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Abstract: This paper presents experiments with multithreading in several computationally 
intensive examples in which the time of parallel, multithreaded execution is significantly 
shorter than sequential, single-threaded. Algorithms used in these examples are not fully 
optimized for that wasn't the goal. The intention was to find out multithreading mechanism 
and structure and how to improve the performance on a multitasking, multi-user and 
multiprocessor operating system. The target operating system was SunOS 5.5.1 on  two-
processor workstation Ultra sparc 2. 
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1. Introduction 
The word multithreading can be translated as many threads of control. While a traditional 
process always contains a single thread of control, multithreading separates a process into 
many execution threads, each of which runs independently. 

The main benefits that arise from multithreading are: 
• improved application responsiveness and better program structure - any program in 

which many activities do not depend upon each other can be redesigned so that each 
activity is executed as a thread, 

• efficient use of multiple processors - numerical algorithms and applications with a 
high degree of parallelism, such as matrix multiplication, can run much faster when 
implemented with threads on a multiprocessor, 

• use fewer system resources - the cost of creating and maintaining threads is much 
smaller than the cost for processes, both in system resources and time. 

All threads created from the same initial thread (standard process) exist as a part of the same 
process, sharing its resources (address space, operating system state ...). Beside that the 
multithreaded applications use fewer system resources than multiprocess applications, 
communication between threads can be made without involving the operating system, thus 
improving performance over standard inter-process communication. From these reasons 
multithreading is so populat today, and modern operating systems support it. 

Multithreading also brings some problems, like signal handling, function safety under 
possible parallel threads execution (parallel use and change of global variables), alarms, 
interval timers and profiling. The problem is how to change this process oriented and defined 
elements to support threads and to be defined on a thread level. One of the main problems in 
this work was a time measurment (real, user and system time) for a single thread in a 
multithreaded application. This was resolved using specific system dependent features 
(interval timers provided for each lightweight process [1]). 

This work presents several examples of algorithms that can be implemented using threads 
with low dependencies between them. Experimental results are shown for a various number 
of threads and compared with single-threaded results (speedup). All programs were made 



 

 

using C programming language linked with thread library. Measurements were made on a low 
loaded system with no other users logged on. The first example is matrix multiplication 
presented in section 2. LU factorization is presented in section 3, Q-sort in section 4, TSP in 
Section 5 and simulator for a task system in Section 6. 

2. Matrix Multiplication 
Matrix multiplication is a good example of computationally intensive operation that requires 
M×N×P operations of multiplication, where M×N is the size of the first matrix A and N×P of 
the second matrix B. The number of multiplications grows with the third power of the 
problem size (assuming M≅ N≅ P). This operation demands long computation time for slightly 
greater problems and that is why there are plenty of methods for parallelizing this operation. 
However, the method presented here is very simple and, what is very important, the 
communication between threads is minimal. Basic idea is that each thread computes the entire 
row of the product matrix C and then checks for the next non-computed row and computes it, 
if such row exists. The synchronization is obtained using mutually exclusive locks provided 
for multithreading. 

Each thread executes the same code which is outlined below: 
procedure thread;
lock;
while lastrow < M do
my_row := lastrow;
lastrow++;
unlock;
for i:=1 to P do
C(my_row,i) := 0;
for j:=1 to N do
C(my_row,i) := C(my_row,i)+A(my_row,j)×B(j,i);

lock;
unlock;

end.

Variable lastrow is a global variable, initially set to 1. It points to the next non-computed 
row, and it is protected from simultaneous use from different threads. This is done with 
exclusive locks which in that way determine thread dependencies. Penalties for exclusive 
locking and thread creation are significant and comparable to the computation time when the 
dimensions of matrices are relatively small. As the matrix size increases the resulting 
overhead gets smaller. 

Experimental results for M=N=P=100 are given in Fig. 1. As results show, speedup 
(execution time of one-threaded sequentional algorithm compared with parallel multithreaded 
algorithm) is almost independent of the number of threads when that number is equal or 
greater than the number of system processors, which are actually responsible for speedup. In 
the case of two processors the computation time is almost two time shorter and shows a very 
slow decrease when the number of threads increases. Reasons for this decrease are heavier 
thread communication and context switching between multiple threads. 



 

 

Figure 1: Matrix multiplication results 

3. LU Factorization 
LU factorization is a common algorithm used for solving systems of linear equations. This 
system can be presented in a matrix form: 

 A x = b , 

where A is the coefficient matrix, x is the unknown vector, and b is the excitation vector. 
With LU factorization, the original coefficient matrix is factored, or decomposed, into the 
product of a lower-triangular matrix L and upper triangular matrix U. To attain a unique 
decomposition, the dialog terms of L or U are set to unity. After the decomposition is 
performed, the solution is determined by a forward substitution step and a backward 
substitution. 

The proposed parallel algorithm is based on the independence of inner loops of a sequential 
algorithm which can run in parallel. In this algorithm, one thread (main) must take care of 
synchronization after a sub-matrix is computed, waiting for all threads to terminate their 
executions in a current sub-matrix. Then the same thread gives a signal to proceed with a new 
sub-matrix. All other threads execute the same code. 

The algorithm is listed below: 
procedure thread_slave;
lock;
while i < N do
wait_for_start;
while j ≤ N do
my_j := j;
j++;
unlock;
A(my_j,i) := A(my_j,i)/A(i,i);
for k:=i+1 to N do
A(my_j,k) := A(my_j,k)-A(my_j,i)×A(i,k);

lock;
signal_end;

unlock;
end.

Variable i is a global variable that shows the actual step of the algorithm and actual sub-
matrix. i is changed only by the main thread. Variable j is also a global variable that shows 
the next row of a current sub-matrix which is not computed yet. In each step the main thread 
initializes this variable. Results are presented in Fig. 2. 

#threads t100(s) t200(s) t500(s) 

1 0.12 0.995 40.14 

2 0.062 0.500 20.27 

4 0.062 0.501 20.34 

8 0.064 0.504 20.47 
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Figure 2: LU Factorization results 

Speedup is reached only for matrices with dimension greater than 200×200. The reason for 
this is the synchronization time between threads, especially at the end of each step, when all 
threads must be waited,  and then started again. If matrices are smaller than 200×200 this 
synchronization time is comparable with computatio time for one sub-matrix. Results also 
show that speedup decreases as the number of threads increases over the number of available 
processors. Optimum is reached when the number of threads is equal to the number of 
processors. 

4. Q-sort 
Sorting a large array of data is a computationally demanding operation which can be 
efficiently parallelized, resulting in shorter sorting time. Proposed Q-sort (quick sort) 
algorithm is just an experiment of parallel sorting. Original Q-sort is modified in a way such 
that the sorting is performed by more than one thread. Sorting begins with one initial thread, 
like in a sequential algorithm, dividing the array into two parts which elements are smaller 
(one part) and greater (other part) than one middle element. Sequential algorithm continues 
recursive divisions while the proposed algorithm creates a new thread after every division, 
only if the parts are large enough so that the thread creation time is not greater than sorting 
time. 

Arrays sorted in this example were arrays of strings with a constant length. First array 
contains 20000 elements and each element is 70 characters long, second 50000 elements with 
50-characters strings, and third 100000 elements with 40-character strings. Results are 
presented in Fig. 3. 

Figure 3: Q-sort results 

Speedup achieves maximum with four threads. This is due to the nature of the algorithm 
because it limits the number of simultaneously running threads. Speedup increases as the 
problem size increases both in the number and the size of elements. 

5. TSP 
Traveling salesman problem (TSP) is a well known problem of combinatorial optimization. 
TSP is a problem where the salesman has to find the shortest path while visiting the n cities 
once each. A highly efficient method for this type of problems is simulated annealing [3]. A 

#threads t100(s) t200(s) t500(s) 

1 0.053 0.387 6.504 

2 0.058 0.333 4.181 

4 0.082 0.354 4.321 

8 0.162 0.402 4.642 
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#threads t1(s) t2(s) t3(s) 

1 0.546 1.28 2.5 

2 0.352 0.808 1.52 

4 0.313 0.725 1.34 

8 0.313 0.733 1.37 



 

 

major hurdle in simulated annealing, however, is the long computation time due to its 
sequential nature of the slow annealing process. Parallel simulated annealing method, that 
follows the same decision sequence as the sequential method, computes several speculative 
iterations in parallel. Iteration with accept status and with the lowest iteration number is 
accepted. Results of all computations with higher iteration number are not valid and must be 
recomputed in each new configuration at the next computation level. 

Used algorithm was originally presented by Sohn [2] for a large scale massively parallel 
distributed-memory multiprocessor, where a 20-fold speedup on 100 processors was 
obtained. We implemented this algorithm using threads. The execution time and the number 
of computed levels for different number of threads for 100 cities are shown in Fig. 4. 

Figure 4: TSP results 

Although the number of computed levels notable decrease there is no speedup. In fact Fig. 4 
shows that multithreaded version is many times slower than the sequential algorithm. What is 
the reason for that? If we take a closer look at the table in Fig. 4 we can see that the serial 
algorithm (1 thread) computes 233310 iterations in 1.59 seconds, including changes. One 
iteration is computed in less than 7 µsec. This computation time must be the same in the 
multithreaded version (for each thread). After computing one level of iterations, in each 
thread, one result is chosen and a change is made. The next level then starts with a new 
configuration. Communication and synchronization time is obviously much greater than the 
computation time of one iteration, so no speedup can be reached. Also when there are more 
threads than processors, context switching time cannot be ignored if the computation time is 
so small. 

This example indicates that the use of multithreading in algorithms with short computation 
time and heavy communication between threads brings no speedup but only slowdown. 

6. Simulating a Task System  
With the task system simulator all mentioned characteristic of multithreaded applications in 
previous sections show up. The used task system, shown in Fig.5, is constructed from ten 
tasks, with dependencies that permit some parallelism. 

Simulations were performed in three steps. The first step is a 
sequential execution of tasks, like in the uniprocessor system. 
The second step is a parallel multithreaded simulation with 
one thread for each task. Threads are then scheduled by 
operating system and synchronized by locks and the 
conditions variables. Third step is also a multithreaded 
parallel simulation but with the same number of threads and 
processors. These threads execute tasks according to their 
structure with a simple scheduling. The simulator can also 
execute the task system continuously if the dependencies 

#threads #levels tREAL (s) 

1 233310 1.59 

2 135462 15.17 

4 88403 36.21 

8 66337 108 Number of threads
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Figure 5: Task system 



 

 

between the last and the first task are defined. 
Simulation is done for four different numbers of iterations: 1, 102, 103 and 104, but the sum of 
operations per task is kept constant (107). Execution time and speedup are shown in Fig.6. 

Figure 6: Task system simulation results  

Speedup decreases as the number of iterations increases which is the result of less 
computation and more synchronization. Synchronization between threads is so slow that at 
10000 iterations method task-thread is even slower than the sequential method. Method 
thread-processor is faster than sequential even at 10000 iterations, because threads made 
internal task scheduling without involving the operating system. Speedups for both parallel 
methods for a small number of iterations are almost the same. 

7. Conclusion 
Based on the results presented in this paper, we conclude that under certain conditions the 
multithreading can improve the performance of given algorithms which are running on 
multiprocessor system. If threads run independently or with very low communication, 
speedup is only limited by the number of processors. If the communication between threads is 
heavier, speedup can be reached only if the time of computation between synchronization is 
at least several times greater than the synchronization time. 

Although all results presents execution times on a lightly loaded system, speedup is also 
reached at higher loads when all times increase but with almost the same ratio. Speedup 
slowly decreases as load increases, which is the result of a slower communication through the 
operating system. 
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#iterations tseq(s) ttask-thread(s) tthread-proc(s) 

1 12.53 7.01 7.52 

100 12.61 8.23 8.09 

1000 12.80 9.53 8.33 

10000 13.63 18.22 9.85 
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