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Abstract – Hexapod characteristic analyzed in this paper is 

the effect of small errors within its elements (strut lengths, 

joint placement) which can be caused by manufacturing 

tolerances or setting up errors or other even unknown 

sources to end effector. If all error values are known or can 

be calculated then they can be included in a model which will 

eliminate their defective effect. In practice there are very few 

error elements that are known in advance. For all others their 

values can just be assumed. What can be done now is to find a 

way to approximate value for maximal end effector 

displacement. The method we propose is a numerical method 

which is based on differential equations of close loop vector 

chains. The method can be used to calculate maximal end 

effector error for specific position and also for validation of 

entire hexapod workspace area, as shown in this paper. 

 

I. INTRODUCTION 

 

Parallel kinematic manipulators (PKM) have recently 

been rediscovered as today’s microprocessor’s power 

satisfies computing force required for their control. Its 

great payload capacity, stiffness and accuracy 

characteristic as result of their parallel structure make them 

superior to serial manipulators in many fields. But serial 

manipulators are still foremost used because PKMs are 

mostly still under development, although there are already 

available such manipulators at the market. 

One of the most accepted PKM is Stewart platform 

based manipulator, also known as hexapod or Gough 

platform. Hexapod, originally, consists of two platforms, 

one fixed on the floor or ceiling and one mobile, connected 

together via six extensible struts by spherical or other types 

of joints. That construction gives mobile platform 6-DOF 

(degree of freedom). Hexapod movement and control is 

achieved only through strut lengths changes. One variation 

to this structure, also observed here, is when struts are 

fixed in length but one of their ends is placed on 

guideways. Control is then obtained only by moving those 

joints on guideways. Although in this model the forces 

acting on struts aren’t just along the axis of the struts, like 

with original design, practically attainable sliding 

characteristics of guideways make it very considerable 

structure for manipulators. 

Error models and algorithms that compensate errors for 

conventional machine tools cannot be used with hexapod 

parallel structure therefore a new approaches are needed. 

The effect of manufacturing tolerances on the accuracy 

was investigated by Wang and Masory [1] by modeling the 

legs as serial kinematic chains. S.M. Wang and K.F. 

Ehmann [2] present first and second order error models for 

a 6-DOF Stewart Platform manipulator using differential 

leg length changes. A.J. Patel and K.F. Ehmann [3] present 

an error analysis based on error model formed through 

differentiation of the kinematic equations. 

In this paper the last error model [3] is used, extended to 

other hexapod structure. Using worst case scenario an 

algorithm for error analysis is presented and shown on few 

models. 

 

II. HEXAPOD MODELS 

 

Standard Stewart Platform based manipulator as shown 

in Fig.1 can be defined in many ways but most common 

set of parameters are: minimal and maximal struts length 

(lmin, lmax), radii of fixed and mobile platforms (r1, r2), joint 

placement defined with angle between closest joints for 

both platforms () and joint moving area (assuming 

cone with angle ). 
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Fig. 1. Stewart Platform manipulator 

Inverse kinematic can be described with equation: 
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where iA


 and iB


 are joint position vectors on base and 

mobile platform, i
m A


 are joint position vectors of mobile 

platform in local coordinate system, T


 is translation vector 

between base and mobile systems, R  is orientation matrix 

of mobile platform, li are strut lengths calculated with 

inverse kinematic and d() is distance between two joints, at 

the beginning and end of struts. 

The second observed hexapod model, shown in Fig.2, 

differs from standard Stewart manipulator at base platform 

and struts. Strut lengths are constant and same for all struts 

but their joints on one side are placed on sliding guideways 



 

where actuators are placed. Parameters which describe this 

model differ only for base platform where guideways are 

placed: ikB ,


 and ipB ,


 define ith guide way and ti as value 

between [0, 1] identify actual joint position. If we observe 

models like on Fig.2, those vectors can be defined using 

four parameters: d as distance between closes parallel 

guide ways, r11 and r12 as radii of circles where guide ways 

ends are placed with height difference h. 
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Fig. 2. Hexapod with fixed strut lengths 

Inverse kinematic for this model is slightly more 

complex from standard hexapod and can be computed 

using equations: 
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si is calculated from quadratic equation and therefore 

can give two possible joint position on same guide way. 

This problem must be solved in control procedures. 

End effector (tool) is placed on mobile platform above 

the geometrical center of joints placed on that platform by 

height ltool. Therefore, origin of local coordinate system of 

mobile platform is placed in that point. Subsequently 

vectors i
m A


 are calculated for that origin. 

Using inverse kinematic for any point and tool 

orientation, it is possible to compute mobile platform 

position and orientation. Then struts lengths for first or 

joint positions for second model can be calculated. If strut 

lengths are within given ranges, or joints can be placed on 

guideways for 2nd model, and other constraints are 

fulfilled, as joint angle constraint and no collision between 

struts, than hexapod is capable putting its end effector in 

that point with given orientation. In this way a working 

area with given orientation can be found. 

Assuming that manipulator is used for machining free 

surface pieces, working area can be better defined as area 

were manipulator can work for any required orientation. 

Required orientations which give optimal surface 

characteristics usually can be defined with vectors within a 

cone with defined angle as in Fig. 5. Working area 

calculated using this definition gives superior visual and 

numeric description of manipulator.  

When dealing with 6-DOF hexapod manipulators, which 

on its end effector have tool on spindle, inverse kinematic 

can’t generally give unique result. This gives freedom to 

apriori choose rotation angle of moving platform as the 6th 

DOF. For simplicity, no rotation angle was used whenever 

such orientation was feasible. 

 

 

III. THE ERROR MODEL 

 

Control of hexapod manipulator is based on described 

inverse kinematic. However, that was valid only for 

models. In reality, because of unpredictable environment, 

some hexapod elements may have values different from 

nominal. This can be due to the assembly errors, elastic 

and thermical deformations, actuator errors and others 

error sources. Model that includes all sources of errors is 

hardly possible to implement, first, because of nonlinear 

dependent error sources, and second, because most of error 

elements can’t even be calculated or measured. What can 

be done is to give an approximate value for error at end 

effector if error sources are given as approximate values, 

just quantities, not directions. 

From Fig.1, for one vector chain through ith strut, the 

folowing equation can be deducted: 

i
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Differentiating this equation yields: 
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which can be interpreted as relations between errors in 

joint positions i
P

i ab


 ,  and actuator errors iq  with 

errors at end effector position r

  and orientation R . 

Furthermore, two more error elements are added to (4), 

errors in joint centre position, both on mobile and fixed 

platform: 
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Fig.3 shows one close-loop vector chain for ith strut for 

first hexapod model with included errors, whose values are 

intentionally enlarged. 
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Fig. 3. A vector chain with error components (1) 



 

Multiplying (5) with T
iw


, than replacing RR 
~

 , 

where   is orientation error vector, and with simple 

vector and mathematics transformations (5) becomes (6). 
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Equation (6) can be generalized and used in matrix 

form: 
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where 

 Tqqq 621 ... 


, (8) 
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With formula (7) error in position and orientation at end 

effector can be calculated if all errors are known or at least 

presumed. 

Formulas for the second hexapod model can be achieved 

following the same procedure. First, from Fig.2 subsequent 

equation can be written: 
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where il


 describe ith guide way orientation. Differentiating 

this equation, with 0


ib , 0


il  we get: 
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Adding errors in joint centre positions, both on mobile 

and fixed platform accordingly with Fig. 4, and replacing 

RR 
~

  formula becomes: 
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Equation (14) can be arranged as (15) and then written 

in matrix form (16) where matrices are defined with (17), 

(18), (19) and (20). 
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Equation (16) is an equivalent for (7) for model with 

fixed strut lengths. But as already said exact values for 

each error element must be known to calculate errors at 

end effector.  
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Fig. 4. A vector chain with error components (2) 
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What can be done if errors can only be approximated 

with some border values? Using worst case method and 

formulas (7) or (16) a maximal error can be found 

searching through all possible input error values. This 

method is presented in the next chapter. 

 

 

III. THE WORST CASE METHOD 

 

Error vector 


  for both hexapod models can be 

expressed in a form: 
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where x


 is vector of all error elements ( ,...,, ,, yixii bbq  ). 

For first hexapod model dimension of x


 is 78 and for 

second is 60. First three elements of 


  have different 

dimension than last three. For that reason search for 

maximal error must be divided in search for maximal end 

effector displacement error and search for maximal 

orientation error.  



 

In both cases error can be expressed with its absolute 

value, absolute error in position and absolute orientation 

error. Since this value is computed as square root from a 

sum of its squared components and because square root 

functions are growing function, we can simplify 

computation by calculating square of error. Let 


  

denote error vector in position or orientation and 

accordingly 
1

J  and 


K  denotes first or last three rows or 

columns of matrices 
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J  and K . Error can then be 

calculated as: 
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where A is an symmetric matrix with positive diagonal 

elements.  

Assuming that each input error may vary from -xi to +xi, 

search space can be greatly reduced to just corner points of 

an n-dimensional space. Even so, because number of 

corners is 2n and n is 78 or 60, problem is still too big for 

exact methods of computation. Obviously some numeric 

method must be used which will give some result in finite 

time, although it may not be the maximum we are looking 

for. 

Since error function is symmetric function, searching 

space can be further reduced by 50%.  

Next significant search space reduction can be made 

with closer look to formulas (10) and (20). Error vectors 

i
P a


  and i
Pd


 always appear together. So do vectors ib


  

and ic


in (10). If prior to calculation those two vectors 

were replaced by one, searching space would be reduced 

by factor 23 for every pair! In this way the original search 

space is reduced from 277 to a 241 for first and from 259 to 

241 for second model. 

Even that greatly reduced, the search space is still large. 

We used an approximate iterative numerical method very 

similar to coordinate axis search. 

 

 

IV. EXPERIMENTAL RESULTS 

 

The described method can be used to find maximal error 

in position and orientation for a single end effector pose or 

to evaluate possible errors in entire workspace area. We 

used the second approach which gives a mode to compare 

different hexapod models. 

An error value for a single point P


 is calculated as 

average number of errors for that point with every given 

orientation. Those orientations L


 are defined with a cone 

as shown on Fig. 5.  

Due to the long computation time we restricted error 

analysis to the working area only and only to errors in end 

effector position.  

After calculating errors for each point of hexapod 

working area, some values are extracted to characterize the 

model. Those include minimum, maximum, average and 

standard deviation for those errors. 
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Fig. 5. Orientations used in calculations 

Table 1 shows parameters for a first model of Stewart 

Platform based hexapod used in error analysis. 

TABLE 1. Parameters for the first hexapod model 

parameter value parameter value 

r1 50 α 30 

r2 25 β 30 

lmax 90  45 

lmin 50 all errors 0.01 

ltool 10 W.A.Volume1 31858 

Length unit isn’t specified because model can be scaled 

with any factor and relative aspect ratios would remain the 

same. For example, if the unit is centimetre than errors are 

also in centimetres. 

Error values that characterize model given by Table 1 

are shown in Table 2. 

TABLE 2. Error values for the first hexapod model 

ravg rmin rmax rstdev 

0.2382   

 

Graphical representation as shown in Fig. 6 can tell 

more about how errors are spread trough workspace. Fig. 6 

shows errors at cross section with plane x=0. Darker the 

point is the error is bigger. 

 

Fig. 6. Errors at cross section with plane x=0 (1) 

                                                           
1 Working area volume calculated with given parameters 



 

From central region down toward to the fixed platform, 

errors became smaller, while they increase towards upper 

working area boundaries. Abnormality in right half of Fig. 

6 is a result of numeric algorithm who didn’t find 

maximum in all points. 

Parameters for second hexapod model – model with 

fixed strut lengths - are shown in Table 3. 

TABLE 3. Parameters for the second hexapod model 

parameter value parameter value 

r11 75 ltool 10 

r12 10 β 30 

h 45  45 

d 10  

r2 10 all errors 0.01 

l 70 W.A.Volume 108060 

 

Table 4 shows calculated characteristic errors for the 

second hexapod model found in its workspace. 

TABLE 4. Error values for the second hexapod model 

ravg rmin rmax rstdev 

   

Errors are little bigger in comparison to the first model, 

and show much more variation. 

 

Fig. 7. Errors at cross section with plane x=0 (2) 

Fig. 7 shows errors distribution at cross section with 

plane x=0. It also shows the shape of workspace area 

which is more ordinary than workspace of standard 

Stewart platform manipulator. Workspace volume for 

second hexapod is more than three times bigger but that 

hexapod also takes much more space due to its different 

construction.  

As with first hexapod, error grows towards upper 

working area boundaries.  

 

V. CONCLUSION 

 

A numerical method for error analysis of two hexapod 

structures is presented. For input errors given with its 

boundary values, the method can compute maximal error at 

end effector, both in position and orientation.  

Evaluating errors through whole workspace gives a way 

to compare and validate hexapods with different 

parameters and their resistance to errors. In this manner 

search for set of hexapod parameters which minimize error 

influence can be made. 

Computationally, method is very intensive and 

depending on processor’s speed the computation can take a 

very long time to finish. 

Since method is based on differentiations it is applicable 

only for relatively small error values. It can also produce 

abnormally big errors which mean that end effector 

approaches singular area – area where an extra DOF 

appears that can’t be controlled. 

 

IV. ACKNOWLEDGMENT 

 

This work was done within the research project 

"Problem-Solving Environments in Engineering", 

supported by the Ministry of Science and Technology of 

the Republic of Croatia. 

 

X. REFERENCES 

 

[1] J. Wang and O. Masory, “On the Accuracy of a 

Stewart Platform – Part I - The Effect of 

Manufacturing Tolerances,” Proceedings of the 1993 

IEEE Int. Conference on Robotics and Automation, 

pp. 114-120. 

[2] S.M. Wang and K.F. Ehmann, “Error Model and 

Accuracy Analysis of a Six-DOF Stewart Platform,” 

Manufacturing Science and Engineering, 2-1, 1995, 

pp. 519-530. 

[3] A.J. Patel and K.F. Ehmann, “Volumetric Error 

Analysis of a Stewart Platform-Based Machine 

Tool,” Annals of the CIRP, vol. 47/1, pp. 287-290, 

1997. 

[4] R.S. Stoughton, T. Arai, “A Modified Stewart 

Platform Manipulator with Improved Dexterity” 

IEEE Trans. on Robotics and Automation, vol. 9, no. 

2, pp. 166-173, 1993. 

[5] T. Ropponen, T. Arai, “Accuracy Analysis of a 

Modified Stewart Platform Manipulator” Proc. of the 

IEEE Int. Conf. on Robotics and Automation, vol. 1, 

pp. 521-525, 1995. 

[6] T. Huang, D.J. Whitehouse, J. Wang, “The Local 

Dexterity, Optimal Architecture and Design Criteria 

of Parallel Machine Tools” Annals of the CIRP, vol. 

47/1, pp.347-351 1998. 

 

 


