
Detecting vulnerabilities in Web applications by clustering Web pages

V. Suhina, S. Groš, Z. Kalafatić
Department of Electronics, Microelectronics, Computer and Intelligent Systems

Faculty of Electrical Engineering and Computing, University of Zagreb
Unska 3, 10000 Zagreb, Croatia

Phone: (01) 612-99-35 Fax: (01) 612-96-53 E-mail: vanja.suhina@fer.hr

Abstract – In this paper, we propose a new approach to
detecting vulnerabilities in Web applications. Majority of
current Web application vulnerability scanners rely on
detecting vulnerabilities by detecting common error messages
or input vectors used in testing. The method we propose in
this paper is based on detecting unusual behavior of a Web
application. Differences between pages are analyzed by
examining page structure, i.e. HTML elements. Variations
from standard page structure could indicate raised errors in
the Web application and could indicate a vulnerability. Issues
that arise in building such a tool will be described here.

I. INTRODUCTION

Most Web applications are susceptible to some kind of
vulnerability. Last year's research shows that over 80% of
Web applications were vulnerable to Cross Site Scripting
(XSS) and over 25% were vulnerable to SQL injection
flaws [1]. These are also the vulnerabilities that are most
often searched by Web application vulnerability scanners.

Trying to find all the vulnerabilities in a Web application
is a complicated and time-consuming task, so available
scanners often concentrate on vulnerabilities that are easier
to detect and that are more widespread then the others.

After analyzing the source code of some popular open
source Web application vulnerability scanners, we found
out that they all work in a similar way. They all detect
vulnerabilities by finding common error messages or
finding input values echoed back to the user. If the Web
application uses custom error messages without additional
unnecessary information for the user, these methods of
detection fail.

On the other hand, some of the vulnerabilities are very
difficult or even impossible to detect by automated
scanners so human intervention is needed. However,
testing without automated scanners is highly impractical
because of large amount of input parameters that some
Web applications have and the large amount of input
values that should be used for each parameter. The solution
is to combine automated scanners and human intervention.

This is the reason why we also took the same approach.
We used the computer's capability to process a large
amount of data, collecting various pages with big sets of
input parameters and input values. User's intervention is
needed to configure parameters and values for testing and
to decide which of the results are indications of
vulnerabilities.

In this paper the following terms will be used. When
talking about Web page's non-HTML content, i.e. text that
can be seen on the screen, it will be simply referenced as
content. When talking about Web page's HTML content,
i.e. HTML elements, it will be references as Web page's
structure.

The paper is structured as follows. In the second section
we present the list of the most critical Web application
vulnerabilities. We also describe how the Web application
vulnerability scanners try to detect those vulnerabilities. In
the third section, the new method for detecting
vulnerabilities is proposed and explained. The issues that
arise in building such tool will be described in the fourth
section. The paper finishes with conclusion and list of
references.

II. OVERVIEW OF THE EXISTING VULNERABILITY
DETECTION SYSTEMS

In this section we describe how the current Web
application vulnerability scanners detect vulnerabilities.
Detecting vulnerabilities is generally not an easy task, and
not all of the common vulnerabilities can be successfully
detected by automated scanners.

The list of top 10 most critical vulnerabilities, according
to [2], is shown in Table I.

TABLE I
TOP 10 VULNERABILITY LIST

A1. Cross Site Scripting (XSS)

A2. Injection Flaws

A3. Malicious File Execution

A4. Insecure Direct Object Reference

A5. Cross Site Request Forgery (CSRF)

A6. Information Leakage and Improper Error Handing

A7. Broken Authentication and Session Management

A8. Insecure Cryptographic Storage

A9. Insecure Communications

A10. Failure to Restrict URL Access

Cross Site Scripting and Injection Flaws are the two
most spread vulnerabilities as noted before. These are also
the two that are most easily detected by scanners. That is
why most of the available scanners search for them, more
or less successfully. The most of vulnerability scanners
look only for particular subsets of these vulnerabilities:
SQL injection is a typical injection flaw that is most often
searched for, and reflected XSS is the easiest XSS type to
detect.

While searching for a XSS vulnerabilities, most of the
popular open source tools, such as Web Application Attack
and Audit Framework (w3af) [3] or Wapiti [4], work in a
similar way. The tool requests a page from Web application

and provides some test payload that is inserted in one of
the parameters that is being checked. If the payload is
found immediately in the response page or somewhere
later in the application it is a sign of a vulnerability. If the
data is validated and sanitized, the Web application doesn't
echo back the test payload. In these cases it usually returns
default page, blank page or error page.

Searching for all kinds of injection flaws (i.e. SQL,
XPath, LDAP, MX, etc.) is done in a similar way. Scanners
again provide testing vectors through various input
parameters and then in the response page they try to find
some common error messages or part of it as an indication
that it managed to raise an error in the Web application. If
the Web application is configured in such a way that it
doesn't echo back system error messages, these methods
fail. There is also a method called blind injection [5] [6]
that is able to detect and exploit injection flaws in Web
applications when no error message is echoed back.

Other vulnerabilities shown in Table I. are not as easily
detectable. It is because of scanner's inability to understand
the data or know how the Web application is supposed to
work. For example, the scanner cannot know for sure if
some parameter references some internal object, and if the
user is supposed to see altered values, i.e. other objects. In
the same way, the scanners cannot know if some Universal
Resource Locator (URL) should be restricted and guarded
by authentication and authorization mechanisms.

Each found XSS vulnerability also implies that there
exists CSRF vulnerability, but finding stand-alone CSRF
vulnerabilities is a difficult problem.

Scanners are good at detecting information leakage and
improper error handling and this is being done also by
searching for some common strings that could represent
some forgotten data in comments or commented code, or
simply by displaying information on the pages (most often,
error pages).

Detecting the use of insecure protocols for transmitting
sensitive information is a trivial task for all the scanners,
but they cannot know how this information is transmitted
between backend servers. Also, the scanner cannot know in
any way how this information is stored, if there is some
encryption in use and if it is configured properly.

Detecting broken authentication and session
management is also difficult for automated scanners as
they cannot know which parts of Web application should
be protected by access control mechanisms. Scanners also
have trouble authenticating to the system and need human
intervention for that part. However, they are useful for
analyzing session identifiers for relative predictability.

III. VULNERABILITY DETECTION BASED ON
CLUSTERING WEB PAGES

As shown in the previous section, two most common
types of vulnerabilities can be found by probing the Web
application with various input vectors and examining the
response pages.

We propose a new method for detection not based on
analyzing page's content. Our method analyzes response
page's structure and finds deviations from standard

structure. Differences are analyzed in responses from a
single page or form requested with various input vectors.

First, various input values must be constructed for use in
testing. Input vectors should cover different values, both
meaningful and harmful. Input values should be linked
with input parameters and form input vectors. The number
of values for a single parameter and the rate between
meaningful and harmful values should be decided in
further research.

Gathering all the response pages retrieved with various
values for input parameters is the next phase. The response
pages have to be analyzed and grouped to several
categories with respect to their structure. We suppose that
all the valid pages will have similar structure and should be
grouped together. When some error occurs in the Web
application, the response page may have significant
variations in structure and should be grouped to another
category.

Finally, the representative pages of the groups should be
displayed to the user so he can decide which of the
categories represent odd behaving of the Web application.
At that point, the user can see which of the input vectors
produced particular behaving and focus the further search
for vulnerabilities.

Various approaches can be chosen for grouping Web
pages based on different measures of similarity. The
majority of the current methods [7][8][9] use supervised
learning for this purpose, i.e. classifying. These tools first
have to build the classifier using the test examples of pages
and then use this knowledge to differentiate new pages.

It would be impractical for user to browse through each
Web application and find out what is the common structure
of that particular Web application. Thus, supervised
learning is not appropriate for this task and the decision
was made that our tool should use clustering. Furthermore,
it should run without any knowledge of the Web pages'
structure.

There are already methods for clustering Web pages [10]
but they are all based on web page's content. There are
some that also take into consideration the web page's
structure [11], but they still cluster pages regarding the
content.

All of the mentioned methods use occurrences of some
common words or phrases related to category and group
the page to category according to found content.

We wanted to differentiate Web pages based on their
HTML content, i.e. HTML elements. The differences
should be examined regarding how they seem to a human
user without reading the content. If this can be built
successfully, the deviations in a page's structure should be
detected and misbehaving of the Web application could be
isolated in a separate group. The representatives of groups
will then be displayed to the user and the user will decide
which group represents the misbehaving. The user's
response could then be used to refine the clustering
criteria.

IV. INITIAL RESULTS

In this section, we will propose a design for a tool for
vulnerability detection described previously. The
architecture should be modular in order to allow the user to
easily replace particular modules. We propose the
architecture with four different modules as shown in
Figure 1. and three intermediate file formats that connect
the modules. In that way, the result files from one module
can be used in some other way if necessary, or the modules
could be replaced. The first module named crawler should
be designed for examining the Web application and finding
all the pages and forms and their input parameters. The
information gathered in this module should be stored to an
intermediate file. The human intervention is optionally
needed before the next step. We want to provide the user
an opportunity to select parameters and input values that he
wants to use in a test. This will be handled by fuzzing
options.

The module named fuzzer should take the instructions
from the user, generate input vectors and gather all the
response pages. Beside the HTML content of the response
page, these should contain information how was this
particular page obtained and what input values for
parameters were used. These pages should then be handed
over to a module for page features extraction which will
prepare the data for clustering. The document that contains
vectors that describe each page is called feature matrix and
should be designed in a way that can be used with various
algorithms. Clustering algorithm module takes this
document, performs grouping and as a result gives us
pages that are good representatives of the clustered groups.

The problems with crawling the Web and gathering all
the information about input parameters are already well
known and will not be described here.

However, there are several issues associated with page
features extraction and clustering algorithms:

1. Page structure representation

2. Number of groups
3. Group representatives
4. Input vectors

A. Page structure representation

The structure of the Web page should be transformed to
multidimensional space containing page's features
presented in numerical values. The main problem in
building a tool for clustering based on the ideas presented
in the previous section is a representation of the page's
structure.

The deviations between response pages should be
searched for a single web page of an application at a time,
varying only one or several of its parameters. While
experimenting on the Internet to find out how a change in a
single parameter can result in a page's appearance variation
we found two extreme conditions. In the first case,
changing of a single parameter value can result in a minor
change on the page, possibly only text information
regarding the object that is described and referenced by the
parameter. In other extreme condition, Web application can
consist of a single page with one parameter and varying the
value of the parameter can echo back to user the home
page, article page, contact page or any other page in the
application.

Our clustering algorithm should deal well with both
extreme conditions found on the Internet. In the first case,
it should detect even small deviations from the original
structure, e.g. error has occurred in some module and it's
displayed in a small portion of the page. In the latter case,
it should form a global picture of the common Web
application's structure and detect deviations from that
structure.

B. Number of groups

The second problem which we faced is the number of
groups used for clustering. As we don't have any a-priori
knowledge on Web application pages' structure we don't
know how many groups for clustering do we need. Even if
we knew that varying the parameter's value results in a
similar structure, we cannot know if there is one or more
different errors and associated error pages that can be
raised and displayed to the user. Selecting an algorithm
which can dynamically decide number of groups is a
subject of a further research. If the algorithm needs to have
a predefined number of groups, it can be run with various
number of groups and then, the results can be compared to
find out which set of groups gives the most compact group.
In this way, it is possible to simulate dynamic change of
number of groups. It is also possible that results for various
group numbers can give us additional information about
the samples. For this purpose, the K-means algorithm
should be appropriate.

C. Group representatives

The first goal of this approach was to automatically filter
pages that represent odd behaving of Web application and
display to the user these pages and input vectors that
caused them. However, during the research, we found out

Fig. 1. Architecture design

list of
formscrawler fuzzer

Fuzzing options

Page features
extraction

feature
matrix

Clustering
algorithm

Response
 pages

Groups of
pages

that the tool cannot know what is the normal behavior of
the Web application and what is misbehaving. As a result,
it leaves us with an option to reveal to the user all the
group representatives so he can decide what is normal
behavior, and what is wrong. When selecting pages that
should represent the groups, it was decided that medoids of
the groups are most appropriate. Medoid is a data sample
that is closest to the center of the group.

D. Input vectors

Once the mechanism for grouping different pages is
selected, there are still some areas that require
experimenting. For grouping pages we use a series of
response pages retrieved with various input vectors. It is a
subject of further research to determine the optimal range
of the group of input values, and at what rate should it
contain meaningful values (i.e. values that are common in
Web application and should return valid page) and harmful
values (i.e. values that are supposed to raise errors). It is
possible that clustering results would be better if there is
only one or few valid pages and the rest are error pages,
but it can also be possible that we would need more valid
pages to be able to distinguish them from error pages.

V. CONCLUSION

Testing Web application vulnerabilities has become very
important. It is known fact that detection of vulnerabilities
can not be done solely by automated tools. It is also
obvious that the tools speed up the detection process. The
combination of automated tools and human perception is a
way to efficiently search for vulnerabilities.

The method for detecting vulnerabilities proposed in this
paper deals with this two-step process of assessing Web
applications' security.

It was proposed how this tool should be built and what
are the problems that arise in building and using such tool.

We believe that it is possible to find appropriate attribute
space for the clustering mechanism that will be able to
successfully distinguish different pages regarding only
their structure, and not their content.

Experimenting with various Web applications should
show if this approach speeds up the process of
vulnerability detection and if achieves some new valuable
information for the security researcher or penetration
tester.

Acknowledgement
This work has been carried out with project

036-0361994-1995 Universal Middleware Platform for
Intelligent e-Learning Systems funded by the Ministry of
Science and Technology of the Republic Croatia.

REFERENCES

[1] WASC Web Application Security Statistics Project,
http://www.webappsec.org/projects/statistics/

[2] OWASP Foundation, The Ten Most Critical Web
Application Security Vulnerabilities

[3] w3af - Web Application Attack and Audit Framework,
http://w3af.sourceforge.net/

[4] Wapiti - Web application vulnerability scanner / security
auditor, http://wapiti.sourceforge.net/

[5] SPI Labs, Blind SQL Injection
[6] A. Klein, Blind XPath Injection
[7] D. Shen, Z. Chen, Q. Yang, H.-J. Zeng, B. Zhang, Y.

Luand W.-Y. Ma, Web-page Classification through
Summarization, Proceedings of SIGIR ‘04, 2004.

[8] S. Dumais, H. Chen, Hierarchical Classification of Web
Content, Proceedings of SIGIR '00, 2000.

[9] X. Peng, B. Choi, Automatic web page classification in
a dynamic and hierarchical way, Proceedings of the
IEEE International Conference on Data Mining
(ICDM’02), 2002.

[10] D. Boley, M. Gini, R. Gross, E.H. Han, K. Hastings, G.
Karypis, V. Kumar, B. Mobasher, and J. Moore,
Partitioning-Based Clustering for Web Document
Categorization, 1999.

[11] E. J. Glover,K.Tsioutsiouliklis, Using Web Structure for
Classifying and Describing Web Pages

