
Operating system concepts 

 

Memory management 
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Memory management 

 RAM (Random Access Memory) is subject to memory 

management subsystem (MM),  
 RAM is a (temporary) data storage many times faster than 

other storage media (e.g. hard disk) 

 other storage media is used as: 
 permanent storage (disk, cd-rom, …) for files 

 supplementary storage (when there is not enough RAM) 

 

 Everything in computer system passes through memory 
 operating system code and data must first be loaded into 

memory at system startup 

 to start programs, they must be loaded into memory first 

 input and output data for programs are loaded or created 

in memory (and loaded or stored to other media) 

 data cache (from slower devices) is placed in memory 
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Storage for operating system code and data 

 Must be protected from user programs (threads) 

 

 Should be available only to operating system operations 

(mostly only for kernel functions) 

 

 Preferably always resident in RAM 
 it’s frequently used 

 kernel functions must be fast 
 while in kernel function, interrupts are disabled! 

 if some data or code must be loaded for kernel operations, 

this will significantly prolong function duration 

 

 Main OS data parts: data for handling 

threads/processes, memory, I/O management, network 

subsystem/data, file system tables/data/cache, … 
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Storage for programs 

 Program loaded into memory becomes a process 

 

 Memory used by the process is divided into: 
 code segment – program instructions (processor instr.) 

 data segment – variables, heap (dynamic memory) 

 stack – required for many purposes (e.g. subroutine calls) 

 

 For process management, process descriptor must be 

created in kernel space 
 contains all data for process: ID, priority, scheduling policy, 

used memory locations, file descriptors used by process, 

I/O caches, … 

 

 Processes must be/should be protected from each other 
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Memory management problems 

 How to organize memory layout? 
 Where to put kernel/program data/code/… 

 

 How to protect memory segments 
 from unprivileged usage (e.g. from software errors, from 

malicious code) 

 access from another process 

 

 What if the whole program can’t fit into memory? 

 

 What are hardware requirements for MM? 

 

 Dynamic memory allocation – operations like malloc and 

free (new, delete) are not covered in this presentation! 
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Simple systems 

 Simple systems: 
a) single program (OS and application are coupled) 

b) single program at a time systems  
 e.g. simple devices as handhelds, mobile phones, … 

 Divide memory into ( b) only ): 
 OS part 

 load OS data and code, and reserve space for rest 

 application part 
 load program code, data and create stack 

KERNEL 

SPACE 

A B C D 



7 

Simple systems 

 When changing programs (processes) “big” context 

switch occurs: 
 one program is removed form memory (and stored on 

other media if not finished) 

 other program is loaded in memory 

 

 Usable only when very long context switching time is 

acceptable 
 only for simple systems 

 

 Other systems require that more than one program 

resides in memory (at least their essential parts) 
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Memory management requirements 

 OS and (some) programs must be in memory 

 

 More than one program should be simultaneously 

present in memory 
 if required, “big” context switch can happen “in the 

background”, e.g. performed by DMA device 

 

 Processes should be separated – protected from each 

other 
 threads from same process can share its process address 

space – use it for communication… 

 threads from different processes should be separated 
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Memory management requirements 

 Mechanisms for executing programs that do not fit 

completely in available memory 

 

 Fragmentation should be minimal 

 

 Hardware requirements should be minimal 

 

 Transparent for programmers – don’t require special 

procedures for using memory 
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Memory management techniques 

 Static memory management 
 divide memory in partitions (one for each application) 

 may use hardware support (for protection) 

 

 Dynamic memory management 
 use dynamic memory allocation for process placement 

 require hardware support (for address translation) 

 

 Virtual memory; paging 
 divide programs into pages 

 divide memory into frames 
 (frame size and page size is equal) 

 load pages into frames 

 translate relative address (from process perspective) to 

physical address using tables and hardware translators 
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Relative and absolute (physical) addresses 
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Static memory management - partitions 

 Memory reserved for programs is divided into partitions 

with same or different sizes 

 

 For every partition a set of programs are prepared on 

secondary storage (processes) 
 or just one which is permanently loaded into it 

 

 If active process (from one partition) is finished or 

blocked – another one from other partition is activated 
 while the other is running, “big” context switch can be 

performed in first partition, e.g. using DMA 
 no “down” time for the processor! 

 

 No special hardware support is required! 
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Static memory management problems 

 Protection isn’t available 
 no guarantees if hardware support isn’t present 

 

 Fragmentation 
 internal – some programs may not use all partition space 

 external – all processes allocated to the same partition 

may be blocked – still, the partition can’t be used by other 

processes! 

 

 Can’t execute processes that don’t fit in memory (in the 

largest partition) 
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Dynamic memory management 

 Processes always remain in relative address space 

 Requires hardware support: 
 adder that will add start address to relative address given 

by the program 
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Dynamic memory management - summary 

 Better than static 
 less internal and external fragmentation 

 process stay in relative address space 

 

 With additional comparators – memory protection 
 basic memory protection unit 

 

 Problems 
 fragmentation: 

 in dynamic environment memory might become fragmented - 

a program might not fit into largest available segment 

because of fragmentation 

 

 still can’t execute processes that don’t fit in memory 
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Virtual memory (VM) and paging 

 MM is not simple ! 

 To solve all problems a sophisticated hardware must be 

used 
 

 Basic ideas:  
 divide programs into pages, memory into frames 

 one page fits into one frame 
 

 load into memory only parts of programs that are required 
 at run time load pages that are required (demanded) 

 others are stored on secondary storage (hard drive) 

 if more memory is available, all pages are loaded in memory 

(faster) 
 

 program uses relative addressing, process stays relative 
 

 protect process and kernel for unintended access by 

translation mechanism 



19 

Virtual memory – concept  
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Address translation 

 Relative to absolute address 
 relative address length: m bits 

 absolute address length: n bits 

 generally m might be different 

from n 

 

 Relative address consists of: 
 page number: r bits 

 location inside page: p bits 

 

 Page identification is used to 

translate page number to frame 

number 
 translation table is used 

 hardware based translation 
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Example 
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Example: 
Intel x86 MMU 

page tables in 
kernel space 

PA 

CR3 
10 10 

12 20 

20 

32 

LA 

TLB 
address of 

page 
directory  

page 
tables 

1K 
address 

 

1K 
address 

1K 
address 

1
 K

 p
a
g
e
s 

page 
directory 

1K 
pointers 

processor 



24 

Page table 

 For every page used by the process there is a row in the 

process page table: 
 map page to frame: frame number 

 flags; example for x86: 

 

 

 

 

 

 

 

 

 
 secondary storage address (if not in memory) 

31 12 11 10 9 8 7 6 5 4 3 2 1 0 

frame number 

Gl D A W 
t 

O W V 

Flags: 
V present 
W  write protect 
O  for operating system 
Wt write throught 

A accessed 
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Gl global 
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Page fault 

 When requested address is not in memory –

corresponding page is not in memory, page fault occurs 

 

 Page fault triggers an interrupt 
 in interrupt processing the required page is loaded in 

memory and page table is updated 

 instruction that caused page fault is then repeated 

 

 Page fault is costly for faulting process 
 access time for page on disk is measured in milliseconds 

(comparing to micro/nano seconds for accessing memory!) 

 

 Demand paging 
 load pages only when they are required 
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Page replacement 

 When all frames are in use and page faults occurs, some 

frame must be emptied and loaded by requested page 
 which frame? how to choose? 

 

 An approximation to LRU (least recently used) algorithm 

is often used 
 remove pages that are not used recently  

 probability that they will soon be requested is less than for 

others (based on a typical application behavior) 
 

 clock algorithm (also known as second chance algorithm) 

is mostly used 
 flag A (accessed) from frame descriptors is checked in a 

circular manner 

 if A is zero (not accessed recently), replace it 

 otherwise, set it to zero and move to next frame (give a 

second chance to recently used frames) 
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Virtual memory - summary 

 Memory management unit (MMU) is required 

 Operating system and MMU handle memory translation 
 

 Benefits: 
 no fragmentation 

 process protection  
 processes are separated, each in its own address space 

(virtual and physical) 

 large programs can be executed using demand paging 
 

 Disadvantages: 
 cost (additional space on processor chip is required for 

MMU) 

 slowdown (if frequent page faults occur) 
 

 All general operating systems support VM 
 Real-Time and embedded system are exceptions  



30 

Programming for Virtual memory systems 

 In theory no program change/preparation is required 
 memory management is transparent for program – 

completely managed by operating system and MMU 

 

 But VM awareness can significantly improve program 

performance: 
 page faults are very expensive – avoid them! 

 
 principle is “simple”: manipulate with data in sequential 

manner, avoid random data access 
 principle of locality: temporal and spatial locality 

 

 same principle will benefit from all cache mechanisms 

embedded in hardware and software components, from disk 

to L1 cache !!! 



31 

When programming for Real-Time 

 Use API for locking particular pages in memory 

 

 E.g. POSIX: 
 lock memory segment: 

 int mlock (const void * addr, size_t len); 
http://www.opengroup.org/onlinepubs/9699919799/functions/mlock.html 

 

 lock whole process (and more): 
 int mlockall (int flags); 
http://www.opengroup.org/onlinepubs/9699919799/functions/mlockall.html 

 

 E.g. Win32 
 VirtualLock (lpAddress, dwSize); 
http://msdn.microsoft.com/en-us/library/aa366895(VS.85).aspx 

 

 SetProcessWorkingSetSize (hProcess, Min, Max) 
http://msdn.microsoft.com/en-us/library/ms686234(v=VS.85).aspx 

http://www.opengroup.org/onlinepubs/9699919799/functions/mlock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mlockall.html
http://msdn.microsoft.com/en-us/library/aa366895%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms686234%28v=VS.85%29.aspx

