
Evaluation of tools for assessing Web applications

V. Suhina, M. Kozina and S. Groš
Department of Electronics, Microelectronics, Computer and Intelligent Systems

Faculty of Electrical Engineering and Computing
Unska 3, 10000 Zagreb, Croatia

Phone: (01) 612-99-35 Fax: (01) 617-00-07 E-mail: vanja.suhina@fer.hr

Summary – In this paper, we provide a selected list of tools
that can be used for assessing Web application security.
Intention is to present available tools that can help in search
of vulnerabilities in Web applications and thus make them
more secure. The paper is written for Web application
developers and testers, and of course, students who have
interest in web development. So, it is concentrated on free
and/or open source tools, and thereby, commercial products
are not mentioned. First part of paper provides overview of
vulnerabilities that can be detected by using mentioned tools.
In the second part, the tools are described and it is shown for
which actions these tools can be used.

I. INTRODUCTION

Web applications have become common way for companies to
conduct business with the outside world. The static web pages are
gone and now, almost every company has its own dynamic,
interactive Web application that communicates with their clients.
Sometimes, these applications are written by programmers not
familiarized with security problems behind their Web application
front-end or their work is guided by hard to get deadlines so
application security is not very high on priority list. Thus these
Web applications become main threat to secrecy and integrity of
company’s sensitive data.

Web applications security incidents have significantly
increased in past two years [1]. Most incidents were possible to
happen due to very well known design flaws in applications. As it
is shown in [2], some of the most common flaws are Cross Site
Scripting (XSS), Injection flaws, Malicious File Execution,
Insecure Direct Object Reference and Cross Site Request Forgery
(CSRF). Last year, top four types of vulnerabilities, XSS, SQL
Injection, Remote File Inclusion and Buffer Overflow, were
responsible for more than 50% of all Common Vulnerabilities
and Exposures (CVE’s) [3].

There are various tools for Web application security
assessment, both open and closed source. In this paper are listed
and evaluated those that are found valuable and mature while in
the same time being freely available, i.e. open source. Description
of their features and architecture is also given.

The paper is structured as follows. In the second section
overview of the most common vulnerabilities is given. Then, in
section 3, description of each tool is given. The paper finishes
with conclusion in section 4, and list of references in section 5.

II. OVERVIEW OF VULNERABILITIES

To aid understanding of the description of tools given in the
following section, as well as to emphasize what should be taken
care of during design and development of Web applications, a

short description of most common techniques and vulnerabilities
used to compromise Web applications follows.

Session Prediction or Session Hijacking is a method of
impersonating a Web application user by deducting or guessing
the unique value used to identify a user session. As a
consequence of this vulnerability, attacker gains the ability to
issue web site request with hijacked user’s privileges [4]. This
method is directed to objects used to bind user actions into a
single stateful session by web applications. Most common objects
are cookies and URL parameters.

Cross Site Scripting (XSS) vulnerability occurs when an
attacker uses a Web application to send malicious executable
code to another Web application user. Web application simply
takes attacker supplied data and sends it to user’s web browser
without validating data. Executable code is often used to
compromise confidential information or even hijack user sessions
[4].

Directory indexing and information leakages are
vulnerabilities that reveal sensitive data, such as developer
comments, error messages, secret files and other contents. As a
result of this vulnerabilities, an attacker gains additional
information and guidance in exploitation of a Web application
[4].

Insufficient Process Validation vulnerability occurs when a
logical flow of a Web application is bypassed or circumvented by
user - attacker. If the user state through a session is not verified,
the Web application could be exploited [4].

SQL injection attacks are used to compromise Web
applications that construct SQL statements from user input.
Before a user supplied input is used in a Web application
processes, it must be adequately validated and checked for special
characters that can be used to construct a custom SQL statement.
This attack can lead to information leakage or taking full control
of a database by an attacker [4].

HTTP response splitting attack occur when the data enters a
Web application through an untrusted source, most frequently an
HTTP request, and then, it is included in an HTTP response
header sent to a web user without being validated for malicious
characters. It can lead to web cache poisoning, cross user
defacement, hijacking pages and Cross Site Scripting [5].

A Brute Force attack is an automated process of trial and error
used to guess user credentials [4].

III. TOOLS

In this section description and evaluation of several free Web
application assessment tools is given. These tools are:

 WebScarab

 Pantera

 ATK

 Gamja

 Burp Suite

 Wapiti

While examining tools, focus has been on their architecture,
functionality, analyzing and testing abilities. In the case when a
tool is modularized, most important modules and their
functionalities are described.

1. WebScarab

The aim of WebScarab is to provide a free tool for Web
application developers and reviewers that will help them in better
understanding of Web applications functionality and in
identification of the possible vulnerabilities that could
compromise or bring down those Web applications.

OWASP (Open Web Application Security Project) WebScarab
is an open-source framework written in Java used for analyzing
and testing Web applications.

Common use of WebScarab is as an intercepting proxy. Proxy
allows operator to review and modify requests created by a user
using web browser before those requests are sent to a server. It
can also review and modify responses sent from a server, before
they are received by user’s browser. Intercepting proxy applies
both to HTTP and HTTPS communication. Every conversation
which passes through WebScarab is added to a communication
list, so it can be reviewed and additionally analyzed.

WebScarab is based on plugin architecture. There are two
types of plugins: (i) plugins that create conversation, and
(ii) plugins that analyze conversations. Plugins that create
conversations use specific methods to decide which resources to
request from the server, how to parameterize the request headers,
and then submits the request to the server. After receiving the
response from a server, they can perform some computation on
the responses, and based on computation result decide whether or
not to submit that conversation to the framework. When
conversation is submitted to the framework, it is distributed to
other plugins that can do further analysis. Current version of
WebScarab offers these plugins:

 Proxy
 Manual Request
 Spider
 SessionID Analysis
 Scripted
 Fragments
 Compare
 Fuzzer
 Search

Proxy plugins observe traffic between the browser and the web
server. The WebScarab proxy is able to observe both HTTP, and
encrypted HTTPS traffic by negotiating an SSL connection
between WebScarab and the browser instead of simply
connecting the browser to the server and allowing an encrypted
stream to pass through it. Various additional proxy plugins have
been developed to allow the operator control over requests and
responses that pass through the proxy [6]. The Manual Intercept
is a special proxy plugin which allows the user to intercept
requests from the browser and responses from the server, inspect
them, and optionally make modifications before transmission.
This is particularly useful when one wants to submit a form to a
web server, but JavaScript validation rejects the values entered
into the form. The request can be altered after the validation has
been performed.

The Manual Request plugin allows the user to handcraft a
request to be sent to the server. It is also possible to replay a
previous request by selecting it from the drop down selection
box. Previous requests which are loaded into the editor can also
be edited before being sent to the server. When the "Fetch
Response" button is selected, WebScarab sends the request to the
appropriate server, and saves the conversation for analysis by the
other WebScarab plugins. It can also be used for getting cookies
relevant to the requested URL from the "Shared Cookies" list and
use them in future requests [7].

The Spider plugin analyses responses to identify any links in
the response body or the "Location" header. If the URL
represented has not been seen, the URL is added to a tree, and
can be automatically downloaded when desired. WebScarab has
two modes of fetching unseen links. "Fetch Tree" enumerates all
currently unknown links below the selected node, and queues
them for retrieval. "Fetch Selection" queues only the selected
nodes for retrieval [7].

SessionID Analysis plugin collects and analyses a number of
cookies or URL-based parameters to visually determine the
degree of randomness and unpredictability. WebScarab tags all
sessionids with the date and time when they were collected, and
then, after performing calculations on the string value of the
sessionid in order to convert it into a number, plots the value
against time on a graph. The human eye is a lot more efficient at
identifying patterns than a computer, so by plotting the values it
makes it easy for humans to visualize the sequence [7].

Scripted plugin is intended to give users the ability to create
test scripts by using special BSF (Bean Scripting Framework)
supported scripting language. BSF is Java-like language used to
write test scripts. Scripts use WebScarab Java objects in order to
create requests and send them to the server, and then to perform
analysis on the responses [7].

The Fragments plugin parses HTML responses, and looks for
scripts and comments. This plugin can be used for searching any
hidden links, other debugging code.

 The Compare plugin allows the user to judge the degree of
difference between a number of responses. This is useful when
client issued a number of requests for a particular URL, possibly
via the Scripted plugin, and we would like to evaluate the results.
Obviously, if it is possible to eliminate groups of identical
responses at once, it can save some time.

The Fuzzer plugin allows users to use different combinations
of parameters. The idea is to configure the request method, the
basic URL, the request version, and list of parameters to expose
incomplete parameter validation, leading to vulnerabilities like
Cross Site Scripting (XSS) and SQL Injection.

The Search plugin uses BSF scripts to identify and filter
conversations that user would like to analyze.

Use case of WebScarab can be divided into two phases. In the
first phase analysis is performed, and we'll call it analysis phase.
In the analysis phase it is recommended to use Proxy, Fragments,
Scripted and Spider plugins. Proxy is very helpful in analyzing
communication, especially in inspecting structure of requests and
responses. Fragments plugin can be used to detect possible
information leakage caused by comments or scripts. Spider
plugin is used to crawl through application to gather all possible
links and even find links to hidden files.

Second phase is a testing phase. WebScarab is an excellent
tool for manual testing. Main plugins used in this phase are:
Manual Request, Session ID analyzer and Fuzzer plugin. Manual
Request plugin is used to make customized requests and for
cookie manipulations. It can be used to detect security
vulnerabilities like HTTP splitting. Session ID analyzer collects

and examines a reasonably large sample of session identifiers, to
determine if they could be vulnerable to prediction, or brute force
attacks. Fuzzer is very useful in detection of SQL or LDAP
injection, XSS vulnerabilities and insufficient process validation
vulnerability.

2. Pantera

OWASP Pantera is a web assessment project written in Python
[8] currently in beta development phase. Pantera itself is a Web
application that runs inside the browser and can be customized by
the user. Although Pantera is still under development it offers
tools like penetration testing proxy, an application scanner and an
intelligence analysis framework. Pantera’s analysis engine can
store each web page that Pantera sees and analyze it for
comments, scripts, vulnerabilities, hidden tags and more. All this
is done in background and transparent to the user while testing
the Web application manually. All the information gathered
during analysis is stored in the database [9]. Pantera has many
utilities like Data Miner, Interceptor, Session Trace, Fuzzer, Web
spider. All those utilities make Pantera powerful web assessment
studio in searching of all kinds of vulnerabilities.

In future, the primary goal of Pantera would be to combine
automated capabilities with complete manual testing to get the
best penetration testing results.

3. ATK

Attack Tool Kit (ATK) is tool developed in Visual Basic,
written for Windows operating system. It is licensed under the
GNU General Public License (GPL) and is free to use and
distribute. It can be used to perform fast checks for dedicated
vulnerabilities [10].

The tool is also based on plugin architecture, but plugins have
a little bit different meaning than usual. Each plugin is actually
one check, i.e. one specific test designed to detect or exploit
certain vulnerability or flaw. The tool is shipped with 340
preinstalled plugins (checks), but it is very simple to download
and add new one or even write custom ones. The plugins are
written in simple scripting language, and there exists detailed
documentation on how to use it. The biggest advantage of this
tool is possibility of easy modification of each plugin [10]. It can
even be done during run-time.

The plugins can be searched by several parameters: name, ID,
port number, family, severity or class (of vulnerability). All this
makes it very simple to find required plugin. On Visualizing
form, it can be monitored on dynamic sketch what's going on
between the attacker and the target. On Response form, the last
response from the server is shown. Everything is logged and can
be nicely combined into one report and statistics sheet.

This tool is great for verifying existence of a specific
vulnerability and exploitation of a specific weakness. This makes
it useful for scanning systems for vulnerable applications or
server flaws and it comes handy while doing penetration tests.
However, the tool is not designed for automatic testing of custom
made applications and finding new security flaws. For automatic
scanning, it relies on knowledge base of known server and
application flaws that it tries to find. To test custom made
applications, new tests need to be written.

4. Gamja

Gamja is another project written under GPL license. It is
command-line tool written in Perl [11], portable to most popular
platforms and at this moment it is in early beta phase. This tool is
able to find XSS vulnerabilities, SQL Injection flaws and does
URL perimeter validation check [11].

The scanning of web site is fixed process that cannot be
altered. Only parameters that can be configured for scanning are
port number and start page. As this project is in early phase of
development, it is assumed that new configuration options and
features will be added. The tool crawls through a web site for all
accessible links, finds entry points to the application and tries to
exploit them. As there is no available documentation for the tool,
the methods of how this tool works can only be deduced by
examining the source code.

5. Burp Suite

Burp Suite is a tool for attacking web applications. It consists
of several, so called, “burp tools” (Proxy, Spider, Intruder and
Repeater) and the robust framework that lies beneath them. The
framework is designed to handle HTTP requests, authentication,
downstream proxy, logging and alerting, and the tools are
designed to help in a process of assessing applications. All tools
are well matched and information gathered from one tool can
easily be shared with all the other tools. Each tool can be used as
a single application, but the strength of Burp Suite comes when
combining all of them together.

Burp suite is written in Java, so it is portable on all platforms
that have Java Runtime Environment available. It is copyrighted
to PortSwigger.net [13]. The code is closed, but the tool can
freely be used for personal and commercial purposes.

Burp Repeater is tool for manually sending HTTP or HTTPS
requests to web application. The request sent can easily be altered
before sending new one. The Repeater remembers all sent
requests and responses and allows simple navigation through
them. It's search engine can be used for tracking values that
match regular expressions through given responses. It is well
connected with other Burp tools such as Burp Proxy.

Burp suite has its own proxy. It allows user to intercept,
inspect and modify the raw traffic passing in both directions. It
can also display traffic in three different ways: raw text, table of
parameters and values, and hexadecimal view. The incoming and
outgoing traffic can be filtered using very efficient filtering rules
that can be combined using simple filter statements. One more
addition to this tool is header manipulation area, which allows
configuring replacement for some strings (matched by regular
expressions) found in HTTP headers. All traffic is saved to
history where it can select some packet and send it to other tool
such as Burp Repeater, Intruder or Spider.

Burp Spider is tool for enumerating application’s content and
functionality. It follows hyperlinks found within HTML,
JavaScript, and submitting forms, but it also uses other clues such
as directory listings, source code comments and configuration
files. The results can be displayed in tree view or table format and
requests can be again sent to burp intruder or repeater. When one
item is selected, the tool also displays information regarding
where this resource is linked from, and what other hyperlinks
does it have.

Burp Intruder is central tool for assessing web applications. It
is used to automate a wide range of attacks against applications,
including testing for common web application vulnerabilities.

Some of them are SQL injection, cross-site scripting, buffer
overflows, directory traversal, etc. Before using the Intruder, the
user must gain some knowledge of functionality and structure of
the target application. This information can be gathered with
other burp tools. First, places in HTTP requests where payloads
will be injected have to be defined. There are many types of
payloads that can be used: preset list of strings, character and
case substitutions, number and date iterators, bruteforcer
character sets, illegal Unicode and null values, etc. One example
where injecting payloads can be used is password guessing.
Besides performing the simple brute force attack, more complex
types can be achieved using character substitution (common
substitution of letters with numbers that look alike), case
substitutions, etc. All payloads can be URL-encoded or base-64
encoded and its hash can be calculated. All this makes Intruder
highly configurable and capable for all types of attacks.

Burp Suite is excellent tool for checking and attacking web
applications. It is not simple point-and-click tool as it requires
some knowledge of the target application. But, it can easily
automate further investigation and exploitation of vulnerabilities
and flaws.

At the time of this writing, it is announced that another tool
will soon be released, Burp Scanner. Burp Scanner will perform
automated vulnerability assessments of web-enabled applications
[13].

6. Wapiti

Wapiti is a web application security auditor written in Python.
It works as a black box vulnerability scanner and it can find
following vulnerabilities: Database injection, Cross Site
Scripting, Bad File Handling detection, Command Execution
detection, Lightweight Directory Access Protocol (LDAP) and
Carriage Return Line Feed (CRLF) injection. [14]

For optimal performance, it should be used with Tidy library
[15] whose purpose is to clean up the HTML and thus, helps
scanner to do the scan more efficiently. The code is broken in
several files. Wapiti.py acts as a fuzzer, lswww.py is webspider
and cookie.py and getcookie.py are tools for getting cookie from
server.

It is command line tool so all configuration is done through
parameters to the application. The configuration is very simple
and consists of configuring start URL, excluding some URLs
from checking, setting proxy, cookie or authentication
credentials.

The tool is released under GPL.

IV. CONCLUSION

Developing a secure web application has become an important,
but difficult task to many web developers. Difficulty lies in
growing number of vulnerabilities which cause web applications
to malfunction. While developing applications, focus is mostly on
functionality, scalability and user-friendly features which leaves
less time for development of security measures. Many Web
applications go through rapid development phases with extremely
short turnaround time, making it difficult to eliminate
vulnerabilities. Much vulnerabilities can be avoided by better
coding, secure strategies and education of developers, but these
solutions are very expensive.

Today’s tendency of solving security issues and removing
vulnerabilities from web applications is to use web application

security assessment tools. Open source web application security
tools are free so they don’t increase cost of developing web
application. Every tool analyzed in this paper has it own field of
usage where it shows the best results.

OWASP WebScarab is one of the most comprehensive tools in
the field used for analyzing request and responses from both
HTTP and HTTPS communication. It is also very powerful tool
in doing manual tests of web applications. Users of this tool
should know basics of HTTP and of today’s web application
vulnerabilities to fully use every feature of WebScarab. On the
other hand, WebScarab’s limitation is an absence of a database
with known prearranged list of vulnerabilities, so WebScarab
can’t be used for automatic web application security tests. As a
result of this shortcoming, OWASP took one step further, and
started development of a new project – Pantera. Idea of Pantera is
to provide a user with a full security assessment of a web
application. Pantera will have more features than WebScarab,
especially in the field of automatic test and data mining. Also,
knowledge needed to use Pantera would be minimal.

For those looking for a database-oriented tool that checks
server and application for known flaws, ATK is a suitable tool. It
is very simple to use, but it depends on a knowledge base, so if
not updated regularly, it may not find newly discovered
vulnerabilities. It can be used as first step in assessing the target:
defining on which server application run, finding some server
misconfigurations, gathering sensitive data, etc.

For more aggressive approach, there is Burp Suite. Beside
finding vulnerabilities, this tool can also be used for exploiting
them. One of the examples is automatization of password
guessing. However, to use this tool, the user should be
familiarized with concepts of why vulnerabilities exist and how
exploits work.

Gamja and Wapiti projects have not come so far in richness of
features, but if there’s a need for command line tools that are
portable via all kind of platforms, they should be tried.

In Table 1., it is given overview of each tool’s features and
field of use.

TABLE I.

OVERVIEW OF TOOL’S FEATURES

T
es

ts
 f

or
 k

no
w

n
vu

ln
er

ab
il

it
ie

s

A
ut

om
at

ic
 te

st
s

M
an

ua
l t

es
ts

F
et

ch
in

g
an

d
us

in
g

C
oo

ki
es

H
T

T
P

 p
ac

ke
ta

nd
 U

rl

pa
ra

m
et

er
s

m
an

ip
ul

at
io

n

P
ro

xy

L
in

k
cr

aw
le

r

WebScarab x x x x x

Pantera x x x x

ATK x x x

Gamja x x

BurpSuite x x x x

Wapiti x x x

REFERENCES

[1] Web Application Security Consortium – Web Hacking
Statistics (10.1.2007.)
http://www.webappsec.org/projects/whid/statistics.shtml

[2] The Open Web Application Security Project, “The Ten
Most Critical Web Application Security Vulnerabilities:
2007 Update”, Release Candidate 1

[3] Steven M. Christey, “Vulnerability Type Distribution in
CVE”

[4] Web Application Security Consortium – Threat
classification (15.1.2007)
http://www.webappsec.org/projects/threat/

[5] A. Klein, “’Divide and Conquer” HTTP Response
Splitting, Web Cache Poisoning Attacks, and Related
Topics”, Sanctum Inc., March 2004

[6] OWASP – OWASP WebScarab Project (20.1.2007)
http://www.owasp.org/index.php/OWASP_WebScarab_

Project

[7] WebScarab - User documentation (21.1.2007)
http://dawes.za.net/rogan/webscarab/docs/

[8] OWASP – OWASP Pantera Project (28.1.2007)

 http://www.owasp.org/index.php/OWASP_Pantera_project
[9] Python Programming Language

http://www.python.org/
[10] The Attack Tool Kit Web Site, “Marc Ruef” (27.1.2007)

http://www.computec.ch/projekte/atk/
[11] Perl.com: The Source for Perl

http://www.perl.com
[12] Gamja: Web vulnerability scanner (28.1.2007)

http://sourceforge.net/projects/gamja
[13] PortSwigger.net (25.1.2007)

http://portswigger.net/
[14] Wapiti (26.1.2007)

http://wapiti.sourceforge.net/
[15] Tidy library (26.1.2007)

http://tidy.sourceforge.net/

