
LUSCA – test framework for network applications

Jure Rastić, Stjepan Groš, and Vlado Glavinić
Department of Electronics, Microelectronics, Computer and Intelligent Systems

Faculty of Electrical Engineering and Computing
Address: Unska 3, 10000 Zagreb, Croatia

Telephone: +385 1 6129-935 E-mail: jure.rastic@fer.hr

Summary – Testing of network applications is a very time
consuming process. Existing frameworks used for testing
tend to be very powerful but are complex to deploy. LUSCA
was created in an attempt to simplify and automate the
process of examining the behavior of network applications
by primarily tackling remote computer control, test set up
and execution. LUSCA also provides a convenient way to
gather test results and store them for further analysis and
documentation purposes. Test parameters are defined using
a straightforward XML based language, created for this
specific purpose. This language identifies; test objects,
subjects and logic controlling the test flow in a simple way.
In the following paper LUSCA is introduced as a test
framework designed for network applications; the idea
behind it, its architecture elements and implementation
approach.

I. INTRODUCTION

To create a network application that is safe, stable and
conforms to the protocol, one must go through repeatable
process of implementing and testing its design. To test a
network application, developer must create a testing
environment under which application is tested. This
usually requires setting up some sort of computer network
topology, installing and configuring appropriate software
components on computers, deploying developed
application and support files, starting applications,
monitoring results of execution, gathering results for
analysis and then analyzing program outputs.

Creating set of scripts for testing is a programming
task itself that is usually appointed to application tester.
We are aiming to avoid wasting unnecessarily long
periods of time in scenarios which require complex
network topologies, lots of networked computers running
multiple applications all parallel monitored etc.

The objective is to flip the unfavorable ratio between
the longer time needed for preparation of the environment
and gathering of the results [1]; and the relatively short
time required for a test run; to the advantage of the
developer. Saving time and effort is the primary goal of
the framework here presented.

The paper is broken in sections as follows. In the
following section we review, in short, the two existing test
frameworks. After that, in third section we explain
LUSCA as testing framework – how the test definition
works, framework architecture and implementation.
Fourth section shows a simple example of creating test for
LUSCA that provides an insight to test design. Fifth
section holds the conclusion of paper with thoughts on
when LUSCA should be used and it's final purpose.

II. TEST FRAMEWORKS

Test frameworks provide reusable and extensible
mechanisms for managing of test environments, creating
of test packages with a set of test cases, scheduling the test
execution etc. To test an application, the tester can
approach the process by treating the application as either
black box [2] or white box [3]. During black-box approach,
only externally observable behavior of the application is
monitored; i.e. the information in the created files and
logs, what type of network traffic is generated and how the
application changes the environment in which it executes.
During white-box approach, internal state of the
application is observed. Therefore, the testing is done by,
for example, looking at the internal state of the application
and the values used during the test run, including which
functions are called in which order.

Hence, based on those two approaches, test
frameworks can be divided into two basic groups;
frameworks that provide means for black-box testing and
frameworks for white-box testing. Black-box frameworks
provide the tester with tools that aid monitoring of the
external application behavior and the test flow control.
White-box frameworks give the tester a simplified
definition of the targeted internal states of an application
(or their parts) and the ability to verify the results.

Common practice is to do white-box testing
(manually, or through unit tests) in the early stages of
application development and to introduce black-box
testing during the later stages [4].

We used Linux operating system and open source
software as a building platform for LUSCA. There are
some disadvantages of open source software such as the
lack of quality or fitness guaranties and support issues that
we took in consideration and we will compare LUSCA
with two commonly used open source frameworks for
testing.

In following subsections, these two test frameworks
will be reviewed in short; JUnit [5], used for white-box
testing, a well known framework for a JAVA
programming language, and STAF framework [6] as a
toolkit for black-box testing.

A. JUnit

JUnit is a regression testing framework used to
implement unit tests in Java. Unit testing is performed to
check that the individual modules or units of source code
are working properly. A unit is a smallest testable part of
an application. In a procedural design, a unit might be an
individual program, function, web page etc. But in object
oriented design, the smallest unit is always a class.

JUnit provides assertions for testing the expected
results, test fixtures for sharing common test data and test
runners for execution.

Creating a test comes down to writing a class with
public method which is annotated with @Test string that
asserts expected results on the object under test. To test if
object's method returns boolean true value for example,
user calls assertTrue method of JUnit's Assert class to
perform validation of method's functionality.

To run the test, user executes JunitCore from
org.junit.runner package with a parameter of class being
tested. It runs all methods annotated as test methods and
prints test results.

B. STAF

STAF is an open source framework designed to
provide services for process invocation, resource
management, logging, monitoring etc. It enables the user
to focus on building high level automation solutions for
testing.

STAF runs as a daemon process on each computer. A
set of computers running STAF daemon is referred to as
the STAF environment and it has peer-to-peer structure.
STAF services are used through STAF libraries inside the
test applications or wrapper scripts as tools which provide
the required functionality for the test. Libraries are
available for various programming languages such as C,
Java and Perl.

Test definition is set by writing a group of programs
or scripts which utilize STAF services such as LOG
service for logging, FS service for file transfers, VAR
service for storing variable values etc., all in a required
order, to create a test case.

III. LUSCA TEST FRAMEWORK

LUSCA is an open source framework designed for
testing of network applications on the Linux platform.
Two main goals are:
– to simplify test definition and hold it in one single file
– to provide a service for test execution.

Test definition is set through a XML based
programming language which holds all the information
about files and computers required for the test. A package
is created from the test definition; it holds XML itself,
files, scripts etc. Tester uploads the test on the service and
starts it. When the test is done, the tester can easily review
the results that service provides.

LUSCA development started with defining what
could be done with it in a simplest possible way while
taking into consideration the methodology of manual
automation in testing. As mentioned in the introduction,
preparing a test comes down to creating scripts for
deploying files on hosts, starting applications, detection of
a relevant event inside of an application on a host,scripts
for communication used to synchronize events between
two or more hosts and for gathering results.

LUSCA provides means for tester to create just scripts
for starting applications and parsing application events.

The rest is done by describing file deployment and actions
for certain event in testing environment.

In this first subsection coming up, we will illustrate
the XML format used for setting up the test package;
which files and scripts are required, how many computers
are used in the test and the flow of the test. In the second
subsection that follows, we will explain LUSCA’s
architecture and its components. Finally, in the third
subsection we will relate how LUSCA was implemented.

A. Idea transformed to XML

Test definition contains three basic parts: test
preamble, definition of resources (scripts, computers, etc.),
test case flow definition.

Test preamble: details basic information needed for
the test package documentation. It holds the name of the
test author, date of creation and the textual description of
the test scenario.

Definitions: entails information for the framework
relating to files, scripts, tested applications and computers
required for the test.

For scripts and files, user defines sources to fetch
them if they are; remote (for example on HTTP or FTP
server) or; local (inside the test package) and destination
path on host computer. Script definitions contains
additional information about it's input/output parameters
and interpreter for script execution. Script execution will
be expanded on further, in the paragraph Execution
element.

Variables are used for storing values required for
some script to run or result of scripts function. Variables
declared here (within Definitions element) are commonly
used for storing values required through all the test cases
(additional variables can be declared for each test case).
Declaring a variable requires setting it's default value.

User can define one or more applications which are to
participate in the test. For every application, the user
defines information needed for the test documentation,
such as the short description, web page and the author list.
To provide a source code for the framework, the user can
set a local or a remote path to the application package.
Additionally, a source code can be fetched from version
control services such as SVN or CVS.

Computer definition is used for describing computers
needed for test execution. For every network interface on
every computer taking part in the test, the user defines
individual IP address, netmask etc. Framework will set
these computers up during the preparation phase of the test
run.

Test cases: test package contains one or more test
cases defined here following the common approach to
divide whole test in set of test cases. User can define
dependencies between test cases, so if the test case A
depends upon the test case B and B fails, A will not
execute. This way the user can optimize the time of the
test package execution. Every test case definition contains
three sub-elements, which describe a corresponding test
phase: preparation, execution and conclusion. Preparation
phase is used to perform additional set-up of computers
and deployment of files. During execution phase main test
execution is performed. Conclusion phase is used to sum
test results or clean up test environment if needed.
Diagram of test case element is shown in figure 1.

Preparation element defines on which host to deploy
previously defined files and applications (scripts are
automatically deployed based on script execution on a
host). Also, the user can define execution of scripts on a
host at this point to additionally configure the host
environment.

Execution element defines batches (Batch sub-
elements) that are executed on a set of hosts and also the
signal which states that the test has passed. Each batch
starts when a host receives a signal on which the batch is
triggered (signal creation is explained later in the text). For
every batch, the user can define additional variables that
exist during execution of the test case. A batch is defined
with a Command element that has a corresponding list of
RunScript (i) and ResultFile (ii) sub-elements. These two
elements are the heart and soul of the test flow definition
in LUSCA.

(i) RunScript element defines which script is to run
with which input variables and where the script output
values should be stored. A simplified diagram of the
RunScript element is shown in figure 2.

Scripts can be used for various tasks; application
execution, calculation, file parsing etc. During a script
execution, the framework parses the script standard output
and changes the variable value when a predefined value
output line is received. This is the way the script
communicates with the framework. To set a value of a
variable used as storage for the script output, the script
generates a line with an index of a defined output variable
and it’s new value. To inform the framework of an event
which happened in the environment, the script generates
an event line with a corresponding event name and
additional information which can later be used for test
analysis. The user can define a set of actions for an

expected event in the Actions sub-element. To take
appropriate action on the host computer triggered by an
expected event, the user defines another RunScript
element, the OnEvent sub-element, therefore creating a
nested script execution. This script can also have a defined
set of actions for events it generates. This way, a single
event can trigger a whole tree of scripts to be executed.
With this technique, the framework provides a simple tool
to achieve almost any required task on one host.

To take action on a different host within the
environment, the used defines a MakeSignal action for an
expected event. When the script generates a corresponding
event, the framework then generates a signal which is sent
to another host. Type of signal can be info, error or fatal.
Info signal is a normal signal, used for notifying remote
host. Error type of signal is used to state that something
went wrong with the test but it doesn’t need special
handling (is used for documenting purposes). Fatal type of
signal fails the test; the framework stops test execution on
this signal and documents the fact that the test has failed.
This technique, combined with use of variables enables
easy communication between different hosts within the
test environment. Additional test flow control can be
achieved through a ResultFiles element. Simplified
diagram of this element is shown in figure 3.

(ii) ResultFiles element with it’s Parse sub-element is
used to simplify the process of parsing a file at a certain
point of test execution (for example; downloaded data or
log file). The task of parsing the result file is also given to
the script. The parsing starts when the host receive the
expected signal (for example; a signal sent when the
download of data is finished). Multiple scripts can be
defined to parse a file on receiving the same signal. Script
that is parsing a file is also able to generate events or set a
variable value.

Conclusion element is used to act on the specified
host when the the test is done. Some of the frequently
required actions are; to clean up files not required any
more, to run an analysis script which on a set of files to
create a conclusion about the test run (and store it in the
summary file), or to restore a previous state which has
been changed during test execution.

Presented introduction to LUSCA programming
language for defining a test package is a powerful tool in
the hands of an application tester. It provides simple ways
to achieve interaction between the hosted application and
the framework (through events) and between two or more
hosts (through signals). The tester can still use his favorite
scripting language for operations. Flow is controlled
naturally through an event driven system. When the user
defines the test, he packs it with all required files in one

FIGURE 3: RESULT FILES ELEMENT DIAGRAM

FIGURE 1: TEST CASE ELEMENT DIAGRAM

FIGURE 2: RUNSCRIPT ELEMENT DIAGRAM

package to be used for test execution. The package is then
uploaded to LUSCA service which in turn creates the
required test environment and executes the test.

B. Architecture

Architecture of LUSCA is a centralized one with main
process as a center role of system and facility for test
storage. This process communicates with user through it's
console, that way providing a service for test execution.
The purpose of second process is to execute test batches
by taking role of one host in test. Architecture of LUSCA
is shown in figure 4.

Role of every service shown in architecture figure is
described further in text.

Test agent: the role of host described in test. It
executes preparation scripts, executes one or more test
Batch elements as defined in test description and ends test
with the execution of conclusion scripts. During test
execution agent generates signals which are sent to test
engine. Agent also receives signals from engine. There is
no communication between agents in environment – all
communication is done through test engine. When agent
receives a signal it starts batches that should be triggered
on this signal and/or starts parsing script triggered on this
signal. On end of test execution test agent packs all result
files and event log in one file that is then stored on engine
service.

Test engine: Role of engine process is to coordinate
tasks of agent services and to provide a console service to
user. The user only sees the engine service through its
console interface; and cannot see the agents behind it.
During test execution engine dispatches signals received
from one agent to all agents that have action on this signal.
When the test is done the engine receives all result
packages from agents that acted as hosts for the test, and
stores them. The user can fetch these files whenever
needed, through the test console.

Test console: is used as interface for uploading the
test to LUSCA service and retrieving results. User can see
the history of the test run and get the results of the test.
When a test fails, the tester can forward the logs created
by the test run, to the developing team for information.
After they correct the bug, the tester can start the
execution of the whole test package or just one test case
through the console.

C. Design and implementation

After defining the test description and the architecture
of LUSCA, the next step was to implement the required

structure elements. Python [7] was the chosen
programming language for implementation, because of its
clear syntax rules, ease of use and efficiency in acquiring
the needed functionality.

It was decided that the underlying protocol for
communication within the framework will be SOAP.
Functionalities of the engine and the agent are
implemented as SOAP services. Test engine is a SOAP
service which provides remote methods needed for the test
console and the test agents. Test agent is a SOAP service
that provides remote methods needed for the engine to
establish the required communication; signal passing,
variable retrieval etc. The test console is currently
available through the web interface of the test engine.
Additional clients can connect to the engine's console
SOAP service. HTTP protocol is used for transfer of files
between the engine and the agents to avoid size and time
overhead of transforming the file into a required format
for SOAP. Services in the framework are shown in figure
5.

The test engine supports running of multiple tests at
the same time. Number of concurrent tests which can be
run depends on the number of available agents logged in at
that time. If a test requires more agents than available, the
engine cannot start the test and so it informs the user. One
agent can participate in one test at one time.

To implement a set of services that conforms to the
ideas presented, one would need to create a complicated
system of threads or processes for serving requests in an
asynchronous way. The code would be very hard to read
without a bigger picture of the whole system in mind so
we started to search for some kind of a programming tool
or library that would make the developing process as easy
as possible. After researching for a time, we stumbled
upon Python’s Twisted library [8] – an event driven
networking framework written in Python and licensed
under a MIT license. Reading through the documentation,
ideas came up as to how to employ it in LUSCA. Using its
reactor module, Deffered objects for scheduling
processing tasks, web module for designing SOAP
services – one can create a complex asynchronous server
and client application that is fast, robust and secure, if
needed. The task of programming seemed a lot simpler
with such a powerful tool available.

We used SOAPublisher class to create LUSCA
services by grouping functionalities into service paths –
HTTP addresses. For engine and agent service there is a
SystemProtocol and TestProtocol with its children paths

FIGURE 4: LUSCA ARCHITECTURE

FIGURE 5: LUSCA SERVICES

for every running test package. SystemProtocol path is
used to gather all methods that are required for internal
communication between the engine and the agents. When
an agent starts, it first logs in to the engine service and
provides it with information about itself – the agent. The
engine stores info for the agent in the available agents list.
TestProtocol path is used for communication during the
test run. Engine’s TestProtocol creates additional, children
paths for every test package that is being run. Agent’s
TestProtocol does the same. Every message passed
regarding the test package execution is communicated via
these paths.

Figure 6 shows paths created during test execution of one
package with one test case. For example, when an agent
generates a signal (as resulting action for event), it calls
for remote method rcv_signal on the path that holds this
test case method on the engine. The engine then starts a
function which searches in signal-listening host’s hash
table for hosts using this signal as a trigger. The engine
calls remote method rcv_dignal, on paths created for each
host needing this signal. Receiving host starts its function
which searches signal-required action hash table and
executes triggered actions.

IV. USAGE SCENARIO

We will describe a simple test illustrating how a LUSCA
user should approach the test design and creation. For test
scenario, we will use a HTTP server application developed
by the user. While adding new features, the developer
needs to know that they don’t break the basic functionality
already tested, so he takes the option of automating the
test. He uses wget as a HTTP client to download served
files. To test the robustness of his web server at one point,
he needs to test it by creating 1000 of GET requests for
served file from 10 computers lying around him in the lab.
He wants to parse HTTP traffic on every host that runs
wget.

A. Manual testing

Developer creates shell scripts for parsing HTTP
traffic using tcpdump tool, script for parsing downloaded
file on the client side, using the file's MD5 sum and simple
scripts for starting web server and wget. To run the test
manually, he needs to set up his testing computers, fetch

source from a SVN repository to server's host computer
and execute the starting scripts on the computers. He starts
parsing script on every client's host and looks at script
summary on his remote terminal. When the test ends, he
collects the server's log file. Then he documents the test
run – did it pass or not, the test start and end time, the
fetched version of application and the description of test
flow.

B. Testing with LUSCA

Test can be defined by creating three different jobs
which need to be run on 11 hosts. In the Definition
element, the user defines needed computers, previously
described scripts and SVN repository for tested
application. He creates one test case with Batch elements
for every job.

First Batch defines the job for hosts running HTTP
client task. Batch runs wget script on the signal from
server computer, which states that server application is
running. Batch is shown on figure 7.

Script which executes wget can generate 3 events;
Download_OK, Download_BAD and Download_DONE.
First event states that one download of the file is complete
and the file can be checked. Action is to run checksum
script with parameter of file's original MD5 sum passed
from the originalSUM variable. Second event is generated
when a file download fails. Action for this event is to
create fatal signal, which will result in a test fail. Third
event states that the client downloaded the file 1000 times.
Action is to run a script which increases a variable whose
value represents how many computers finished their job.
This script generates event All_DONE when the counter
becomes 10. Action for this event is to generate a signal
on which the test case passes (not shown in figure).

For server job, the user creates Batch that runs on a
predefined signal to start the test from test engine
(TE.start signal from test engine generated automatically
when the test is started). It runs startServer script that can
generate 2 events. First event states that the application
seg-faulted. Action is to make a fatal signal that results in
a failed test. Second event states that the server is ready
for requests. Action is to create info signal ServerUP that
triggers wget batches on their hosts. Server's Batch is
shown in figure 8.

FIGURE 6: LUSCA SERVICE PATHS

FIGURE 7: WGET BATCH

Third batch is created to monitor HTTP traffic. It is
also triggered on ServerUP signal and runs trafficParse
script which then generates Traffic_BAD event. This event
states that something went wrong in traffic between hosts.
The resulting action is the creation of a signal which fails
the test. Batch is shown in figure 9.

Here shown batches are simplified to provide some
basic insight into test definition using LUSCA’s language
for test definition.

Test is executed in LUSCA environment with 11
agents – one as server and 10 as download hosts. User
uploads the test on the engine, through the test console or
web interface and starts it. After the test is done, the user
fetches LUSCA log of events and signals generated during
the test run, using the test console. Logs and test definition
can be used to generate documentation about the test case.

V. CONCLUSION

We started from a basic idea that the test flow should
be as easy as possible to define by a person who doesn't
need to know any programming languages. LUSCA's
creation was based on these simple ideas and should be
used as a base tool for test execution.

Existing frameworks for testing provide powerful
tools to perform testing of typical applications but tend to
complicate test creation and deployment when it comes
down to running a test executed on multiple computers.
Set-up of computers is still done manually, the starting of
a test is still done manually on every computer, gathering
results in one place is still done manually.

We designed LUSCA to primarily be a service, rather
then framework which helps a user to create and run the
test by overcoming presented problems. Additional effort
was made to provide a way to fetch files from remote
computers. Support for source code version control is
provided within the option to define SVN or CVS server

as a source for application's code. It allows a user to create
the test only once and run it against the latest version of
code when it is needed.

LUSCA saves time by eliminating time needed for:
– setting up computer network with use of agents

installed on remote computers who will take care of
network setup as described in test definition,

– file and application deployment – files needed for test
are deployed only once when user uploads the test
package to engine service,

– test result gathering – result files, log of events and
signals are gathered by LUSCA and stored on engine
service for easier retrieval through console;

To save efforts needed for test flow design we created a
simple language that contains all instructions needed for
LUSCA to execute the test. Also, graphical tool for test
design will be made to generate described XML.

User will need some time to get used to creating test
flow definition which is controlled by events and signals
as defined in this paper, but we find it more naturally then
creating a procedural description of test.

During test design, user should take in consideration
the way LUSCA was designed and implemented to run
tests. Signals are sent and received through test engine,
variables are stored and fetched from test engine – all
communication is done through SAOP protocol which is
relatively process/data-heavy for these tasks. LUSCA was
designed to ease the pain at the stage of the job which
hurts the most – in automation of network computer
configuration, designing a test flow end executing it.

VI. ACKNOWLEDGMENT

This work has been carried out within projects 036-
0361994-1995 Universal Middleware Platform for
Intelligent e-Learning Systems funded by the Ministry of
Science and Technology of the Republic of Croatia, and
IKEv2 Step2 project funded by Siemens Networks.

LITERATURE

[1] Introduction to Software Testing
URL: http://www.onestoptesting.com/introduction/

[2] Nilesh Parekh, Software Testing - White Box Testing
Strategy
URL: http://www.buzzle.com/editorials/4-10-2005-68350.asp

[3] Nilesh Parekh, Software Testing - Black Box Testing
Strategy
URL: http://www.buzzle.com/editorials/4-10-2005-68349.asp

[4] Kerry Zallar, Practical Experience in Automated
Testing
URL: http://www.methodsandtools.com/archive/archive.php?id=33

[5] JUnit, Testing Resources for Extreme Programming,
URL: http://www.junit.org/

[6] Software Testing Automation Framework (STAF),
URL: http://staf.sourceforge.net/

[7] Python Programming Language,
URL: http://www.python.org/

[8] Twisted – Trac,
URL: http://twistedmatrix.com/

FIGURE 8: SERVER BATCH

FIGURE 9: PARSE BATCH

