
Operating system concepts

File Systems

2

Hard disk

Hard disk is used for:

 permanent data storage
 when system goes down, its data are saved on disk

 when system boots, operating system is loaded from disk

 (compiled) programs and data are permanently saved on

disk, from there loaded into memory and stored back

 secondary memory
 disk is used as auxiliary memory (in addition to RAM)

 due to significant difference in speed (nanoseconds vs

milliseconds), special techniques are used (described

previously in memory management)

 How are data stored on disk?
 physical data organization on disk ?

 logical representation (as used from operating system) ?

3

Physical data organization on disk (in theory)

cylinder

plate

sector

sector

reper





heads
movement

heads
movement

heads (on
actuator arm)

actuator
arm

track

track

4

Physical data organization on disk (in practice)

Magnetic plate – storing bits

Tracks and sectors Disk - uncovered

Disk - detail

Disk - elements

5

Addressing data on disk

 Data unit = sector
 sector sizes: 512 B, 1024 B

 Sector’s physical “address”:
 plate identifier

 track identifier

 sector identifier

 Sector’s logical address:
 electronic that manipulates with mechanical hard drive

components “translates” physical address into logical one

 all sectors represented as a linear array of sectors/blocks

– linear “address” sector space
 Logical block addressing – LBA

6

Hard drives characteristics (typical)

 Capacity: ~100 GB to 2 TB

 Physical size 3.5”, 2.5”, 1.8”, 1”, 0.85”

 Rotation: ~5000 rpm to 15000 rpm (5400, 7200, 10000)

 Data transfer rate: ~70 MB/s

 Seek time: 2 to 15 ms; typical ~9 ms
 time to move heads over 1/3 of tracks

 “average” random disk access head movement

7

Files

 Data on hard disk (and other media) are organized into

files

 File: set of data/information that are united somehow

 File may contain:
 program (code and data)

 e.g. executable file or script (.exe; .out; .bat; .sh; …)

 e.g. extensions, dynamic library (.dll; .so; …)

 data (input or output)
 documents (word, text files, HTML, …)

 multimedia (pictures, videos, music, …)

 …

 other
 OS data (like pagefile), …

8

File system

 How to organize files on disk?
 Physical placement: where (in which sectors)?

 Logical organization: directories

 Access, security, fragmentation, … ?

  use of a File System

 File system defines how to place data on disk and how

to retrieve it
 File table – data that defines a particular disk, its files and

free space
 each file has its descriptor in the file table

 Operating system uses file system and provides

operations like:
 “create file”, “open file”, “close file”, “delete file”, “move file”

 “write to file”, “read from file”

9

File descriptor

 Every file on disk has a descriptor

 Descriptor contents (mainly):
 file name

 directory (logical placement)

 file type, file size

 creation time, modification time, last access time

 owner information

 security information

 access rights

 …

 data placement description (in which sectors/blocks)
 data unit – block (cluster)

 block size: 1, 2, 4, 8, 16, … consecutive sectors

10

File system examples (file placement descr.)

 Disk may be divided into partitions
 Every partition is managed separately (has its own file

system)
 e.g. part1: from block 0 to 10000, part2: from 10001 to 20000

 NTFS

 UNIX

11

File system examples – NTFS

 MFT (Master File Table)
 every file has a file descriptor in the MFT (even MFT itself)

 Cluster numbering in NTFS:
 LCN – Linear Cluster Number

 partition is divided into clusters (blocks), e.g. starting with

LCN=0

 VCN – Virtual Cluster Number
 each file uses a number of blocks

 VCN represents virtual address inside the file: first part of the

file is at VCN=0, second in VCN=1, …

 Mapping from VCN to LCN is defined in the file descriptor

12

0

1
2

100

101

210

212

211

213

1000

1002

1001

1003

2000

2002

2001

2003

1004

1006

1005

1007

sector
numbers

0

50

105

106

500

501

502

503

1000

1001

LCN

(1 block = 2 sectors)

0

1

2

6

7

8

3

4

5

VCN

VCN Starting LCN blocks

 0 50 1

 1 500 4

 5 105 2

 7 1000 2

Translation from VCN to LCN (in file descriptor)

13

File system examples – UNIX i-node

 File descriptor = i-node

 For referencing file clusters, there are a dozen pointers in :
 Ten (or twelve) direct pointers

 pointers that directly point to blocks of the file's data

 e.g. 5th pointer points to block on disk that holds 5th data block of file (file is

divided into blocks)

 one singly indirect pointer
 a pointer that points to a block of pointers that then point to blocks of the

file's data

 one doubly indirect pointer
 a pointer that points to a block

 of pointers that point to other

 blocks of pointers that then

 point to blocks of the file's data

 one triply indirect pointer
 a pointer that points to a block

 of pointers that point to other

 blocks of pointers that point to

 other blocks of pointers that

 then point to blocks of the file's data

(not shown here)

14

File system examples – NTFS & UNIX

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 3 19 4 20 5 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 1 38 2 39 40

41 42 43 44 45 46 47 48

49 50 51 11 52 12 53 13 54 14 55 15 56

57 6 58 7 59 8 60 9 61 10 62 63 64

NTFS

VCN LCN blocks

1 37 2

3 18 3

6 57 5

11 51 5

VCN

LCN

parts of observed file

parts of other files

“UNIX” – first 13 pointers (in file descriptor)

37 38 18 19 20 57 58 59 60 61 (x)

51 52 53 54 55 (unused pointers)

15

File system examples – FAT (idea)

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 3 19 4 20 5 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 1 38 2 39 40

41 42 43 44 45 46 47 48

49 50 51 11 52 12 53 13 54 14 55 15 56

57 6 58 7 59 8 60 9 61 10 62 63 64

FAT; in directory table is number 37 as starting block

19 20 57

38 18

52 53 54 55 -1

58 59 60 61 51

16

File subsystem

 Working with files requires several operations from the

operating system

 OS must:
 make a copy of file table in RAM

 for every file in use
 load file descriptor and extend it with location pointer

 create buffers

 …

 Files are manipulated through location pointer, also

known as file pointer
 at file open, file pointer is set to the start of the file

 with reading or writing data, file pointer is moved forward

17

buffers for
blocks

(clusters)

Process
address
space

API
functions

API call
using file
identifier

File
descriptors

Active file
descriptors

blocks
(clusters)

18

Using files

 OS provides interface for file access

 Examples:

int open (char *filename, int access, int perm);

int close (int handle);

int read (int handle, void *buffer, int nbyte);

int write (int handle, void *buffer, int nbyte);

int lseek (int fildes, int offset, int whence);

Operating system concepts

Distributed Systems

20

Distributed, parallel computing

 Distributed computing:
 more than one node – more than one computer,

interconnected with appropriate communication

mechanism (net, internet)

 Parallel computing:
 more than one processing element

 in single multiprocessor (or multi core) computer system

 in distributed systems

 the usual definition for “parallel computing” implies

a single system with shared memory, not distributed!

 Distributed application
 application whose parts are executing on more than one

node (using communication mechanisms provided by

network subsystem) for performing requested operation

21

Distributed architectures examples

 Client-server architecture
 server provides services for various clients

 clients use services from various servers to perform

requested operations

 mostly used architecture today
 examples: Web (HTTP), mail (SMTP/IMAP/POP), FTP,

instant messaging, database access

 3-tier, n-tier architecture
 client-server approach where client and/or server

functionality is divided into tiers (e.g. user-logic-data)

 Peer-to-peer architecture
 there is no master node, each node can act as client and

server

 e.g. SMTP (exchanging messages between mail servers),

DNS, routers, P2P file sharing

22

Operating system – network subsystem

 Network subsystem is very complex!
 layered architecture is used (required)

 ISO defines 7 layer referent model:OSI-RM

 In real world, TCP/IP model is used
 only 4 layers:

 application layer

 interpret (give meaning) to received data

 e.g. HTTP: GET /index.html HTTP/1.1

 transport layer

 connect send/received data with a

socket (application that uses it)

 internet layer (network layer from the picture)

 forward IP packets through nodes

toward destination node

 link layer (data link + physical layers)

 send/receive data between two nodes

23

continent backbone continent backbone
transcontinental

connections

IP
routers

regional network regional network

local network local network

computers computers

virtual
connection

Hierarchical Internet organization

24

Using network subsystem

 Two basic communication mechanisms:
 message passing interface

 send message to node

 wait for message from node (and read it upon receiving) or

process pending (received) messages

 mostly used when exchanged data is small

 e.g. UDP (Universal Datagram Protocol)

 virtual connections
 create virtual connection channel

 communicate through that channel with read/write (like with

files and pipes)

 protocol control transfer – ordering packets, data integrity, …

 mostly used for file transfer protocols (e.g. HTTP, SMTP,

FTP, …)

 e.g. TCP (Transmission Control Protocol)

25

Data sharing, synchronization ?

 No real shared memory!

 Virtual shared memory?
 identical memory segment at all nodes

 data change must be propagated (how?! - complex)

 Synchronization?
 “disable interrupts” or “Test and Set” won’t work

 no shared memory – original Dekker and Lamport won’t do

 new mechanisms are required based only on message

exchange mechanisms

 Synchronization (and data sharing) can be divided into:
 centralized mechanisms

 distributed mechanisms

26

Centralized synchronization of distributed nodes

 Central node decides who may enter critical sections

 All nodes send requests to central node
 when they receive response, they enter C.S.

 Upon exiting from C.S. node sends a message to central

node which then signals the next node

 Protocol is highly dependent on central node

 An variation of this protocol uses token as C.S. object
 token is passed in circular manner among nodes

 when a node receives the token it can enter its C.S.

 when leaving C.S. or if node doesn’t require the token, it

passes the token to the next node in chain

27

Distributed synchronization of distributed nodes

 Idea:
 all nodes that wants to enter C.S. send request to all other

nodes

 all nodes have request queue sorted by request time

 first request from queue is granted entrance – all nodes

confirm that by response message to corresponding node

 when leaving C.S. node sends message to all other nodes

– this request is then removed from queues and the next

one is allowed to enter

 Problems:
 different nodes may use different clocks

 messages don’t arrive instantly, and even not in the same

order as they were sent

 => local “time” can’t be used, but another mechanism must

be built: global events ordering

28

Global logical time

 To achieve global event ordering (not necessary

equivalent with time ordering!) a few rules must be

implemented

 Every node keeps track of its local logical time

 Every time a node sends a message to another node it

adds its local time-stamp to the message

 Every time a node receives a message – it updates its

logical time to a value that is larger than its previous

local time and the received time stamp

 When comparing events – compare their attached time

stamps!

 Algorithms that use those principles:
 Lamport's Distributed Mutual Exclusion Algorithm

 Ricart-Agrawala algorithm

