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Abstract – In this paper two methods are presented. The 

first is a kinematic evaluation method for two different 

hexapod structures: standard Stewart platform manipulator 

with extensible struts and second structure with fixed strut 

lengths but sliding guideways on fixed platform. The second 

method addresses the forward kinematic problem where 

different mathematical representations are combined with 

various optimization algorithms to find a suitable 

combination that may be utilized in real-time environment. 

Additionally, we note the existence of equivalent trajectories 

of the mobile platform and suggest an adaptation to the 

solving method that, having satisfied certain assumptions, is 

able to successfully solve the forward kinematic problem in 

real-time conditions with very high precision. 

I. INTRODUCTION 

Parallel kinematic manipulators (PKM) have been 

rediscovered in the last decade as microprocessor’s power 

finally satisfies computing force required for their control. 

Its great payload capacity, stiffness and accuracy 

characteristic as result of their parallel structure make them 

superior to serial manipulators in many fields. 

One of the most accepted PKM is Stewart platform 

based manipulator, also known as hexapod or Gough 

platform. Hexapod, originally, consists of two platforms, 

one fixed on the floor or ceiling and one mobile, connected 

together via six extensible struts by spherical or other types 

of joints. That construction gives mobile platform 6-DOF 

(degree of freedom). Hexapod movement and control is 

achieved only through strut lengths changes. One variation 

to this structure, also observed here, is when struts are 

fixed in length but one of their ends is placed on guideway. 

Control is then obtained only by moving those joints on 

guideways. Although in this model the forces acting on 

struts aren’t just along the axis of the struts, like with the 

original Stewart’s design, practically attainable sliding 

characteristics of guideways make it very considerable 

structure for manipulators. 

One of the qualities we want from a manipulator is its 

good kinematic characteristics. Those characteristics have 

direct impact on manipulability and working speed of a 

manipulator. One part of this paper presents a method for 

calculating several kinematic parameters. The method can 

be used to optimize hexapod structure for better kinematic 

characteristics or combined with other methods were 

kinematic can be just one measure in optimization process.  

Second part of this paper deals with forward kinematics. 

The forward kinematic [7] of a parallel manipulator is the 

problem of finding the position and orientation of the 

mobile platform when the strut lengths are known. This 

problem has no known closed form solution for the most 

general 6-6 form of hexapod manipulator (with six joints 

on the base and six on the mobile platform). In this work 

several mathematical representations of the forward 

kinematic problem, in the form of optimization functions, 

are combined with various optimization algorithms and 

adaptation methods in order to find an efficient procedure 

that would allow for precise forward kinematic solving in 

real-time conditions. 

II. KINEMATIC EQUATIONS 

Standard Stewart Platform based manipulator as shown 

in Fig. 1 can be defined in many ways but most common 

set of parameters are: minimal and maximal struts length 

(lmin, lmax), radii of fixed and mobile platforms (r1, r2), joint 

placement defined with angle between closest joints for 

both platforms () and joint moving area (assuming 

cone with angle ). 
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Fig. 1. Stewart Platform manipulator 

For kinematic evaluation we need relation between 

actuators speed and end effector speed. Observing one 

vector chain through ith strut (Fig. 1), the following 

equation can be deducted: 
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(1) yields eq. (2), where v


and


are linear and angular end 

effector velocities. 

iiiii pvwqwq


    (2) 

Eq. (2) can be easily transformed in form of eq. (3) and 

then finally in matrix form as on eq. (4). We have a 

kinematic equation, where relation between end effector 

velocity and actuator velocity (strut lengths changes) is 

given. 
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The second observed hexapod model, shown in Fig. 2, 

differs from standard Stewart manipulator at base platform 

and struts. Strut lengths are constant and same for all struts 

but their joints on one side are placed on sliding guideways 

where actuators are placed. Parameters which describe this 

model differ only for base platform: ikB ,


 and ipB ,


 define 

ith guide way and ti as value between [0, 1] identify actual 

joint position. If we observe models like on Fig. 2, those 

vectors can be defined using four parameters: d as distance 

between closer parallel guide ways, r11 and r12 as radii of 

circles where guide ways ends are placed with height 

difference h, as shown on Fig. 3. 
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Fig. 2. Hexapod with fixed strut lengths 
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Fig. 3. Parameters that define hexapod structure 

Inverse kinematic for this model is slightly more 

complex than standard hexapod and can be computed 

using equations: 
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si is calculated from quadratic equation and therefore 

can give two possible joint position on same guide way. 

This problem must be solved in control procedures. 

From Fig. 2, for one vector chain through ith strut, the 

following equation can be deducted: 

iiiii ptwqlsb


  (6) 

Derivation of eq. (6) yields eq. (7), and with little more 

mathematical operations we get kinematic equation (8) 

very similar to first hexapod model. 
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End effector (tool) is placed on mobile platform with 

height ltool. Therefore, origin of local coordinate system of 

mobile platform is put in that point. 

Using inverse kinematic for any point and tool 

orientation, it is possible to compute mobile platform 

position and orientation. Struts lengths for first, or joint 

positions for second model can then be calculated. If strut 

lengths are within given ranges, or joints can be placed on 

guideways for 2nd model, and other constraints are 

fulfilled, as joint angle constraint and no collision between 

struts, than hexapod is capable of putting its end effector in 

given point with given orientation. In this way area 

reachable with given orientation – the working area, can be 

found by finding all points which satisfies all constraints. 

Assuming that manipulator is used for machining free 

surface pieces, working area can be better defined as area 

were manipulator can work for not just one but any 

required orientation. Required orientations which give 

optimal surface characteristics can usually be defined with 

vectors within a cone with defined angle as in Fig. 4. 

Working area calculated using this definition gives 

superior visual and numeric description of manipulator.  
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Fig. 4. Orientations used in calculations 



When dealing with 6-DOF hexapod manipulators, which 

on its end effector have tool on spindle, inverse kinematic 

can’t generally give unique result. This gives freedom to 

apriori choose rotation angle of moving platform as the 6th 

DOF. For simplicity, no rotation angle was used whenever 

such orientation was feasible. 

III. KINEMATIC PARAMETERS 

As equations (4) and (8) show, relation between end 

effector velocities and strut changes is given by a matrix 

commonly called jacobian. Kinematic characteristics must 

therefore be extracted from that matrix. Commonly used 

values for kinematic evaluation of manipulator are singular 

values of jacobian [1], [6]. Singular values of matrix A are 

calculated by formula shown in eq. (9), where λi is i-th 

eigenvalue of A. 

   6..2,1,  iAA
T

ii   
(

9) 

Geometrical meaning of singular values can be viewed 

trough equations (10) and (11). 
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If x


 is unity vector then xA

  is a hyperellipsoid with 

singular values as axis length values. If A is jacobian 

matrix and x


 is velocity, hyperellipsoid represent ability 

to generate end effector’s velocities in given directions. 

Hyperellipsoid volume is proportional to determinant of a 

jacobian. Ratio between maximum and minimum singular 

value is measure for homogeneity. The smaller that ratio is, 

the ability of generating speed is less dependent of 

direction. 

Practically, the greater the singular value is, the greater 

strut change is needed for achieving same end effector 

movement for that particular direction, and vice versa, the 

smaller singular value means less actuator activity is 

needed for end effector movement. Very small singular 

values can cause big problems. If very small actuator 

movement is enough to move end effector, than even 

errors as a result of imperfect material, temperature and 

pressure dilatation, can have big influence on end effector 

path. In other words, end effector can’t be controlled well 

enough. 

Three parameters based on singular values are usually 

called for kinematic evaluation:  

1. condition number: maxmin–better smaller values 

2. minimal singular value: min–better larger values 

3. manipulability: |det(J)|=Πi –better larger values. 

The method we propose to evaluate manipulator from a 

kinematic aspect is to calculate those three parameters 

trough whole workspace of the manipulator or just on 

some part of it. For every point where calculations are to 

be performed, those three parameters are calculated not 

only for one end effector orientation but for all orientations 

as shown on Fig. 4. The value for particular kinematic 

parameter is then calculated as average value. 

It is sometimes appropriate to calculate those values on 

entire volume or just in cross-section with vertical or 

horizontal plane to find a spot where kinematic 

characteristics are better. One such example is on Fig. 5. 

 

Fig. 5 Conditional number (left) and minimal singular number (right) 

Two hexapod models, first as on Fig. 1 and second as on 

Fig. 2, with parameters shown in TABLE I are evaluated. 

TABLE I 

Hexapod model parameters 

1st model 2nd model 

parametar value parameter value 

lmax 85 l 70 

lmin 45 r1 75 

r1 50 r2 10 

r2 25 h 20 

lalat 0 d 3.5 

α 0 rb2 30 

β 0 β 0 

max 45 lalat 0 

  max 45 

Working Area Volume 16919  16677 

Kinematic parameters are calculated over working area 

and average values are presented in TABLE II. 

TABLE II 

Average kinematic parameter values 

 1st model 2nd model 

 1.835 2.655 

min 1.022 1.225 

|det(J)| 5.842 51.177 

For comparison only, models proposed in [1], [3] and 

[4] are evaluated also and presented in [5]. Some of models 

have better parameters than 1st model shown in TABLE II, 

but with at least halved working area volume.  

IV. THE FORWARD KINEMATIC PROBLEM 

The forward kinematic relations for a hexapod machine 

can be mathematically formulated in several ways. Every 

representation of the problem can have its advantages and 

disadvantages which become emphasized when a different 

optimization algorithm is applied. 

A. The position and orientation of the mobile platform 

In order to define a forward kinematic problem we have 

to represent the actual hexapod configuration, i.e. the 

actual position and orientation of the mobile platform. The 

most common approach utilizes the three positional 

coordinates of the center of the mobile platform and three 



angles that define its orientation. The coordinates are 

represented by vector t

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and the three rotational angles are here defined as roll-

pitch-yaw angles  ,   and  . The angle values represent 

the consecutive rotation about the x, y and z axis, 

respectively [8]. The hexapod geometry is defined with six 

vectors for base and six vectors for mobile platform, which 

define the six joint coordinates on each platform: 
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The above vectors are represented in local coordinate 

systems of the base and mobile platform and are of 

constant value. The base and mobile platform are 

presumed to be planar, which can be perceived from the z 

coordinate of the joint vectors. The strut vectors il


 can 

then be expressed as 

6,..,1,  ipRtbl iii


, (

14) 

where R  is the rotational matrix, calculated from three 

rotational angles. If the position and orientation of the 

mobile platform is known, the length of each strut is 

  6,..,1,,  ipRtbDq iii


, (

15) 

where D represents the Euclidean distance between the 

vector pairs. For an arbitrary solution to a forward 

kinematic problem, i.e. arbitrary position and orientation of 

the mobile, the error can be expressed as the sum of 

squares of differences between the calculated and actual 

length values. Having stated the above relations, we can 

define the first optimization function and the related 

unknowns as 
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B. The canonical formulation of the forward kinematics 

The idea behind this approach [6] is to use the elements 

of the rotation matrix, rather than the angle values, to 

represent orientation: 
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Without loss of generality we can position the origins of 

the local coordinate systems of the base and mobile 

platform at the strut joints with index one, as shown in Fig. 

6, which gives us the following parameter values: 

0221111  yyyxyx pbppbb . (1

8) 
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Fig. 6 Positioning of coordinate systems for base and mobile platform 

After extensive simplifications, the forward kinematic 

can be expressed as a system of 9 equations with 9 

unknowns. Three of those 9 equations are of linear form, 

which can be used to reduce the number of variables 

without introducing additional complexity in the system. 

Three of the six variables tx, nx, ox, ty, ny and oy can be 

replaced with linear combinations of the other three, which 

leaves us with only six unknowns. We used that approach 

to define another target function as 
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and the constants' values can be found in [6] or [12]. 

In the scope of this work some other problem 

formulations have been used. Those formulations did not, 

however, show any advantages over the previous defined 

two, so they are omitted here. More information can be 

found in [12]. 

V. EXPERIMENTAL RESULTS 

The forward kinematic problem is presented as five (two 

of which are shown here) optimization functions for which 

the optimization algorithm has to find the minimum, the 

value of the functions being the error of the estimated 

solution. Several optimization methods have been applied 

to each of the functions in order to find an effective 

combination which would allow for real-time application. 

The algorithms applied in this work are Powell's method, 

Hooke-Jeeves', steepest descent search, Newton-Raphson's 

(NR) method, NR method with constant Jacobian and 

Fletcher-Powell algorithm.  

Solving of forward kinematic was simulated in static 

and dynamic conditions. The goal was to find the 

combination which would yield the best results considering 

the convergence, speed and accuracy. The most promising 

combinations were tested in dynamic conditions, where the 



algorithm had to track a preset trajectory of the mobile 

platform with as small error and as large sampling 

frequency as possible. Those combinations include Hooke-

Jeeves' and Fletcher-Powell algorithm with function F1, 

but the most successful optimization method was Newton-

Raphson's algorithm applied to function F2.  

In dynamic simulation, the starting hexapod 

configuration is known and serves as an initial solution. 

During the sampling period T the algorithm has to find the 

new solution, which will become the initial solution in the 

next cycle. Several hexapod movements were defined as 

time dependant functions of the position and orientation of 

mobile platform. One of those trajectories, hereafter 

denoted as A, is defined with 
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The results of the dynamic simulation are presented in 

the form of a graph where errors in the three rotation 

angles and three position coordinates of the mobile are 

pictured. The sampling period T was set to 1 ms, which 

equals to a 1000 Hz sampling frequency. The errors shown 

represent the absolute difference between the calculated 

and the actual hexapod configuration. Due to the large 

number of cycles, the error is defined as the biggest 

absolute error value in the last 100 ms, so the graphs in 

each point show the worst case in the last 100 ms of 

simulation. The errors are presented separately for angles, 

in degrees, and position coordinates. The errors for 

movement A and Newton-Raphson algorithm with function 

F2 are shown in Fig. 2 and Fig. 3. 
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Fig. 7 Absolute angle error ( = ,  = ,  = ),  

NR algorithm with F2, movement A 
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Fig. 8 Absolute coordinate error (x = , y = , z = ),  

NR algorithm with F2, movement A 

The achieved level of accuracy is very high as the 

absolute error does not exceed 10-12 both for angles and 

coordinates. Another trajectory is derived from the 

described one by enlarging some of the amplitudes in (20), 

which is denoted as movement B (the altered values are in 

boldface): 
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The movement B errors are shown in Fig. 4. While still 

low, the error for movement B has two distinctive peaks at 

certain points in simulated motion. What is the cause of 

those peaks? Mathematical analysis has shown ([9], [10], 

[11]) that there may exist up to 40 distinctive solutions for 

forward kinematic problem for Stewart platform with 

planar base and mobile platform for the same set of strut 

lengths. 
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Fig. 9 Absolute angle error ( = ,  = ,  = ),  

NR algorithm with F2, movement B 

Let us suppose that in one hexapod configuration there 

exists no other forward kinematic solution for actual set of 

strut lengths, but that in some other configuration there 

exist several of them. If hexapod in its movement passes 

through those two configurations, then at a certain point in 

between there has to be a division point where the number 

of solutions increases. In those division points the solving 

algorithm may, unfortunately, begin to follow any of the 

possible paths, because any of them represents a valid 

forward kinematic solution! That is exactly the problem 

that occurs in movement B: the algorithm may or may not 

follow the correct trajectory. If the latter is the case, than 

the absolute error looks like in Fig. 5. 
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Fig. 10 Absolute angle error ( = ,  = ,  = ),  
NR algorithm with F2, movement B - division 

The algorithm will randomly follow either the correct 

trajectory or the equivalent one. It is important to note that 

in both cases the optimization function remains very low 

(app. 10-30 to 10-20) during the whole process because both 

trajectories depict a valid solution to the forward kinematic 

problem. The problem is, only one of them represents the 

actual hexapod configuration in each point of time. 

Without any additional information about the hexapod 

configuration, such as may be obtained from extra 

transitional displacement sensors, there is unfortunately no 

way to determine which of the existent solutions to the 

forward kinematic problem for the same set of strut lengths 

describes the actual hexapod configuration. Nevertheless, 

with some assumptions we may devise a strategy that 



should keep the solving method on the right track. If the 

change of the direction of movement is relatively small 

during a single period, which is in this case only 1 ms, then 

we can try to predict the position of the mobile platform in 

the next cycle. We can use the solutions from the past 

cycles to construct a straight line and estimate the initial 

solution in the next iteration. Let the solution in the current 

iteration be 0P


 and the solutions from the last two cycles 

1P


 and 2P


. Then we can calculate the new initial solution 

using one of the following methods: 
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The above methods were tested in conjunction with NR 

algorithm and function F2 for all the simulated trajectories. 

The results are very good: the solving method was now 

able to track the correct solution during the whole 

simulation process for all three estimation methods. The 

number of conducted experiments was several hundred and 

every time the algorithm's error margin was below 10-11 

both for angles and coordinates. However, the described 

algorithm adaptation will only be successful if the 

assumption of a small direction change during a few 

iterations is valid. To test the algorithm's behaviour, 

simulated movement B was accelerated by factor 2, 4 and 

8, while maintaining the same cycle duration of 1 ms. Only 

by reaching the 8-fold acceleration, when the total 

movement time equals a very unrealistic half a second, did 

the algorithm produce significant errors, while still holding 

to the correct solution. 

VI. CONCLUSION 

Proposed kinematic evaluation method is pure 

computational and heavy time consuming. Model must be 

first defined and than evaluated. However, in regard to 

most other methods this method gives more realistic 

kinematic parameter values, because it use not just one end 

effector orientation but most orientations that can be asked 

for in manufacturing. Method can be easily combined with 

others hexapod evaluations such as working area or/and 

error analysis giving more powerful hexapod design tool. 

Combining several representations of the forward 

kinematic problem with optimization techniques, an 

efficient method for solving the forward kinematic was 

found. The solving method was able to determine the exact 

position and orientation of the mobile platform within 

insignificant error margins (less than 10 to the power of –

12 of the minimum hexapod dimension) and with 1000 Hz 

sampling frequency. 

The problem of equivalent trajectories was noted: 

because of the existence of multiple solutions to forward 

kinematics, there may exist more than one path that mobile 

platform can follow while having exactly the same strut 

lengths in every point of the way. It has to be said that 

every such path represents an equal correct solution of the 

forward kinematics, but only one of them represents the 

true mobile platform trajectory. An empirical algorithm 

was devised which can increase the probability of finding 

the right solution, and it proved itself successful in every 

test case. Unfortunately, it cannot be proven that it will do 

so in every imaginable movement of the mobile platform. 

However, the solving method will always find the right 

solution if the change in the position or moving direction 

of the mobile platform is relatively small during a few 

sampling periods. 
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