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Abstract - This paper presents some experiments on 
Windows NT operating system trying to determine its timing 
limits. Experiments were concentrated on the context 
switching abilities in a multithreaded environment. For this 
purpose a program simulator is written and simulations 
performed. We detailed some characteristic times for 
different process priority classes and processor’s speed. In 
this way we try to determine usage of this operating system in 
time-constrained (real-time) environment. For comparison 
simulations were also performed on Windows 98 and Linux 
operating systems. 

 

 

I. INTRODUCTION 
 

The x86-based architecture has been making big steps 
into embedded-systems. Is it necessary to always build a 
custom program or operating system for them or can we 
use an existing one such as Windows NT? There are 
many reasons for using such operating system in 
embedded-system design. First, a tremendous amount of 
products and applications are available for it together with 
technical support from a great number of experienced users 
and the best development tools are available for them. 
Furthermore, companies are looking to standardize on only 
a few architectures and operating systems to keep 
development costs manageable. Also, users are familiar 
with it and those systems that look as it are popular with 
end users. With its graphical and networking facilities they 
simplify system development, freeing developers to focus 
on the application instead of the interfaces.  

Purposes of embedded systems vary from high accurate, 
demanded and life critical to entertainment and fun but in 
almost all applications they respond on specific external 
stimulus. In other words such systems must have adequate 
real-time capabilities. Designed for a desktop environment, 
observed operating system lacks many of the features that 
bring deterministic behavior to real-time operating 
systems. Therefore, there already exist some third-party 
real-time extensions for almost every member of the 
Windows family, particularly for Windows NT.  

In this paper we examine only current possibilities of the 
Windows NT alone, and also for comparison, Windows 98 
and Linux, without any extensions from third party 
suppliers.  

  

II. REAL-TIME PROGRAMMING FEATURES OF THE 
OBSERVED OPERATING SYSTEMS 

 
We can briefly describe real-time system as system 

where timely responses to the external requests are vital for 
the system and must be satisfied. In this paper we do not 
observe situations with great schedule complexity where 
there is a big problem to find adequate schedule to meet 
task's deadlines. Instead, we focus on the ability of the 
operating system to handle events and threads with highest 
possible priority trying to meet their deadlines.  

There are several settled requirements that an operating 
system must meet in order to be considered as a real-time 
operating system. The operating system must be 
multithreaded and preemptive and must support thread 
priority what ensures that higher priority task preempts 
lower priority tasks. The system has to support predictable 
thread synchronization mechanism and a system priority 
inheritance must exist. The operating system behavior 
must be predictable what means that information about 
system interrupts levels, calls and timing must be detailed. 

Target operating systems fulfill some of these demands. 
All of them are multithreaded, preemptive, support 
different priority classes for threads and processes and 
within each class different priority levels.  

Windows 98/NT have four priority classes (idle, normal, 
high and real-time) for processes and seven priority levels 
in each class (idle, below normal, normal, above normal, 
highest and time-critical) for threads. Base thread priority 
is then calculated from its process priority class and its 
priority level. Each thread has a dynamic priority. Threads 
with higher dynamic priority preempt threads with lower 
priority, while threads with the same priority share 
processor�s time in a timesharing policy. The operating 
system can boost and lower the dynamic priority of a 
thread to enhance its responsiveness, i.e. when a process is 
brought to or remove from the foreground. The system 
does not boost threads within real-time processes. On NT 
this boosting can be controlled or even disabled. Windows 
NT and Windows 98 behave different when a priority 
inversion occurs. Priority inversion occurs is situations 
when a high priority thread is locked on an object that 
owns a low priority thread. Another thread with lower 
priority from first, but higher than low priority thread will 
get all CPU time. In Windows NT scheduler solves this 
problem by randomly boosting the priority of the ready 



 

 

low priority threads. This ensures that with a few 
scheduling rounds low priority thread that owns the lock 
exit from critical section and high priority thread then 
continue its execution. In Windows 98 system recognizes 
low priority thread that hold a lock on which depend high 
priority thread. It then boosts a priority of a low priority 
thread up to the priority of the high priority thread. 

Linux has three priority classes that have different 
scheduling policy. First, non real-time policy works as 
timeshare. Threads in this priority class are scheduled in a 
fair scheduling policy where all threads get some CPU 
time regarding to the �nice� priority of their processes. 
Other two policies are real-time policies, one with 
timeshare policy and adjustable time slice (round robin) 
and the other with first-in-first-out (FIFO) policy. Threads 
in these policies are scheduled regarding its priority, thus 
real-time thread with higher priority preempts lower 
priority real-time thread. Real-time policies in Linux are 
available only with superuser privileges.  

 

III. THE REAL-TIME SYSTEM MODEL 

 

When an extern event occurs that need to be processed it 
invokes hardware interrupt. Regarding interrupt attributes 
special procedure is called. In Windows NT this procedure 
is named interrupt service routine (ISR). Its function is to 
determine event that pulled interrupt and to make only 
necessary processing. It then usually notifies the system 
and put an entry in a special queue. It is important that ISR 
finishes as quickly as possible because while it executes no 
other interrupt with same or low priority cannot be 
accepted and processed. Additional event processing will 
then be done according the queue at lower priority level. 
Because this queue is a FIFO structure one high priority 
task can be done after maybe many lower priority tasks 
whose were before in a queue. This disability reduces 
usage of Windows NT in hard real-time systems. Windows 
CE as operating system that arose from Windows NT and 
designed for embedded systems changed interrupt-
handling procedure. As interrupt arises ISR is called which 
then do minimal processing. It then releases the interrupt 
service thread (IST) which is waiting for that interrupt and 
which will process that interrupt. Time from event arise to 
event processing highly depend on capability of the OS to 
handle threads. If there are more events to process it is 
important that higher priority events are processed first. 
This means that OS must schedule threads appropriately 
with its priorities. This work is concerned on the capability 
of OS to handle multiple threads with different priorities. 

Our real-time system model consists of variable number 
of periodic and asynchronous tasks. Characteristic 
parameters of periodic task are its period time, 
computation time and deadline, as shown in Fig. 1.  

It is assumed that release times of periodic task is zero, 
that is the task is immediately ready to start when it arises 
in the system. Asynchronous task has also computation 
time and deadline but it appears asynchronously with 
Poisson arrival distribution. Our simulator is organized as a 

multithreaded program. First, the main thread reads the 
periodic and asynchronous task parameters from a file and 
creates one thread for each event series. After that, every 
created thread is used as a event generator. According to 
the input data, these threads calculate time periods to next 
events and sleep until that time. When one of the thread 
wakes up, it assigns task for processing that event to one 
another thread with appropriate priority. These threads are 
then scheduled only by operating system. Asynchronous 
tasks are assumed to have shorter computation time, 
deadline and are more urgent than periodic tasks. 

      ta   tr     ts          te     td                 ta+T

t
 

LEGEND: 
ta � arriving time 
tr � ready time 
ts � start time 
te � end time 
td � deadline 
T � period 

Fig. 1 Characteristic parameters of perodic task 

We assume that our real-time system is running with 
some background load. Changing this background we can 
observe its influence on critical threads and their handling. 

 

IV. EXPERIMENTAL RESULTS 

 

Real-time model was tested on Windows NT and then 
for comparison also on Windows 98 and Linux operating 
systems on x86-based PC (Pentium 133MHz, Pentium 
MMX 200MHz, and Celeron A 300MHz). Time 
measurements were made using operating system built-in 
time functions. Background load is changed from zero-
load to high load consisting of several computational 
extensive tasks in the background. Simulation was 
performed with two kinds of programs. First program 
always creates a new thread for every new event while 
second use existing thread. Events are generated as time 
period elapses for every event series. For this purpose 
Sleep function is used. While we can not control all system 
activities in simulations it happened that with two same 
subsequently simulations results very slightly differ. In 
tables were given average results for several simulations. 

The shortest time period that can be achieved on 
Windows NT with Sleep function is 10 milliseconds. This 
time is used as period time for almost all event series 
involved in ours experiments. Time was measured using 
functions whose use a counter with frequency little above 
1MHz ensuring accurate measurement in microsecond 
time units. 

Table I show times needed for creating new thread and 
make it run on different processors. Threads were created 
within processes with different priority class: normal, high 
and real-time. It is given minimum time, average time and 
average time on loaded system achieved for thread 
creation. 



 

 

TABLE I 
THREAD CREATION TIMES ON WINDOWS NT 

priority class normal high real-time 

processor tmin
a tave taveL

b tmin tave taveL tmin tave taveL 

P133c 714 791 830 700 836 870 700 852 880 
P200 421 498 533 427 522 548 429 516 540 
P300 280 356 317 292 351 345 291 335 333 

a tmin and tave are minimum and average thread creation time in microseconds 
b taveL is average thread creation time on loaded system in microseconds 
c P133 stands for Pentium 133 MHz, P200 for Pentium 200 MHz MMX and P300 for Celeron A 300 MHz 

 

TABLE II 
THREAD CONTEXT SWITCH TIMES ON WINDOWS NT 

priority class Normal high real-time 

processor t1a t4 t20 t1 t4 t20 t1 t4 t20 

P133 34 562 800 41 587 805 39 581 831 
P200 15 511 477 18 509 515 18 514 516 
P300 12 479 444 11 483 514 11 507 506 

a t1 stands for switch time when there is only one event series with 300 µsec processing time, t4 for switching time when there is four 
event series with 150 µsec processing time and t20 for switching time when there is 20 event series every with 14 µsec processing time 

 

Thread creation times are in range from around 300 µsec 
on a fast processor to almost 800 µsec on a slower 
processor. These times show us that thread creation is very 
time consuming operation and it is not suitable for time 
critical programs. Fig. 2. shows us how long it would take 
to process different numbers of events that appear at the 
same time if we use this method for event processing and 
processing time for one event is about 150 µsec.  
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Fig. 2. Total processing time for events using method that creates a new 
thread for every new event (on Windows NT) 

There is a very little difference in these times over 
different process class. High and real-time threads take a 
few microseconds more than threads in normal priority 
class. 

When period elapse event generator thread release a 
specific thread waiting for that event. Semaphores were 
used as synchronization objects, so that time written in 
Table II includes context switching time (time needed to 
change current running thread with other ready thread) and 
semaphore operation overhead. Times under t1 represent 
average context switching time between one event 
generator thread and a thread waiting for processing that 
event. This is actually average time achieved in 
experiments with no background load. t4 represent 
maximal average switching time when there were four 
event series, with four threads as event generators and 
another four threads waiting for those events.  
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Fig. 3. Total processing time for events using method that uses existing 

threads for new events (on Windows NT) 



 

 

As we were restricted with ten milliseconds as minimal 
period between two events for each series all events within 
series with same period arise at the same time. While event 
generator threads have higher priority than event 
processing threads (analogous to ISR and IST) they were 
scheduled first. First event is then processed, followed by 
second, third and fourth. The longest time from event arise 
to start of event processing in this case is time needed to 
schedule event generator threads increased by processing 
time for all but last event. This time highly depend on 
event processing time and for this reason processing time 
is set to about 150 µsec for four series and about 14 µsec 
for twenty series. Otherwise, total event processing time 
will dramatically increase over reasonable deadlines. 

Form Fig. 3. we can see how long it would take to 
process variant number of events if we use existing threads 
to handle events and event-processing time is 150 µsec. 
Dominant factor in this method becomes event-processing 
time if it is significantly greater than kernel overhead from 
thread switching time and synchronization mechanism. 
This is contrary to the first method where the overhead of 
thread creation is even greater than useful processing. 

Unfortunately, even with real-time priority class and 
single event series there is almost always a few situations 
(in ten seconds simulation time) when deadlines were not 
met. Table III shows average number of missed deadlines 
with different number of event series with different 
event-processing times. Reasons for these failures come 
from the operating system and its sometime unpredictable 
system activity. These, even rare, unexpected delays in 
response to events show that Windows NT lacks 
predictable behavior that an OS must have to be used in 
hard real-time systems. 

TABLE III 
NUMBER OF OMITTED DEADLINES ON WINDOWS NTa 

#series processing(µsec) #events #failures 
1 300 1000 3 
2 300 2000 4 
4 150 4000 10 

4+1b 100 4170 9 
7+3c 50 3720 17 
10 33 10000 18 
20 13 20000 29 
30 4 30000 12 
40 4 40000 24 

a on a Pentium 200 MMX processor with 1 msec deadline 
b four periodic and one sporadic series 
c seven periodic and three sporadic series 

The same simulator program is used on Windows 98 
operating system and Pentium 200 MMX processor. 
Although Sleep function on that operating system really 
pauses calling thread for a given number of milliseconds 
down to one-millisecond time units the same parameters 
were used as on Windows NT. Table IV shows thread 
creation time and context switching time. Those times are 
significantly greater than on Windows NT. Thread creation 
and context switching times are about twice longer. 

Oppose to Windows NT on Windows 98 were not detected 
irregular response delays. 

TABLE IV 
THREAD CREATION AND SWITCHING TIMES ON WINDOWS 98 

 thread creation 
(µsec) 

context 
switch (µsec) 

priority class tmin tave tmin tave 
normal 776 899 35 44 

high 777 908 45 52 
real-time 782 805 45 50 

 

The same simulator program was ported to Linux with 
necessary minor change. These changes include thread 
manipulation calls and time measurement functions. 
Although Linux posses sleep function that gets time in 
microsecond (usleep) it actually wait in much longer 
milliseconds time units (10-30) in this kernel version 
(2.2.3) on Pentium 200 MMX processor.  

In Table V are listed characteristic times for thread 
operations. Thread creation times are little shorter than on 
Windows NT while thread switching times are almost 
twice longer than on Windows NT. Unexpected delays 
were not detected while using real-time priority threads. 

TABLE V 
THREAD CREATION AND SWITCHING TIMES ON LINUX 

 thread creation 
(µsec) 

context 
switch (µsec) 

thread priority  tmin tave tmin tave 
Normal 332 415 34 53 

real-time (FIFO) 332 412 32 33 

 

Fig. 4. presents a comparison of thread characteristic 
times achieved on all tested operating systems. Windows 
NT have shortest thread switching overhead while Linux 
has faster thread creation. Windows 98 takes around twice 
more time to perform those operations than them. 
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Fig. 4. Comparison of thread create time and context switching time 

between threads on Windows NT, Windows 98 and Linux 

Forcing the system with a great number of events we 
can experimentally find a limit where context-switching 



 

 

time between multiple threads becomes dominant and 
degrades system ability to react on events. If we set event 
processing time to minimum (few microseconds or less) 
number of events that system can handle in shortest period 
can be calculated from that period time and from context 
switching time. We simply divide period with doubled 
context switching time and get that number. Fig. 5. shows 
calculated and experimentally achieved maximal number 
of events than tested operating systems can handle in a 
period time of ten milliseconds on the system with same 
processor (Pentium 200 MMX). These numbers show us 
operating systems limits caused only by switching time 
overhead and synchronization mechanism. 
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Fig. 5. Calculated and experimentally achieved maximal number of 

events that an OS can handle in 10 msec period using a constant number 
of threads for event processing 

If we put some event processing time in simulator 
number of processed events within one period will drop 
down. Calculated maximal numbers and maximal numbers 
achieved with simulations differs significantly only on 
Windows 98 where overhead of context switching time 
grows when there are more than 70 events (140 active 
threads). 

 

 

V. CONCLUSION 

 

Comparing two kinds of real-time program organization, 
one that creates thread when an event occurs, and second 
that uses pre-created threads, we conclude that thread 
creation is very expensive operation in Windows NT. 
Thus, the first method is not suitable for a real-time 
system. With the second method we obtain acceptable 
results for reasonable number of event series even at very 
high background loads.  

Increasing number of event series that explicitly 
increases the number of simultaneously active real-time 
priority threads in the system we reach the limit of about 
250 events when the system can not appropriately respond 
due to the thread context switching time overhead. 
Operating systems correctly respects thread�s priorities so 
threads with lower priority first miss their deadlines when 
all deadlines can not be met. 

We concluded that our methodology is valuable 
experimental tool for timing analysis of operating systems. 
In our future work we are planning to include experiments 
with Windows CE that is claimed to be an operating 
system designed for embedded systems. 
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