

Time-Constrained Programming in Windows NT Environment

Leonardo Jelenković, Leo Budin
University of Zagreb

Faculty of Electrical Engineering and Computing

Unska 3, HR-10000 Zagreb, Croatia

{leonardo.jelenkovic, leo.budin}@fer.hr

Abstract - This paper presents some experiments on
Windows NT operating system trying to determine its timing
limits. Experiments were concentrated on the context
switching abilities in a multithreaded environment. For this
purpose a program simulator is written and simulations
performed. We detailed some characteristic times for
different process priority classes and processor’s speed. In
this way we try to determine usage of this operating system in
time-constrained (real-time) environment. For comparison
simulations were also performed on Windows 98 and Linux
operating systems.

I. INTRODUCTION

The x86-based architecture has been making big steps
into embedded-systems. Is it necessary to always build a
custom program or operating system for them or can we
use an existing one such as Windows NT? There are
many reasons for using such operating system in
embedded-system design. First, a tremendous amount of
products and applications are available for it together with
technical support from a great number of experienced users
and the best development tools are available for them.
Furthermore, companies are looking to standardize on only
a few architectures and operating systems to keep
development costs manageable. Also, users are familiar
with it and those systems that look as it are popular with
end users. With its graphical and networking facilities they
simplify system development, freeing developers to focus
on the application instead of the interfaces.

Purposes of embedded systems vary from high accurate,
demanded and life critical to entertainment and fun but in
almost all applications they respond on specific external
stimulus. In other words such systems must have adequate
real-time capabilities. Designed for a desktop environment,
observed operating system lacks many of the features that
bring deterministic behavior to real-time operating
systems. Therefore, there already exist some third-party
real-time extensions for almost every member of the
Windows family, particularly for Windows NT.

In this paper we examine only current possibilities of the
Windows NT alone, and also for comparison, Windows 98
and Linux, without any extensions from third party
suppliers.

II. REAL-TIME PROGRAMMING FEATURES OF THE
OBSERVED OPERATING SYSTEMS

We can briefly describe real-time system as system

where timely responses to the external requests are vital for
the system and must be satisfied. In this paper we do not
observe situations with great schedule complexity where
there is a big problem to find adequate schedule to meet
task's deadlines. Instead, we focus on the ability of the
operating system to handle events and threads with highest
possible priority trying to meet their deadlines.

There are several settled requirements that an operating
system must meet in order to be considered as a real-time
operating system. The operating system must be
multithreaded and preemptive and must support thread
priority what ensures that higher priority task preempts
lower priority tasks. The system has to support predictable
thread synchronization mechanism and a system priority
inheritance must exist. The operating system behavior
must be predictable what means that information about
system interrupts levels, calls and timing must be detailed.

Target operating systems fulfill some of these demands.
All of them are multithreaded, preemptive, support
different priority classes for threads and processes and
within each class different priority levels.

Windows 98/NT have four priority classes (idle, normal,
high and real-time) for processes and seven priority levels
in each class (idle, below normal, normal, above normal,
highest and time-critical) for threads. Base thread priority
is then calculated from its process priority class and its
priority level. Each thread has a dynamic priority. Threads
with higher dynamic priority preempt threads with lower
priority, while threads with the same priority share
processor�s time in a timesharing policy. The operating
system can boost and lower the dynamic priority of a
thread to enhance its responsiveness, i.e. when a process is
brought to or remove from the foreground. The system
does not boost threads within real-time processes. On NT
this boosting can be controlled or even disabled. Windows
NT and Windows 98 behave different when a priority
inversion occurs. Priority inversion occurs is situations
when a high priority thread is locked on an object that
owns a low priority thread. Another thread with lower
priority from first, but higher than low priority thread will
get all CPU time. In Windows NT scheduler solves this
problem by randomly boosting the priority of the ready

low priority threads. This ensures that with a few
scheduling rounds low priority thread that owns the lock
exit from critical section and high priority thread then
continue its execution. In Windows 98 system recognizes
low priority thread that hold a lock on which depend high
priority thread. It then boosts a priority of a low priority
thread up to the priority of the high priority thread.

Linux has three priority classes that have different
scheduling policy. First, non real-time policy works as
timeshare. Threads in this priority class are scheduled in a
fair scheduling policy where all threads get some CPU
time regarding to the �nice� priority of their processes.
Other two policies are real-time policies, one with
timeshare policy and adjustable time slice (round robin)
and the other with first-in-first-out (FIFO) policy. Threads
in these policies are scheduled regarding its priority, thus
real-time thread with higher priority preempts lower
priority real-time thread. Real-time policies in Linux are
available only with superuser privileges.

III. THE REAL-TIME SYSTEM MODEL

When an extern event occurs that need to be processed it
invokes hardware interrupt. Regarding interrupt attributes
special procedure is called. In Windows NT this procedure
is named interrupt service routine (ISR). Its function is to
determine event that pulled interrupt and to make only
necessary processing. It then usually notifies the system
and put an entry in a special queue. It is important that ISR
finishes as quickly as possible because while it executes no
other interrupt with same or low priority cannot be
accepted and processed. Additional event processing will
then be done according the queue at lower priority level.
Because this queue is a FIFO structure one high priority
task can be done after maybe many lower priority tasks
whose were before in a queue. This disability reduces
usage of Windows NT in hard real-time systems. Windows
CE as operating system that arose from Windows NT and
designed for embedded systems changed interrupt-
handling procedure. As interrupt arises ISR is called which
then do minimal processing. It then releases the interrupt
service thread (IST) which is waiting for that interrupt and
which will process that interrupt. Time from event arise to
event processing highly depend on capability of the OS to
handle threads. If there are more events to process it is
important that higher priority events are processed first.
This means that OS must schedule threads appropriately
with its priorities. This work is concerned on the capability
of OS to handle multiple threads with different priorities.

Our real-time system model consists of variable number
of periodic and asynchronous tasks. Characteristic
parameters of periodic task are its period time,
computation time and deadline, as shown in Fig. 1.

It is assumed that release times of periodic task is zero,
that is the task is immediately ready to start when it arises
in the system. Asynchronous task has also computation
time and deadline but it appears asynchronously with
Poisson arrival distribution. Our simulator is organized as a

multithreaded program. First, the main thread reads the
periodic and asynchronous task parameters from a file and
creates one thread for each event series. After that, every
created thread is used as a event generator. According to
the input data, these threads calculate time periods to next
events and sleep until that time. When one of the thread
wakes up, it assigns task for processing that event to one
another thread with appropriate priority. These threads are
then scheduled only by operating system. Asynchronous
tasks are assumed to have shorter computation time,
deadline and are more urgent than periodic tasks.

 ta tr ts te td ta+T

t

LEGEND:
ta � arriving time
tr � ready time
ts � start time
te � end time
td � deadline
T � period

Fig. 1 Characteristic parameters of perodic task

We assume that our real-time system is running with
some background load. Changing this background we can
observe its influence on critical threads and their handling.

IV. EXPERIMENTAL RESULTS

Real-time model was tested on Windows NT and then
for comparison also on Windows 98 and Linux operating
systems on x86-based PC (Pentium 133MHz, Pentium
MMX 200MHz, and Celeron A 300MHz). Time
measurements were made using operating system built-in
time functions. Background load is changed from zero-
load to high load consisting of several computational
extensive tasks in the background. Simulation was
performed with two kinds of programs. First program
always creates a new thread for every new event while
second use existing thread. Events are generated as time
period elapses for every event series. For this purpose
Sleep function is used. While we can not control all system
activities in simulations it happened that with two same
subsequently simulations results very slightly differ. In
tables were given average results for several simulations.

The shortest time period that can be achieved on
Windows NT with Sleep function is 10 milliseconds. This
time is used as period time for almost all event series
involved in ours experiments. Time was measured using
functions whose use a counter with frequency little above
1MHz ensuring accurate measurement in microsecond
time units.

Table I show times needed for creating new thread and
make it run on different processors. Threads were created
within processes with different priority class: normal, high
and real-time. It is given minimum time, average time and
average time on loaded system achieved for thread
creation.

TABLE I
THREAD CREATION TIMES ON WINDOWS NT

priority class normal high real-time

processor tmin
a tave taveL

b tmin tave taveL tmin tave taveL

P133c 714 791 830 700 836 870 700 852 880
P200 421 498 533 427 522 548 429 516 540
P300 280 356 317 292 351 345 291 335 333

a tmin and tave are minimum and average thread creation time in microseconds
b taveL is average thread creation time on loaded system in microseconds
c P133 stands for Pentium 133 MHz, P200 for Pentium 200 MHz MMX and P300 for Celeron A 300 MHz

TABLE II
THREAD CONTEXT SWITCH TIMES ON WINDOWS NT

priority class Normal high real-time

processor t1a t4 t20 t1 t4 t20 t1 t4 t20

P133 34 562 800 41 587 805 39 581 831
P200 15 511 477 18 509 515 18 514 516
P300 12 479 444 11 483 514 11 507 506

a t1 stands for switch time when there is only one event series with 300 µsec processing time, t4 for switching time when there is four
event series with 150 µsec processing time and t20 for switching time when there is 20 event series every with 14 µsec processing time

Thread creation times are in range from around 300 µsec
on a fast processor to almost 800 µsec on a slower
processor. These times show us that thread creation is very
time consuming operation and it is not suitable for time
critical programs. Fig. 2. shows us how long it would take
to process different numbers of events that appear at the
same time if we use this method for event processing and
processing time for one event is about 150 µsec.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 4 10 20
Number of events

To
ta

l p
ro

ce
ss

in
g

tim
e

(
se

c)

P133

P200

P300

Fig. 2. Total processing time for events using method that creates a new
thread for every new event (on Windows NT)

There is a very little difference in these times over
different process class. High and real-time threads take a
few microseconds more than threads in normal priority
class.

When period elapse event generator thread release a
specific thread waiting for that event. Semaphores were
used as synchronization objects, so that time written in
Table II includes context switching time (time needed to
change current running thread with other ready thread) and
semaphore operation overhead. Times under t1 represent
average context switching time between one event
generator thread and a thread waiting for processing that
event. This is actually average time achieved in
experiments with no background load. t4 represent
maximal average switching time when there were four
event series, with four threads as event generators and
another four threads waiting for those events.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 4 10 20
Number of events

To
ta

l p
ro

ce
ss

in
g

tim
e

(
se

c)

P133

P200

P300

Fig. 3. Total processing time for events using method that uses existing

threads for new events (on Windows NT)

As we were restricted with ten milliseconds as minimal
period between two events for each series all events within
series with same period arise at the same time. While event
generator threads have higher priority than event
processing threads (analogous to ISR and IST) they were
scheduled first. First event is then processed, followed by
second, third and fourth. The longest time from event arise
to start of event processing in this case is time needed to
schedule event generator threads increased by processing
time for all but last event. This time highly depend on
event processing time and for this reason processing time
is set to about 150 µsec for four series and about 14 µsec
for twenty series. Otherwise, total event processing time
will dramatically increase over reasonable deadlines.

Form Fig. 3. we can see how long it would take to
process variant number of events if we use existing threads
to handle events and event-processing time is 150 µsec.
Dominant factor in this method becomes event-processing
time if it is significantly greater than kernel overhead from
thread switching time and synchronization mechanism.
This is contrary to the first method where the overhead of
thread creation is even greater than useful processing.

Unfortunately, even with real-time priority class and
single event series there is almost always a few situations
(in ten seconds simulation time) when deadlines were not
met. Table III shows average number of missed deadlines
with different number of event series with different
event-processing times. Reasons for these failures come
from the operating system and its sometime unpredictable
system activity. These, even rare, unexpected delays in
response to events show that Windows NT lacks
predictable behavior that an OS must have to be used in
hard real-time systems.

TABLE III
NUMBER OF OMITTED DEADLINES ON WINDOWS NTa

#series processing(µsec) #events #failures
1 300 1000 3
2 300 2000 4
4 150 4000 10

4+1b 100 4170 9
7+3c 50 3720 17
10 33 10000 18
20 13 20000 29
30 4 30000 12
40 4 40000 24

a on a Pentium 200 MMX processor with 1 msec deadline
b four periodic and one sporadic series
c seven periodic and three sporadic series

The same simulator program is used on Windows 98
operating system and Pentium 200 MMX processor.
Although Sleep function on that operating system really
pauses calling thread for a given number of milliseconds
down to one-millisecond time units the same parameters
were used as on Windows NT. Table IV shows thread
creation time and context switching time. Those times are
significantly greater than on Windows NT. Thread creation
and context switching times are about twice longer.

Oppose to Windows NT on Windows 98 were not detected
irregular response delays.

TABLE IV
THREAD CREATION AND SWITCHING TIMES ON WINDOWS 98

 thread creation
(µsec)

context
switch (µsec)

priority class tmin tave tmin tave
normal 776 899 35 44

high 777 908 45 52
real-time 782 805 45 50

The same simulator program was ported to Linux with
necessary minor change. These changes include thread
manipulation calls and time measurement functions.
Although Linux posses sleep function that gets time in
microsecond (usleep) it actually wait in much longer
milliseconds time units (10-30) in this kernel version
(2.2.3) on Pentium 200 MMX processor.

In Table V are listed characteristic times for thread
operations. Thread creation times are little shorter than on
Windows NT while thread switching times are almost
twice longer than on Windows NT. Unexpected delays
were not detected while using real-time priority threads.

TABLE V
THREAD CREATION AND SWITCHING TIMES ON LINUX

 thread creation
(µsec)

context
switch (µsec)

thread priority tmin tave tmin tave
Normal 332 415 34 53

real-time (FIFO) 332 412 32 33

Fig. 4. presents a comparison of thread characteristic
times achieved on all tested operating systems. Windows
NT have shortest thread switching overhead while Linux
has faster thread creation. Windows 98 takes around twice
more time to perform those operations than them.

18 50 33

0

100

200

300

400

500

600

700

800

NT 98 Linux

Ti
m

e
(

se
c)

Thread creation time

Context switching time

Fig. 4. Comparison of thread create time and context switching time

between threads on Windows NT, Windows 98 and Linux

Forcing the system with a great number of events we
can experimentally find a limit where context-switching

time between multiple threads becomes dominant and
degrades system ability to react on events. If we set event
processing time to minimum (few microseconds or less)
number of events that system can handle in shortest period
can be calculated from that period time and from context
switching time. We simply divide period with doubled
context switching time and get that number. Fig. 5. shows
calculated and experimentally achieved maximal number
of events than tested operating systems can handle in a
period time of ten milliseconds on the system with same
processor (Pentium 200 MMX). These numbers show us
operating systems limits caused only by switching time
overhead and synchronization mechanism.

278

100

152

250

70

150

0

50

100

150

200

250

300

NT W98 Linux

M
ax

im
al

 n
um

be
r o

f e
ve

nt
s

Calculated

Simulation results

Fig. 5. Calculated and experimentally achieved maximal number of

events that an OS can handle in 10 msec period using a constant number
of threads for event processing

If we put some event processing time in simulator
number of processed events within one period will drop
down. Calculated maximal numbers and maximal numbers
achieved with simulations differs significantly only on
Windows 98 where overhead of context switching time
grows when there are more than 70 events (140 active
threads).

V. CONCLUSION

Comparing two kinds of real-time program organization,
one that creates thread when an event occurs, and second
that uses pre-created threads, we conclude that thread
creation is very expensive operation in Windows NT.
Thus, the first method is not suitable for a real-time
system. With the second method we obtain acceptable
results for reasonable number of event series even at very
high background loads.

Increasing number of event series that explicitly
increases the number of simultaneously active real-time
priority threads in the system we reach the limit of about
250 events when the system can not appropriately respond
due to the thread context switching time overhead.
Operating systems correctly respects thread�s priorities so
threads with lower priority first miss their deadlines when
all deadlines can not be met.

We concluded that our methodology is valuable
experimental tool for timing analysis of operating systems.
In our future work we are planning to include experiments
with Windows CE that is claimed to be an operating
system designed for embedded systems.

VI. ACKNOWLEDGMENT

This work was done within the research project
"Problem-Solving Environments in Engineering",
supported by the Ministry of Science and Technology of
the Republic of Croatia.

REFERENCES

[1] N. Nissanke, Realtime Systems, Prentice Hall Series in Computer

Science, Prentice Hall, London, 1997

[2] J. Xu and D.L. Parnas, �On Satisfying Timing Constraints in Hard-
Real-Time Systems,� IEEE Trans. Software Eng., vol. 19, Jan.
1993, pp. 70-84.

[3] R. Gerber, S. Hong, M. Saksena, �Guaranteeing Real-Time
Requirements With Resource-Based Calibration of Periodic
Processes,� IEEE Trans. Software Eng., vol. 21, July 1995, pp. 579-
592.

[4] R.A. Quinnell, �Tackle real-time applications with Windows NT,�
Design Feature, EDN Access, Sept. 1997

[5] A. Silberschatz and P.B. Galvin, Operating System Concepts,
Addison-Wesley Publishing Company, Reading, Massachusetts,
1994

