
MULTITHREADED SIMULATED ANNEALING

Leonardo Jelenković, Jo�ko Poljak
Faculty of Electrical Engineering and Computing, University of Zagreb

Department of Electronics, Microelectronics, Computer and Intelligent Systems
Unska 3, 10000 Zagreb, Croatia

{leonardo.jelenkovic, josko.poljak}@fer.hr

Abstract: Simulated annealing is known to be an efficient method for combinatorial
optimization problems. Its usage for real-life problems has been limited by the long execution
time. This report presents a new approach to asynchronous simulated annealing for parallel
thread oriented multiprocessor operating systems. Experimental results of the 100- to
1000-city traveling salesman problems on the two-processor Ultrasparc II workstation shows
the efficiency of this technique.

Keywords: parallel simulated annealing, multithreading, traveling salesman problem

1. Introduction

Simulated annealing is one of highly efficient methods for combinatorial optimization
problems. The method is developed from the annealing process, where with slow temperature
decrease metal obtains a structure with state of minimal energy. To simulate this process N.
Metropolis used the following method: from the current configuration one element is
randomly chosen and a slight modification is performed. If modification decreases the energy
the new configuration is accepted. Otherwise, probability of acceptance is given with exp(-
∆E/(kBT)), where ∆E is energy change, kB is Boltzman constant and T is the current metal
temperature. After many similar steps, metal obtains temperature equilibrium at the current
temperature. The procedure is then repeated with lower temperature, and so on, until the metal
is cooled. If the current metal configuration represents one possible state of the combinatorial
optimization problem, the energy represents a cost function, and T is one of controlling
parameters, the above method could be applied to reach the minimum of a given
combinatorial problem. A typical implementation of simulated annealing consists of two
nested loops. The outer loop controls the temperature and the inner loop performs evaluation,
decision, and modification steps at a given temperature. Outer loop usually decreases the
temperature by a constant factor between 0.5 and 1. The inner loop is usually performed a
constant number of times that depends on the problem size and the expected result quality,
typically β N2 (0 < β < 1), where N represents the problem size.

The method has been successfully applied to various problems such as cell placement, task
scheduling, traveling salesman problem and graph partitioning. The main disadvantage of the
algorithm is a long computation time. Several papers propose methods for implementing the
simulated annealing on parallel architectures to speedup the computation. Parallel simulated
annealing can be classified into two categories: synchronous and asynchronous. The
synchronous approach maintains the same decision sequence as sequential simulated
annealing, while the asynchronous approach does not.

In A. Sohn paper [5] on traveling salesman problem, a 20-fold speedup on a 100 processor
system (AP1000 message passing multiprocessor) is presented. The authors used N-parallel
simulated annealing method (synchronous approach), where the N processors speculatively
compute N iterations in one computing level.

Fig. 1 shows execution of 7 iterations in two levels. The first level of N-ary speculative tree
shows seven processors executing seven iterations simultaneously. Suppose that processors 3,
5 and 6 find that their decisions are acceptable. Among the three, only the decision made by
the lowest numbered processor, processor 3, is accepted since the decisions made by the
higher numbered processors are wrong because they are based on wrong configuration. The
next iteration level begins with fifth iteration.

5321

P0 P1 P6P5P2 P3 P4

109865

P0 P1 P6P5P2 P3 P4

4 6

7 11

7
level 1

level 2

Fig. 1. Parallel N-ary speculative computation

Implementation of the same method with multiple threads instead of multiple processors is
presented in [2]. Experiments on a UNIX based two-processor workstation showed that
communication overhead between multiple threads is too high to obtain any speedup.
Computation time for a single iteration is too short in comparison with time needed for
synchronization.

procedure thread(i);
repeat

wait_start;
compute (iter + i);
O(i) = decision;
signal_end;

until forever
end.

procedure main_thread;
iter = 1;
for i = 1 to S do

j = 0;
while j < N2*DML do

signal_start;
compute (iter);
O(1) = decision;
wait_all_threads;
k = min{l | O(l) = accept ∨ l > threads};
if k ≤ threads then

modify (k);
j = j + k;
iter = iter + k;

decrease_temperature;
end.

Fig. 2. Parallel N-ary speculative computation code

Fig. 2 shows the algorithm for each thread. One thread must take care of synchronization and
its code is slightly different. In every computation level threads are twice synchronized, at the
beginning and at the ending. In the original implementation with message passing
multiprocessors communication time is also significant, but much smaller then
synchronization time between threads.

2. Proposed parallel multithreaded simulated annealing method

The need for extreme reduction of communication between threads is obvious. With a
synchronous approach such a reduction cannot be achieved. Thus, the asynchronous approach
is used instead. In the new proposed method each thread computes independently one random
move, decides about its acceptance, and modifies the configuration if the move is acceptable.

Threads could simultaneously change the same part of the system in a different way, and this
must be prevented. The simplest way to do that is to treat parts of the program where threads
modify the system as critical sections and protect them by exclusive locking. Also, there is no
need to make difference between threads because there is no synchronization. Every thread
can modify temperature when the number of computed iterations at current temperature
reaches the defined value. This part of program must be protected from simultaneous change.
Fig. 3 shows the proposed algorithm for each thread. Dependence between threads is reduced
to the part where change is performed and temperature decreased.

Procedure thread;
Repeat

Compute;
Decision = make_decision;
enter_critical_section;
if decision = accept then

modify;
iter = iter + 1;
if iter > N2 * DML then

iter = 0;
step = step + 1;
T = T * α;

leave_critical_section;
while step < S;

end.

Fig. 3. Proposed per-thread code

This method is applied to the traveling salesman problem (TSP), where the salesman has to
travel to a number of cities and then return to the initial one. Each city must be visited once.
This is an NP-complete problem, and use of approximation methods, such as simulated
annealing, is the only way to get acceptable results in a reasonably short computation time.
Cost function in this case is the tour distance. However, the cost of the new solution is not
needed for the simulated annealing algorithm, a change in cost is enough to accept a move. In
our implementation, a move exchanges two cities in the tour and the cost function change is
simple to compute.

3. Experimental results

Experiments were made with 100-, 200-, 500- and 1000-city TSP at low loaded system
(average load near zero) and heavy loaded system (average load above 4). All programs are
written in the C++ programming language.

Table 1 shows TSP parameters used in the experiments. Parameters are chosen in such a
fashion that the execution times are not too long, regarding a problem size. Result quality is,
therefore, better for smaller problems, but the quality of the solution is not the primary
objective. Instead, the goal was to search for some technique which will benefit from a
multiprocessors on a different operating systems that support multithreading. Thus, results can

not be compared with results made on a non-generic, special message passing multiprocessors
shown in papers [4] and [5].

Table 1. TSP parameters

Problem size (No of Cities) 100 200 500 1000

No of iteration in inner loop 3333 8000 25000 50000

No of cooling steps (outer loop) 50

Initial acceptance probability 0.8

Temperature decrease factor 0.9

The execution times and used system times are shown in Table 2. Execution time is actual,
real time elapsed while the program was executing. The used system time is a sum of user
time and kernel time consumed on program execution. The real time is the main
representative for quality of technique because it is a measure of a speedup. In a message
passing multiprocessor systems, as those presented in [4] and [5], speedup is the only relevant
attribute since the observed program is the only one running.

Table 2. Execution time (sec) of the TSP on the Ultrasparc 2

Low loaded system
100-City 200-City 500-City 1000-City No of

Threads tR tS tR tS tR tS tR tS
1 3,67 3,68 8,94 8,89 27,67 27,54 52,42 55,38
2 2,87 5,36 6,69 12,28 20,59 38,24 40,08 75,29
4 2,94 5,79 6,67 12,92 20,14 39,15 40,03 78,21

Heavy loaded system
100-City 200-City 500-City 1000-City No of

Threads tR tS tR tS TR tS tR tS
1 6,27 3,77 15,84 9,31 47,77 28,02 98,37 56,03
2 4,63 3,97 11,42 9,89 35,08 30,41 72,02 61,6
4 3,93 4,81 10,19 12,18 30,67 36,23 59,26 69,8

LEGEND: tR - execution time tS - consumed system time (both user and kernel time)

In a standard multiprocessor systems there are other processes, and influence of the program
to the whole system is of our interest. A measure of such influence is the amount of used
system time. This time is the sum of user time and kernel time spent on behalf of the program.
The user time is time consumed on actual execution of the program. It can be greater than
elapsed real time if there is more than one processor on the system. The kernel time is time
spent on different system calls, page fault handling, context switching and similar actions. It
does not include actual program instructions. In the current implementation, most of kernel
time is used up on lock calls and context switching when locking fails.

Used multithreaded programs are composed only of worker threads. Consequently, they
overload system many times more than a single-threaded programs and must be used with
care. If a program consists of many worker threads, it can cause system to become too slow in
response and unusable for other users. Therefore, the experiments were made not only at low,
but also at high loaded system.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 4
threads

sp
ee

du
p

100
200
500
1000

Fig. 4. Speedup at low loaded system

1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 4

threads

re
la

tiv
e

sy
st

em
 ti

m
e

100
200
500
1000

Fig. 5. System time consumed at low loaded system

Fig. 4 shows speedup achieved on a low loaded system. It is almost the same for two and four
threads because there are only two processors. The speedup is slightly greater at larger
problems, as a result of smaller possibility of two threads trying to work with the same object
(one city) at the same time.

Fig. 5 presents a comparison of consumed system time between single-threaded and
multithreaded executions. System usage is moderately greater than it should be if we watch
speedup, and it is the result of time wasted on unsuccessful locking and switching between
multiple threads.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 2 4
threads

sp
ee

du
p

100
200
500
1000

Fig. 6. Speedup at heavy loaded system

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1 2 4
threads

re
la

tiv
e

sy
st

em
 ti

m
e

100
200
500
1000

Fig. 7. System time consumed at heavy loaded system

Fig. 6 shows the speedup on a heavy loaded system. As a surprise, this speedup is
significantly greater than the speedup at a low loaded system and grows linearly with the
number of threads. Of course, it takes more time than on a low loaded system, but the speedup
(execution time of single-threaded divided by execution time of multithreaded program) is
greater here. The explanation is very simple. More threads get more system time, and even if
they are not running concurrently on both processors, they get much more system time than
single-threaded program.

From Fig. 7 it is obvious that speedup is not just the result of concurrent execution, because
the speedup is greater than the relative system time (system time of multithreaded program
divided by system time of single-threaded program).

4. Conclusion

With the proposed parallel simulated annealing technique we obtained 30 % speedup over
sequential technique, which is a considerable improvement. However, for practical use the
number of system processors must be greater than two. TSP is an extreme case of
combinatorial optimization problems where computation time of one iteration is very short.
Thus, the presented technique can be easily applied to many other combinatorial problems
with presumably better performance than achieved on the TSP. Although speedup is obtained
on a heavy loaded system, its use on such system is not recommended because it significantly
increases load on already heavy charged system.

5. Acknowledgments

This work was done within the research project "Problem-Solving Environments in
Engineering", supported by the Ministry of Science and Technology of the Republic of
Croatia.

6. References

1. Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., Walker, D. (1998) �Solving
problems on concurrent processors: Volume I, General Techniques and Regular
Problems�, California Institute of Technology, Prentice-Hall International, Englewood
Cliffs, N. J.

2. Jelenković, L. (1996), Collection of Functions for Multithreaded Programs,
Undergraduate dissertation, Faculty of El.Engineering and Computing, University of
Zagreb. (in Croatian)

3. van Laarhoven, P.J.M., Aarts, E.H.L. (1987), Simulated annealing: Theory and
Applications, D. Reidel Publishing Company, Dordrecht.

4. Nabhan, T., Zomaya, A. (1995), �A Parallel Simulated Annealing Algorithm with Low
Communication Overhead�, IEEE Transactions on Parallel and Distributed Systems,
vol. 6, pp. 1226-1233.

5. Sohn, A. (1995), �Parallel N-ary Speculative Computation of Simulated Annealing�,
IEEE Transactions on Parallel and Distributed Systems, vol. 6, pp. 997-1005.

6. SunSoft, (1994), Solaris 2.4: Multithreaded Programming Guide, Sun Microsystems,
Mountain View, California.

	MULTITHREADED SIMULATED ANNEALING

