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Hard disk 

Hard disk is used for: 

 permanent data storage 
 when system goes down, its data are saved on disk 

 when system boots, operating system is loaded from disk 

 (compiled) programs and data are permanently saved on 

disk, from there loaded into memory and stored back 
 

 secondary memory 
 disk is used as auxiliary memory (in addition to RAM) 

 due to significant difference in speed (nanoseconds vs 

milliseconds), special techniques are used (described 

previously in memory management) 
 

 How are data stored on disk? 
 physical data organization on disk ? 

 logical representation (as used from operating system) ? 
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Physical data organization on disk (in theory) 
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Physical data organization on disk (in practice) 
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Addressing data on disk 

 Data unit = sector 
 sector sizes: 512 B, 1024 B 

 

 Sector’s physical “address”: 
 plate identifier 

 track identifier 

 sector identifier 

 

 Sector’s logical address: 
 electronic that manipulates with mechanical hard drive 

components “translates” physical address into logical one 

 all sectors represented as a linear array of sectors/blocks 

– linear “address” sector space 
 Logical block addressing – LBA 
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Hard drives characteristics (typical) 

 Capacity: ~100 GB to 2 TB 

 

 Physical size 3.5”, 2.5”, 1.8”, 1”, 0.85” 

 

 Rotation: ~5000 rpm to 15000 rpm (5400, 7200, 10000) 

 

 

 Data transfer rate: ~70 MB/s 

 

 Seek time: 2 to 15 ms; typical ~9 ms 
 time to move heads over 1/3 of tracks 

 “average” random disk access head movement 
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Files 

 Data on hard disk (and other media) are organized into 

files 
 

 File: set of data/information that are united somehow 
 

 File may contain: 
 program (code and data) 

 e.g. executable file or script (.exe; .out; .bat; .sh; …) 

 e.g. extensions, dynamic library (.dll; .so; …) 
 

 data (input or output) 
 documents (word, text files, HTML, …) 

 multimedia (pictures, videos, music, …) 

 … 
 

 other 
 OS data (like pagefile), … 
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File system  

 How to organize files on disk? 
 Physical placement: where (in which sectors)? 

 Logical organization: directories 

 Access, security, fragmentation, … ? 

 

  use of a File System 
 

 File system defines how to place data on disk and how 

to retrieve it 
 File table – data that defines a particular disk, its files and 

free space 
 each file has its descriptor in the file table 

 

 Operating system uses file system and provides 

operations like: 
 “create file”, “open file”, “close file”, “delete file”, “move file” 

 “write to file”, “read from file” 
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File descriptor 

 Every file on disk has a descriptor 

 

 Descriptor contents (mainly): 
 file name 

 directory (logical placement) 

 file type, file size 

 creation time, modification time, last access time 

 owner information 

 security information 

 access rights 

 … 

 data placement description (in which sectors/blocks) 
 data unit – block (cluster) 

 block size: 1, 2, 4, 8, 16, … consecutive sectors 
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File system examples (file placement descr.) 

 Disk may be divided into partitions 
 Every partition is managed separately (has its own file 

system) 
 e.g. part1: from block 0 to 10000, part2: from 10001 to 20000 

 

 NTFS 

 UNIX 
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File system examples – NTFS  

 MFT (Master File Table) 
 every file has a file descriptor in the MFT (even MFT itself) 

 

 Cluster numbering in NTFS: 
 LCN – Linear Cluster Number 

 partition is divided into clusters (blocks), e.g. starting with 

LCN=0 

 

 VCN – Virtual Cluster Number 
 each file uses a number of blocks 

 VCN represents virtual address inside the file: first part of the 

file is at VCN=0, second in VCN=1, … 

 

 Mapping from VCN to LCN is defined in the file descriptor 
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File system examples – UNIX i-node 

 File descriptor = i-node 

 For referencing file clusters, there are a dozen pointers in : 
 Ten (or twelve) direct pointers 

 pointers that directly point to blocks of the file's data  

 e.g. 5th pointer points to block on disk that holds 5th data block of file (file is 

divided into blocks) 

 one singly indirect pointer 
 a pointer that points to a block of pointers that then point to blocks of the 

file's data 

 one doubly indirect pointer 
 a pointer that points to a block 

 of pointers that point to other 

 blocks of pointers that then 

 point to blocks of the file's data 

 one triply indirect pointer 
 a pointer that points to a block 

 of pointers that point to other 

 blocks of pointers that point to 

 other blocks of pointers that 

 then point to blocks of the file's data 

(not shown here)  
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File system examples – NTFS & UNIX 

1 2 3 4 5 6 7 8 

9 10 11 12 13 14 15 16 

17 18   3 19   4 20   5 21 22 23 24 

25 26 27 28 29 30 31 32 

33 34 35 36 37   1 38   2 39 40 

41 42 43 44 45 46 47 48 

49 50 51  11 52  12 53  13 54  14 55  15 56 

57   6 58   7 59   8 60   9 61  10 62 63 64 

NTFS 

VCN LCN blocks 

1 37 2 

3 18 3 

6 57 5 

11 51 5 

VCN 

LCN 

parts of observed file 

parts of other files 

“UNIX” – first 13 pointers (in file descriptor) 

37 38 18 19 20 57 58 59 60 61 (x) 

51 52 53 54 55 (unused pointers) 
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File system examples – FAT (idea) 

1 2 3 4 5 6 7 8 

9 10 11 12 13 14 15 16 

17 18   3 19   4 20   5 21 22 23 24 

25 26 27 28 29 30 31 32 

33 34 35 36 37   1 38   2 39 40 

41 42 43 44 45 46 47 48 

49 50 51  11 52  12 53  13 54  14 55  15 56 

57   6 58   7 59   8 60   9 61  10 62 63 64 

FAT; in directory table is number 37 as starting block 

19 20 57 

38 18 

52 53 54 55 -1 

58 59 60 61 51 
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File subsystem 

 Working with files requires several operations from the 

operating system 

 OS must: 
 make a copy of file table in RAM 

 for every file in use 
 load file descriptor and extend it with location pointer 

 create buffers 

 … 

 

 Files are manipulated through location pointer, also 

known as file pointer 
 at file open, file pointer is set to the start of the file 

 with reading or writing data, file pointer is moved forward 
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Using files 

 OS provides interface for file access 

 Examples: 
 

int open  (char *filename, int access, int perm); 

int close (int handle); 

int read  (int handle, void *buffer, int nbyte); 

int write (int handle, void *buffer, int nbyte); 

 

int lseek (int fildes, int offset, int whence); 



Operating system concepts 

 

Distributed Systems 
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Distributed, parallel computing 

 Distributed computing: 
 more than one node – more than one computer, 

interconnected with appropriate communication 

mechanism (net, internet) 
 

 Parallel computing: 
 more than one processing element 

 in single multiprocessor (or multi core) computer system 

 in distributed systems 
 

 the usual definition for “parallel computing” implies 

a single system with shared memory, not distributed! 
 

 Distributed application 
 application whose parts are executing on more than one 

node (using communication mechanisms provided by 

network subsystem) for performing requested operation 
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Distributed architectures examples 

 Client-server architecture 
 server provides services for various clients 

 clients use services from various servers to perform 

requested operations 

 mostly used architecture today 
 examples: Web (HTTP), mail (SMTP/IMAP/POP), FTP, 

instant messaging, database access 
 

 3-tier, n-tier architecture 
 client-server approach where client and/or server 

functionality is divided into tiers (e.g. user-logic-data) 
 

 Peer-to-peer architecture 
 there is no master node, each node can act as client and 

server 

 e.g. SMTP (exchanging messages between mail servers), 

DNS, routers, P2P file sharing 
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Operating system – network subsystem 

 Network subsystem is very complex! 
 layered architecture is used (required) 

 

 ISO defines 7 layer referent model:OSI-RM 
 

 In real world, TCP/IP model is used 
 only 4 layers: 

 application layer 

 interpret (give meaning) to received data 

 e.g. HTTP: GET /index.html HTTP/1.1 

 transport layer 

 connect send/received data with a 

socket (application that uses it) 

 internet layer (network layer from the picture) 

 forward IP packets through nodes 

toward destination node 

 link layer (data link + physical layers) 

 send/receive data between two nodes 
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Using network subsystem 

 Two basic communication mechanisms: 
 message passing interface 

 send message to node 

 wait for message from node (and read it upon receiving) or 

process pending (received) messages 

 mostly used when exchanged data is small 

 e.g. UDP (Universal Datagram Protocol) 

 

 virtual connections 
 create virtual connection channel 

 communicate through that channel with read/write (like with 

files and pipes) 

 protocol control transfer – ordering packets, data integrity, … 

 mostly used for file transfer protocols (e.g. HTTP, SMTP, 

FTP, …) 

 e.g. TCP (Transmission Control Protocol) 
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Data sharing, synchronization ? 

 No real shared memory! 

 Virtual shared memory? 
 identical memory segment at all nodes 

 data change must be propagated (how?! - complex) 

 

 Synchronization? 
 “disable interrupts” or “Test and Set” won’t work 

 no shared memory – original Dekker and Lamport won’t do 

 new mechanisms are required based only on message 

exchange mechanisms 

 

 Synchronization (and data sharing) can be divided into: 
 centralized mechanisms 

 distributed mechanisms 
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Centralized synchronization of distributed nodes 

 Central node decides who may enter critical sections 

 

 All nodes send requests to central node 
 when they receive response, they enter C.S. 

 

 Upon exiting from C.S. node sends a message to central 

node which then signals the next node 

 

 Protocol is highly dependent on central node 

 

 An variation of this protocol uses token as C.S. object 
 token is passed in circular manner among nodes 

 when a node receives the token it can enter its C.S. 

 when leaving C.S. or if node doesn’t require the token, it 

passes the token to the next node in chain 
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Distributed synchronization of distributed nodes 

 Idea: 
 all nodes that wants to enter C.S. send request to all other 

nodes 

 all nodes have request queue sorted by request time 

 first request from queue is granted entrance – all nodes 

confirm that by response message to corresponding node 

 when leaving C.S. node sends message to all other nodes 

– this request is then removed from queues and the next 

one is allowed to enter 
 

 Problems: 
 different nodes may use different clocks 

 messages don’t arrive instantly, and even not in the same 

order as they were sent 

 => local “time” can’t be used, but another mechanism must 

be built: global events ordering 
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Global logical time 

 To achieve global event ordering (not necessary 

equivalent with time ordering!) a few rules must be 

implemented 
 

 Every node keeps track of its local logical time 

 Every time a node sends a message to another node it 

adds its local time-stamp to the message 

 Every time a node receives a message – it updates its 

logical time to a value that is larger than its previous 

local time and the received time stamp 

 When comparing events – compare their attached time 

stamps! 
 

 Algorithms that use those principles: 
 Lamport's Distributed Mutual Exclusion Algorithm 

 Ricart-Agrawala algorithm 


