time

 Use API for locking particular pages in memory

 E.g. POSIX:
 lock memory segment:

 int mlock (const void * addr, size_t len);
http://www.opengroup.org/onlinepubs/9699919799/functions/mlock.html

 lock whole process (and more):
 int mlockall (int flags);
http://www.opengroup.org/onlinepubs/9699919799/functions/mlockall.html

 E.g. Win32
 VirtualLock (lpAddress, dwSize);
http://msdn.microsoft.com/en-us/library/aa366895(VS.85).aspx

 SetProcessWorkingSetSize (hProcess, Min, Max)
http://msdn.microsoft.com/en-us/library/ms686234(v=VS.85).aspx

http://www.opengroup.org/onlinepubs/9699919799/functions/mlock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mlockall.html
http://msdn.microsoft.com/en-us/library/aa366895%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms686234%28v=VS.85%29.aspx

