Implementation of IPv6 in Internet Key Exhange version 2

Marko Salkié, Stjepan Gros, Vlado Glavinié

Department of Electronics, Microelectronics, Computer and Intelligent Systems

Faculty of Electrical Engineering and Computing
Address: Unska 3, 10000 Zagreb, Croatia
Telephone: +385 1 6129-935 E-mail: marko.salkic @fer.hr

Summary - IKEv2 is a protocol for key exchange in Internet
security architecture. We have implemented first, stripped-
down version of IKEv2 that supported only IPv4 addresses.
The implementation had some provisions that have been
introduced in order to make later implementation of IPv6
easier. Currently, we are extending IKEv2 implementation
with missing functionality in order to make it fully
functional. In this paper we describe implementation details
of IPv6 introduction into IKEv2 protocol implementation.

I. INTRODUCTION

IPv4 address architecture [1] is currently dominating
on the Internet. This version has been in use for over 20
years and during this period of time many deficiencies
were discovered and identified. This led to a new version,
IPv6 architecture [2], that has been in active development
for over a decade. There are many differences between
two address architectures, the most important being larger
address space, i.e. 32 bits vs. 128 bits.

The other
implementation of security services on IP level in IPv6.

important difference is mandatory
Security services are described in a set of documents: a
base one defining architecture[3], and additional set that
specifies various protocols. These security services are
known under the name IPsec. Implementation of IPsec is
mandatory for all IPv6 compliant nodes, while for IPv4 it
is optional. Still, many IPv4 compliant nodes also have
IPsec implementation included. We are implementing
IKEv2 daemon, key exchange protocol that is a part of the
IPsec architecture. The first version supported only IPv4
but in the new version IPv6 is also supported.

This paper describes implementation process and
differences between IPv4 and IPv6. It is structured as
follows: firstly, in the second section we give a basic
overview of IKEv2 protocol. Then, in the third section, we
give an overview of IPv6 addresses and specifics of the
IPv6 socket API in contrast to IPv4 socket API. Section
four gives us an overview of handling IPv4 addresses in
IKEv2 daemon,
addresses into daemon is described. Finally, the paper is

and then, an introduction of IPv6

concluded in section five, followed by a list of references
in section six.

II. IKEv2 PROTOCOL

IP security (IPsec) is a suite of security protocols and
open standards developed by the Internet Engineering
(IETF) for
unprotected networks, such as Internet. IPsec is required

Task Force secure transmission over
for IPv6 and optional for IPv4, but has not yet been widely
deployed. Using cryptographic security services, IPsec
provides confidentiality, data integrity, authenticity and
availability. Setting the parameters of an IPsec security
association (SA) manually does not scale well [4], so
another protocol — Internet Key Exchange (IKE) — is used
to automate and enhance negotiation of parameters and
allow additional features. In its first version, IKE was a
complex and somewhat flawed protocol that has been
greatly simplified and improved in the new version,
Internet Key Exchange version 2 (IKEv2).

IKE performs mutual authentication of peers and
establishes IKE security association (SA) that includes
shared secret information used to establish additional SAs
(ESP) and
IKE negotiates

for Encapsulating Security Protocol
(AH).
cryptographic and other parameters for securing data that
SAs carry. SAs for ESP and/or AH that are set up through
IKE SA (IKE_SA) are called “CHILD_SAs”. All IKE
communication is based on pairs of request/response

Authentication Header keys,

messages called exchanges. First two exchanges that
establish an IKE_SA are called IKE_SA_INIT and
IKE_AUTH. A minimum of four
exchanges) is required to successfully establish IKE_SA
and first CHILD_SA. Subsequent CREATE_CHILD_SA
(for creating additional SAs) and INFORMATIONAL (for
deleting SAs, error reports and other housekeeping)

messages (two

exchanges may follow in any number and order.

First

security parameters, nonces and Diffie-Hellman values for
IKE_SA.

request/response (IKE_SA_INIT) negotiates

Second exchange (IKE_AUTH) authenticates first
exchange by proving knowledge of shared secret in sent
identities, and sets up a first AH and/or ESP CHILD_SA.

IPsec functions in two main modes: transport and
tunnel mode. End-to-end communication is based on
transport mode where only IP payload is encapsulated. In
tunnel mode, the whole IP packet is encapsulated, thus
both headers contain IP addresses.

Secured communication between Alice and Bob is
defined by two sets of rules: what to protect and how to
protect it. Those rules are contained in operating system
databases: Security Policy Database (SPD), and Security
Association Database (SAD or SADB). In SPD there are
entries which consist of traffic selectors and actions (what
to protect). Traffic selectors define packets based on their
IP addresses, transport protocols, ports, etc. Set of security
crypto
algorithms and keys (how to protect) is called a Security
Association (SA) and is a part of SADB. Each SA is
associated by Security Parameters Index (SPI), and there

parameters of every connection specifying

is one SA for each direction of every connection. In other
words, for every connection there is a pair of SA-s and
SP-s (for every direction).

Should Alice request communication with Bob,
security policy is chosen based on traffic selectors in SPD.
Once consulted, the SPD defines three actions based upon
a traffic match, as identified by the following selectors:

— DISCARD Do not let the packet in or out.

— BYPASS Do not apply or expect security.

- IPSEC

On Figure 1, the sequence of establishing a SA is

Apply security protection

shown. Alice has something to send to Bob (1). Before
SPD that
protection of the traffic. Since SADB on Alice's side is

sending data, kernel identifies requires
empty, and kernel needs protection parameters, IKE
daemon is contacted with the request to provide necessary

parameters (2). This initiates communication between

Alice Bob

Application

Application space

Application

Application space

kernel

A
 J

Figure 1. Communication between Bob'S and Alice's IKE

IKEv2 daemons on Alice's and Bob's hosts that results in

authentication, authorization and, finally, necessary
keying material (3). Once negotiated, a new entry is made
to SADB with appropriate SPI numbers (3, 4), IP
addresses, actions, and other parameters thereby
establishing a SA. Finally, the communication restarts and

data is delivered to the Bob's application (5).

II. IPv6 AND SOCKET API

By 1996, years after the IPv4 address exhaustion
problem had been identified, a series of RFCs (starting
with RFC 2460) were released defining IPv6. Its global
implementation has been somewhat slowed by the
introduction of classless inter-domain routing (CIDR) [5]
and Network Address Translation (NAT) [6]. However, its
gradual implementation through isolated IPv6 “islands” is

to be expected.

The main difference between IPv4 and IPv6, and the
primary reason for the implementation of the new protocol
is the address size: 32-bit for IPv4 versus 128-bit for IPv6
[7]. 128-bit address size guarantees, in effect, unlimited
address space in any foreseeable future. The next
important improvement is a simplified header: it is now of
a fixed size, with optional extension headers. Other
options can be found within extension headers, including
AH and ESP. As a consequence of routing simplification,
fragmentation is not allowed anywhere other then in the
sending host. IPv6 addresses are scoped [7] so they could
be link-local, site-local, organization, global, or other
scopes at this time undefined. IPv6 allows stateless auto-
configuration [8] by using several new features. Firstly, a
temporary link-local address typically based on a MAC
address is formed, until the characteristics of the network
are discovered and a permanent address is obtained. Other
features include: better multicasting, jumbograms, etc.

In order to enable applications to operate with IPv6
addresses, extensions to the existing Application Interface
Protocol (API) have been made [9]. Along with keeping
changes minimal where possible, some entirely new
functions have been introduced. Generally speaking, IPv4
and IPv6 addresses are not compatible so it is essential to
use API functions that hide differences as much as
possible. AF_| NET6 is a designation of the new address
family name that is used, for example, as a first argument
to the socket () function.

In the socket interface, a different protocol-specific
structure sockaddr _i n6 is used:

struct sockaddr_in6 {
sa_family_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr
sin6_addr;
uint32_t sin6_scope_id;

}

The sin6_fam |y field corresponds to the
sa_family field in a protocol-independent structure
sockaddr. The value of sin6 _family has to be
AF_| NET6 to identify the structure as sockaddr _i n6.
Any protocol-specific structure is cast into generic
structure sockaddr
functions. Similar to sockaddr _i n (the IPv4 version of
sockaddr _i n6), si n6_port contains the 16-bit TCP
or UDP port number in network byte order. Fields
sin6é_flownfo and sin6_scope_ id are IPv6
specific, as specified by the new architecture. The
sin6_addr fieldisoftypei n6_addr and is large
enough to hold a 128-bit address. Special consideration is

before it is used with socket

needed when specifying the size of a socket data structure.
The sizes of structures sockaddr and sockaddr _in
are equal, while sockaddr _i n6 is larger, so it is wrong
to use the generic structure sockaddr as a measure of
the structure’s Using functions bi nd(),
connect (), sendnsg() and sento() with IPv6
addresses is analogous with IPv4 addresses: the difference
is in the address family (AF_| NET6) and in the structure
used for passing over the address (sockaddr _i n6). The
same is true for functions accept (), recvfrom(),
recvinsg(), get peer nanme() and
get socknane() . Furthermore, the new API requires
i net _pton() and

size.

the use of functions such as:

inet_ntop() (instead of inet_addr() and
i net _ntoa()) for address conversion,
get addri nfo(), geti pnodebynane(),
get i pnodebyaddr () (instead of

get host bynane() and gethostbyaddr()) for
nodename-to-address translation and vice versa, etc. The
aforementioned functions provide backward compatibility
while introducing IPv6 support at the same time. Ancillary
data that is used in IKEv2 to exchange optional
information like packets' source and destination addresses
has been adjusted to the new API [4, 6, 5, 3]. To receive
any optional information, application must set socket to do
so with setsockopt (). The parameter needed is
| PV6_RECVPKTI NFOof type | PPROTO_| PV6.

Having in mind the forthcoming IPv6 protocol, new

applications should work in a mixed IPv4/IPv6

environment. Essentially, the performance and reliability
of applications should not depend on such variables. Linux
kernel's dual stack allows IPv4 and IPv6 stacks to coexist
[10], enabling applications to use both protocol versions
simultaneously. The API also provides ability for IPv6
applications to interoperate with IPv4 applications, and
vice versa. This feature uses IPv4-mapped IPv6 addresses
that embeds IPv4 into IPv6 addresses. IPv4-mapped IPv6
addresses are written as follows:

: :FFFF:<IPv4-address>

If an application is listening on an IPv6 socket, and if
a IPv4 packet is to arrive (provided socket is not set to
accept IPv6 packets only), then the kernel converts IPv4
address. The
communication between the nodes takes place using IPv4

into IPv4-mapped-IPv6 actual

datagrams, but the application doesn't need to be aware of
that. If, however, the application requires the knowledge
of how the actual communication takes place, then macro
function | N6_I S_ADDR_V4MAPPED can be utilized.

IV. 1IPv6 IMPLEMENTATION IN IKEv2

IKEv2
simultaneous use of both IPv4 and IPv6 addresses from

implementation was designed to allow
the beginning. This is achieved via generic structure
net addr, and a set of functions that hide differences
between addresses from the majority of the code. The

net addr structure has the following members:

struct netaddr {

union {
struct sockaddr sa;
struct sockaddr_in sin;
struct sockaddr_in6 sin6;
struct sockaddr_11 sll1;

}s

guint8 prefix;

gint refcnt;

¥

The other purpose of introduction of special structure
is the necessity to also include network masks with
addresses (pr ef i x), which standard socket structures do
not allow. Structure net addr uses union of different
types of socket structures, thus reserving sufficient amount
of memory for any one of them, i.e. the most memory-
consuming one. Accordingly, the type of socket structure
is transparent to the programmer. This prevents code
duplication because it would be necessary to separately
treat all socket structures were it not for the unified
structure.

STATE MACHINES |

sEssTon
message_msg ?messageimsg
itimeout.msg
MESSAGE

network_msg Y

A
cfg_msg
timeout_msg v

CFG

CTDAPIONS §
data

data packets packets
Y

| NETWORK SUBSYSTEM

A
ipsec_msg

ipsec_msg

[IPSEC |
h

sad_item

- spd_item v
S

da\apackels*

idata packets

| v LINUX KERNEL i/]

\
sending/receiving packets through AF _INET
or AF_INET6 sockets

parsing pfkey messages thatcontain [Pv 4 or

IPv6 addresses

Figure 2. Architecture of IKEv2 implementation with IP version dependent points

Although the majority of the code is independent
from the actual version of IP address, there are situations
where it is impossible to treat them the same. On Figure 2
architecture of IKEv2 daemon is shown, and interfaces
that depend on particular version of IP address are
identified. Acquiring SADB messages from the kernel that
contain traffic selectors is done via pfkey socket, as
shown on Figure 2. When receiving or sending pf key
messages, IP addresses have to be parsed from pf key
messages into net addr structures or transformed from
net addr structures when sending pf key messages to
the kernel.

In the first phase of the IKEv2 project we decided to
support only IPv4 addresses due to the time constraints.
IPv6 addresses have been added during the second phase
of IKEv2 project, which is currently in progress. Due to
the addition has
relatively easy. However, we've encountered problems.

the prepared architecture, passed

Using transitional mechanisms “Bump-In-the-Stack”
(BIS) [11] and “Bump in the API” (BIA) [12] is not
to IKEv2 because
profoundly on IP addresses (e.g. traffic selectors). Besides

applicable some parts depend
that, it is highly inadvisable to apply BIS or BIA as a
patch to IPv4 applications when it is possible to rewrite

them.

When we've started implementing IPv6 support into
IKE, the following question has been self-inflicted: with
all considering, should the application be written to deal
Structure net addr is
indifferent of the IP address version, a set of functions

with IPv6 addresses only?

directly dealing with IP addresses are concealing
addresses' versions, so the rest of the code would not have
been afflicted by the changes. Focusing on one version
would simplify and minimize the code as well as make it
easier to understand and maintain. It is possible to ignore
IPv4 addresses as such by using kernel’s ability to
transform all IPv4 addresses into IPv4-mapped IPv6
addresses, thus conserving interoperability with IPv4
nodes. However, IP addresses are an integral part of traffic

selectors.

As mentioned earlier, traffic selectors are used to
define traffic to be protected, discarded or allowed as
defined in SPD. The structure of traffic selectors is
defined by an address range (IPv4 or IPv6), a port range
and protocol IDs. IKEv2 allows traffic negotiating where
the responder is allowed to choose a subset of the traffic
proposed by the initiator. Calculating intersections is
based on functions that compare IP addresses and their
families. One possible scenario is that kernel delivers an
[Pv4-mapped IPv6 address to be compared with an IPv4
address. Fortunately, the format of IPv4-mapped IPv6
address provides an easy way of doing that - just by
comparing last 32 bits with regular IPv4 address.
Similarly, the use of macro function
IN6_I S _ADDR VAMAPPED is required wherever it is
important to identify an IPv4-mapped IPv6 address. This
would, in effect, violate the principles of code
encapsulation. Moreover, some consider that the use of
[Pv4-mapped IPv6 addresses is a security vulnerability
[13]. On the other hand, we have already had a stable and
a tested functionality and that was unwisely to discard, so
it has been finally decided to keep the existing code and
add IPv6 support in parallel. Consequently, a separate
AF_I NET6 socket was added and restricted to accept
IPv6 packets only. To prevent kernel from acquiring IPv4
packets on a IPv6 socket, socket option | PV6_VEONLY is

set using the set sockopt () function [9].

V. CONCLUSION

Although there is some dispute as to when a general
acceptance of IPv6 is to be expected among applications,
all new network applications should work with IPv6.
Since IPsec is required for IPv6, and IKEv2 stands as an
important part of it, including IPv6 in IKEv2 daemon is
especially important and can, in a way, support its
application. IPv6 is not expected to start dominating the
Internet over night, so in transitional period, applications
ought to work with IPv4 and IPv6. As a result,
applications will be ready for pure IPv6 networks (or
islands) after the transitional period is over. Kernel and the

new API provide a way for applications to support IPv4
and IPv6 in parallel, e.g. with socket dual binds. We have
decided to keep the existing IPv4 code and adjust it for
IPv6 support. Since the code is structured in modules and
prepared for occurrences of IPv4 and IPv6 addresses in
advance, it was not hard to adjust the network section and
existing socket functionalities. Up until the second phase,
IKE had been using functions compatible with the new
API, with the exception of socket parameters. However,
some dependencies have not been possible to mask. The
result is a little bit more complex than it would have been
had we decided to implement IPv6 support only, but the
resulting code is more flexible for usage during the
transitional period. Ideally, applications are not supposed
to depend on IP version used, but as IKE is concerned,
that is not entirely the case. Using kernel's mechanisms to
translate any IPv4 in IPv4-mapped IPv6 address leads to
some problems that can be avoided by separating sockets.

To conclude, modular architecture of network
applications can save a lot of time and effort when
transitioning to some other protocol, as it was the case
with IPv6. Had not structures been prepared to hold IPv4
and IPv6 addresses from the beginning, the transition and
rewriting the code would have been incomparably more
difficult. Hopefully, this document has given some ideas
how to make those transitions easier with applications

similar to IKEv2.

VI. ACKNOWLEDGMENT

This work has been carried out within projects 036-
0361994-1995 Universal Middleware
Intelligent e-Learning Systems funded by the Ministry of

Platform for

Science and Technology of the Republic of Croatia, and
IKEv2 Step2 project funded by Siemens Networks.

VII. LITERATURE

[1] Postel, J., “Internet Protocol”, RFC 791, September
1981

[2] Deering, S., Hinden R., “Internet Protocol, Version 6
(IPv6) Specification”, RFC 2460, December 1998

[3] Kent, S., Atkinson, R., “Security Architecture for the
Internet Protocol”, RFC 2401, November 1998

[4] Kaufman, C., “Internet Key Exchange (IKEv2)
Protocol”, RFC 4306, December 2005

[5] Fuller, V., Li, T., Yu, J., “Classless Inter-Domain
Routing (CIDR)”, RFC 1519, September 1993

[6] Srisuresh, P., Egevang, K., “Traditional IP Network
Address Translator (Traditional NAT)”, RFC 3022,
January 2001

(7]

(8]

(9]

[10]

(11]

[12]

[13]

Hinden, R., Deering, S., “IP Version 6 Addressing
Architecture”, RFC 4291, February 2006

Thomson, S., Narten, T., “IPv6 Stateless Address
Autoconfiguration”, RFC 2462, December 1998
Gilligan, R. et al., “Basic Socket Interface
Extensions for IPv6”, RFC 3493, February 2003
Nordmark, E., Gilligan, R., “Basic Transition
Mechanisms for IPv6 Hosts and Routers”, RFC
4213, October 2005

Tsuchiya, K. et al., “Dual Stack Hosts using the
'Bump-In-the-Stack' Technique (BIS)”, RFC 2767,
February 2000

Lee, S. et al., “Dual Stack Hosts Using 'Bump-in-
the-API' (BIA)”, RFC 3338, October 2002

Davies, E. et al., “IPv6 Transition/Co-existence
Security Considerations”, draft-ietf-v6ops-security-
overview-06 (work in progress), October 2006

	I.INTRODUCTION
	II.IKEv2 PROTOCOL
	III.IPv6 AND SOCKET API
	IV.IPv6 IMPLEMENTATION IN IKEv2
	V.CONCLUSION
	VI.ACKNOWLEDGMENT
	VII.LITERATURE

