

 EXPERIMENTS WITH MULTITHREADING IN PARALLEL COMPUTING

Leonardo Jelenković, Goran Omrčen-Čeko
Faculty of Electrical Engineering and Computing, University of Zagreb

Department of Electronics, Microelectronics, Computer and Intelligent Systems
Unska 3, 10000 Zagreb, Croatia

leonj@zemris.fer.hr, goc@zemris.fer.hr

Abstract: This paper presents experiments with multithreading in several computationally
intensive examples in which the time of parallel, multithreaded execution is significantly
shorter than sequential, single-threaded. Algorithms used in these examples are not fully
optimized for that wasn't the goal. The intention was to find out multithreading mechanism
and structure and how to improve the performance on a multitasking, multi-user and
multiprocessor operating system. The target operating system was SunOS 5.5.1 on two-
processor workstation Ultra sparc 2.

Keywords: multithreading, LU factorization, simulated annealing, sorting, task scheduling

1. Introduction
The word multithreading can be translated as many threads of control. While a traditional
process always contains a single thread of control, multithreading separates a process into
many execution threads, each of which runs independently.

The main benefits that arise from multithreading are:
• improved application responsiveness and better program structure - any program in

which many activities do not depend upon each other can be redesigned so that each
activity is executed as a thread,

• efficient use of multiple processors - numerical algorithms and applications with a
high degree of parallelism, such as matrix multiplication, can run much faster when
implemented with threads on a multiprocessor,

• use fewer system resources - the cost of creating and maintaining threads is much
smaller than the cost for processes, both in system resources and time.

All threads created from the same initial thread (standard process) exist as a part of the same
process, sharing its resources (address space, operating system state ...). Beside that the
multithreaded applications use fewer system resources than multiprocess applications,
communication between threads can be made without involving the operating system, thus
improving performance over standard inter-process communication. From these reasons
multithreading is so populat today, and modern operating systems support it.

Multithreading also brings some problems, like signal handling, function safety under
possible parallel threads execution (parallel use and change of global variables), alarms,
interval timers and profiling. The problem is how to change this process oriented and defined
elements to support threads and to be defined on a thread level. One of the main problems in
this work was a time measurment (real, user and system time) for a single thread in a
multithreaded application. This was resolved using specific system dependent features
(interval timers provided for each lightweight process [1]).

This work presents several examples of algorithms that can be implemented using threads
with low dependencies between them. Experimental results are shown for a various number
of threads and compared with single-threaded results (speedup). All programs were made

using C programming language linked with thread library. Measurements were made on a low
loaded system with no other users logged on. The first example is matrix multiplication
presented in section 2. LU factorization is presented in section 3, Q-sort in section 4, TSP in
Section 5 and simulator for a task system in Section 6.

2. Matrix Multiplication
Matrix multiplication is a good example of computationally intensive operation that requires
M×N×P operations of multiplication, where M×N is the size of the first matrix A and N×P of
the second matrix B. The number of multiplications grows with the third power of the
problem size (assuming M≅ N≅ P). This operation demands long computation time for slightly
greater problems and that is why there are plenty of methods for parallelizing this operation.
However, the method presented here is very simple and, what is very important, the
communication between threads is minimal. Basic idea is that each thread computes the entire
row of the product matrix C and then checks for the next non-computed row and computes it,
if such row exists. The synchronization is obtained using mutually exclusive locks provided
for multithreading.

Each thread executes the same code which is outlined below:
procedure thread;
lock;
while lastrow < M do
my_row := lastrow;
lastrow++;
unlock;
for i:=1 to P do
C(my_row,i) := 0;
for j:=1 to N do
C(my_row,i) := C(my_row,i)+A(my_row,j)×B(j,i);

lock;
unlock;

end.

Variable lastrow is a global variable, initially set to 1. It points to the next non-computed
row, and it is protected from simultaneous use from different threads. This is done with
exclusive locks which in that way determine thread dependencies. Penalties for exclusive
locking and thread creation are significant and comparable to the computation time when the
dimensions of matrices are relatively small. As the matrix size increases the resulting
overhead gets smaller.

Experimental results for M=N=P=100 are given in Fig. 1. As results show, speedup
(execution time of one-threaded sequentional algorithm compared with parallel multithreaded
algorithm) is almost independent of the number of threads when that number is equal or
greater than the number of system processors, which are actually responsible for speedup. In
the case of two processors the computation time is almost two time shorter and shows a very
slow decrease when the number of threads increases. Reasons for this decrease are heavier
thread communication and context switching between multiple threads.

Figure 1: Matrix multiplication results

3. LU Factorization
LU factorization is a common algorithm used for solving systems of linear equations. This
system can be presented in a matrix form:

 A x = b ,

where A is the coefficient matrix, x is the unknown vector, and b is the excitation vector.
With LU factorization, the original coefficient matrix is factored, or decomposed, into the
product of a lower-triangular matrix L and upper triangular matrix U. To attain a unique
decomposition, the dialog terms of L or U are set to unity. After the decomposition is
performed, the solution is determined by a forward substitution step and a backward
substitution.

The proposed parallel algorithm is based on the independence of inner loops of a sequential
algorithm which can run in parallel. In this algorithm, one thread (main) must take care of
synchronization after a sub-matrix is computed, waiting for all threads to terminate their
executions in a current sub-matrix. Then the same thread gives a signal to proceed with a new
sub-matrix. All other threads execute the same code.

The algorithm is listed below:
procedure thread_slave;
lock;
while i < N do
wait_for_start;
while j ≤ N do
my_j := j;
j++;
unlock;
A(my_j,i) := A(my_j,i)/A(i,i);
for k:=i+1 to N do
A(my_j,k) := A(my_j,k)-A(my_j,i)×A(i,k);

lock;
signal_end;

unlock;
end.

Variable i is a global variable that shows the actual step of the algorithm and actual sub-
matrix. i is changed only by the main thread. Variable j is also a global variable that shows
the next row of a current sub-matrix which is not computed yet. In each step the main thread
initializes this variable. Results are presented in Fig. 2.

#threads t100(s) t200(s) t500(s)

1 0.12 0.995 40.14

2 0.062 0.500 20.27

4 0.062 0.501 20.34

8 0.064 0.504 20.47

0

0.5

1

1.5

2

1 2 4 8

Number of threads

Sp
ee

du
p

Figure 2: LU Factorization results

Speedup is reached only for matrices with dimension greater than 200×200. The reason for
this is the synchronization time between threads, especially at the end of each step, when all
threads must be waited, and then started again. If matrices are smaller than 200×200 this
synchronization time is comparable with computatio time for one sub-matrix. Results also
show that speedup decreases as the number of threads increases over the number of available
processors. Optimum is reached when the number of threads is equal to the number of
processors.

4. Q-sort
Sorting a large array of data is a computationally demanding operation which can be
efficiently parallelized, resulting in shorter sorting time. Proposed Q-sort (quick sort)
algorithm is just an experiment of parallel sorting. Original Q-sort is modified in a way such
that the sorting is performed by more than one thread. Sorting begins with one initial thread,
like in a sequential algorithm, dividing the array into two parts which elements are smaller
(one part) and greater (other part) than one middle element. Sequential algorithm continues
recursive divisions while the proposed algorithm creates a new thread after every division,
only if the parts are large enough so that the thread creation time is not greater than sorting
time.

Arrays sorted in this example were arrays of strings with a constant length. First array
contains 20000 elements and each element is 70 characters long, second 50000 elements with
50-characters strings, and third 100000 elements with 40-character strings. Results are
presented in Fig. 3.

Figure 3: Q-sort results

Speedup achieves maximum with four threads. This is due to the nature of the algorithm
because it limits the number of simultaneously running threads. Speedup increases as the
problem size increases both in the number and the size of elements.

5. TSP
Traveling salesman problem (TSP) is a well known problem of combinatorial optimization.
TSP is a problem where the salesman has to find the shortest path while visiting the n cities
once each. A highly efficient method for this type of problems is simulated annealing [3]. A

#threads t100(s) t200(s) t500(s)

1 0.053 0.387 6.504

2 0.058 0.333 4.181

4 0.082 0.354 4.321

8 0.162 0.402 4.642

Sp
ee

du
p

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6

1 thread 2 threads 4 threads 8 threads

N=100
N=200
N=500

Sp
ee

du
p

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2

1 thread 2 threads 4 threads 8 threads

20e3/70
50e3/50
100e3/40

#threads t1(s) t2(s) t3(s)

1 0.546 1.28 2.5

2 0.352 0.808 1.52

4 0.313 0.725 1.34

8 0.313 0.733 1.37

major hurdle in simulated annealing, however, is the long computation time due to its
sequential nature of the slow annealing process. Parallel simulated annealing method, that
follows the same decision sequence as the sequential method, computes several speculative
iterations in parallel. Iteration with accept status and with the lowest iteration number is
accepted. Results of all computations with higher iteration number are not valid and must be
recomputed in each new configuration at the next computation level.

Used algorithm was originally presented by Sohn [2] for a large scale massively parallel
distributed-memory multiprocessor, where a 20-fold speedup on 100 processors was
obtained. We implemented this algorithm using threads. The execution time and the number
of computed levels for different number of threads for 100 cities are shown in Fig. 4.

Figure 4: TSP results

Although the number of computed levels notable decrease there is no speedup. In fact Fig. 4
shows that multithreaded version is many times slower than the sequential algorithm. What is
the reason for that? If we take a closer look at the table in Fig. 4 we can see that the serial
algorithm (1 thread) computes 233310 iterations in 1.59 seconds, including changes. One
iteration is computed in less than 7 µsec. This computation time must be the same in the
multithreaded version (for each thread). After computing one level of iterations, in each
thread, one result is chosen and a change is made. The next level then starts with a new
configuration. Communication and synchronization time is obviously much greater than the
computation time of one iteration, so no speedup can be reached. Also when there are more
threads than processors, context switching time cannot be ignored if the computation time is
so small.

This example indicates that the use of multithreading in algorithms with short computation
time and heavy communication between threads brings no speedup but only slowdown.

6. Simulating a Task System
With the task system simulator all mentioned characteristic of multithreaded applications in
previous sections show up. The used task system, shown in Fig.5, is constructed from ten
tasks, with dependencies that permit some parallelism.

Simulations were performed in three steps. The first step is a
sequential execution of tasks, like in the uniprocessor system.
The second step is a parallel multithreaded simulation with
one thread for each task. Threads are then scheduled by
operating system and synchronized by locks and the
conditions variables. Third step is also a multithreaded
parallel simulation but with the same number of threads and
processors. These threads execute tasks according to their
structure with a simple scheduling. The simulator can also
execute the task system continuously if the dependencies

#threads #levels tREAL (s)

1 233310 1.59

2 135462 15.17

4 88403 36.21

8 66337 108 Number of threads

Sl
ow

do
w

n
0

10
20
30
40
50
60
70

1 2 4 8

Figure 5: Task system

between the last and the first task are defined.
Simulation is done for four different numbers of iterations: 1, 102, 103 and 104, but the sum of
operations per task is kept constant (107). Execution time and speedup are shown in Fig.6.

Figure 6: Task system simulation results

Speedup decreases as the number of iterations increases which is the result of less
computation and more synchronization. Synchronization between threads is so slow that at
10000 iterations method task-thread is even slower than the sequential method. Method
thread-processor is faster than sequential even at 10000 iterations, because threads made
internal task scheduling without involving the operating system. Speedups for both parallel
methods for a small number of iterations are almost the same.

7. Conclusion
Based on the results presented in this paper, we conclude that under certain conditions the
multithreading can improve the performance of given algorithms which are running on
multiprocessor system. If threads run independently or with very low communication,
speedup is only limited by the number of processors. If the communication between threads is
heavier, speedup can be reached only if the time of computation between synchronization is
at least several times greater than the synchronization time.

Although all results presents execution times on a lightly loaded system, speedup is also
reached at higher loads when all times increase but with almost the same ratio. Speedup
slowly decreases as load increases, which is the result of a slower communication through the
operating system.

8. Acknowledgments
This work was done within the research project "Problem-Solving Environments in
Engineering", supported by the Ministry of Science and Technology of the Republic of
Croatia.

9. References
[1] SunSoft, (1994), Solaris 2.4: Multithreaded Programming Guide, Sun Microsystems, Mountain View,

California.
[2] Sohn, A. (1995), �Parallel N-ary Speculative Computation of Simulated Annealing�, IEEE Transactions

on Parallel and Distributed Systems, vol. 6, pp. 997-1005.
[3] van Laarhoven, P.J.M, Aarts, E.H.L. (1987), Simulated annealing: Theory and Applications, D. Reidel

Publishing Company, Dordrecht.
[4] Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., Walker, D., �Solving problems on concurrent

procesors: Volume I, General Techniques and Regular Problems�, California Institute of Technology,
Prentice-Hall International, Englewood Clifts, N. J., 1988.

[5] Jelenković, L. (1996), Colection of Functions for Multithreaded Programs (in Croatian), Undergraduate
dissertation, Faculty of El.Engineering and Computing, University of Zagreb

0

0.5

1

1.5

2

1 100 1000 10000

Number of iterations

Sp
ee

du
p

sequential

task-thread

thread-
processor

#iterations tseq(s) ttask-thread(s) tthread-proc(s)

1 12.53 7.01 7.52

100 12.61 8.23 8.09

1000 12.80 9.53 8.33

10000 13.63 18.22 9.85

	EXPERIMENTS WITH MULTITHREADING IN PARALLEL COMPUTING

