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ABSTRACT
In this paper we describe the architecture of an IKEv2 pro-
tocol implementation. The architecture has been designed
with the aim to make the implementation meet a number
of good characteristics: to be as fast as possible, scalable,
easy to understand and enhance, as well as portable across
different operating systems and processor architectures.As
a byproduct we endeavored to specify an architectural pat-
tern that might be used to build other, similar network pro-
tocols. In order to make this pattern even more attractive,
parts of the architecture are separated as a generic software
framework, thus allowing reuse of the code base. The im-
plementation itself is written in the C programming lan-
guage but borrows some of the concepts from object ori-
ented programming. More specifically, it both enforces the
access to private data structures of the different modules
and uses messages, i.e. objects, to communicate different
events among subsystems.
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1 Introduction

The implementation of any real-world network protocol is
quite a demanding chore, especially if done from scratch
with none or minimal previous experience with imple-
mentation tasks, since it requires the operationalizationof
a number of more advanced functionality elements like
timers, communication with the kernel network subsystem,
inter-entity message handling, and complex state machine
implementation.

The Internet Key Exchange protocol, presently in its
version 2 - IKEv2 [1], is a good example of a complex net-
work protocol. It is a key exchange protocol used within
the IPsec architecture [2] that also serves for authentication
and authorization purposes. IKEv2 is meant to be used on
clients, as well as on VPN gateways. Thus, it might work in
quite a demanding environment supporting a large number
of concurrent clients. There are different methods to assure
that the required clients be able to "connect" without expe-
riencing significant delays, what includes the use of crypto-
graphic hardware accelerators or increasing the number of

available VPN gateways and/or using multiprocessor gate-
ways. Still, all this techniques might fall short of the given
task if the implementation itself is of a poor quality.

In this paper we describe the architecture used to im-
plement the IKEv2 protocol, as well as relevant implemen-
tation details. Our goal was to achieve a fast implementa-
tion capable of handling a number of clients without sig-
nificant delays, and, in addition to this, to scale well to
faster machines. Basing on the experiences achieved, we
developed an architectural pattern that could be used to
build similar high performance applications. In order to
make this pattern more attractive, the implementation itself
is subdivided into a reusable part, and the IKEv2 protocol
specific part, the former representing a software framework
to be used by other implementers.

Apart from our IKEv2 [3] implementation there are
also several other related open source ones. The first of
them is the OpenIKEv2 [4] implementation, written in the
C++ programming language, and also providing a reusable
framework, however for IKEv2 specific implementation
only. Conversely, the racoon2 [5] is a more ambitious im-
plementation, as it also implements both IKEv1 [6] and
KINK [7] protocols, but hasn’t got any reusable code. Fi-
nally, there is the OpenSwan [8], primarily being an IKEv1
protocol implementation, the IKEv2 protocol being a re-
cent addition to this implementation. Both racoon2 and
OpenSwan are written in the C++ programming language.
On the other hand, ACE [9] is a software framework for
building network applications, which in this respect has a
similar purpose as our IKEv2 implementation; in compari-
son to our implementation it is more general, quite complex
and written in the C++ programming language.

As of this writing, we are in the final stage of the
IKEv2 implementation, with measurements of the imple-
mentation performance following immediately afterwards.
In order to validate the reusability potential of both the
architectural pattern and the framework, we reuse them
in some other protocol implementations presently in their
early development stage [10].

The remaining of the paper is structured as follows.
In Section 2 we first provide a short overview of the IKEv2
protocol. Then, in Section 3 we describe the different as-
pects of the architecture, emphasizing the software frame-
work and the subsystems specific to IKEv2. The very de-



tails of the implementation are described in Section 4. Fi-
nally, the conclusion and some hints for future work are
given in Section 5.

2 IKEv2 Short Overview

Within the IPsec architecture, data traffic is protected be-
fore leaving host or gateway, and is validated and decrypted
on reception. The protection is done by usingsecurity as-
sociations (SAs), also called Child SA. Each SA defines
both a cryptographic algorithm and the keys to use for data
flow protection in a single direction. Thus, to protect a
bidirectional traffic, two SAs are necessary. Though SAs
can be managed manually this is an error prone process,
which misses some features like rekeying and authoriza-
tion, therefore the IKEv2 protocol has been developed with
the specific purpose of establishing and managing SAs.
The IKEv2 protocol is a request/response protocol working
on top of the UDP protocol. Each IKEv2 protocol entity
sends and receives request and response messages, which
are composed of a header and one or more payloads, de-
pending on the particular message in question. A request
message and its response is denoted as anexchange. When
an SA has to be established, a IKEv2 daemon (termed
Initiator), sends the request to the other IKEv2 daemon
(termed Responder). The first exchange has the purpose of
establishing an IKE SA that protects all further communi-
cation between those two IKEv2 protocol implementations.
This first exchange is the only one plaintext, while all other
messages, apart from the header, are encrypted. In the sec-
ond exchange, the two IKEv2 daemons authenticate each
other and establish two SAs. From that point on, these two
IKEv2 daemons can establish additional Child SAs, rekey
and delete old ones, etc. To finish any further communica-
tion IKEv2 daemons delete the IKE SA, which also deletes
any associated Child SAs.

The way the IKEv2 protocol implementation works is
depicted in Figure 1. A client application executes on the
left host, trying to communicate with a server application
on the right one. The applied security policy specifies that
this communication has to be encrypted and integrity pro-
tected (the exact way of specifying this policy being, in this
simple use case, outside of the scope of the IKEv2 protocol
implementation). It is assumed however that the policy is
specified by the system administrator or the user, and stored
in the kernel’sSecurity Policy Database (SPD).

When the client application sends the first packet to
the server application (step 1), the kernel checks the SPD
and concludes that this traffic should be protected. SPD
instructs the kernelwhat to protect, whilehow to protect is
specified in a separate database namedSecurity Association
Database (SAD), again within the kernel. Because there
was no previous communication, hence SAD is empty, the
kernel contacts the IKEv2 protocol implementation (step
2) – or adaemon in Unix parlance. The IKEv2 daemon
(Initiator) contacts its counterpart on the destination host
(Responder); these daemons exchange messages (step 3) in

Figure 1. Basic use case of IKEv2 protocol implementation

order to authenticate and authorize each other, and to nego-
tiate the cryptographic algorithms and keys, the negotiated
parameters being stored into SAD (step 4). Now, the cryp-
tographically protected traffic starts to flow from the left to
the right host (step 5), and is eventually delivered as plain-
text to the server application. The traffic in the other direc-
tion is also protected, but does not involve IKEv2 daemons
any more. Note that step 3, though shown to flow directly
between IKEv2 daemons, is in reality flowing through the
kernel; it is however not protected by the kernel, but by the
two IKEv2 daemons themselves.

3 The Architecture

The core of the IKEv2 protocol implementation is based
on state machines. While realizing their behavior, they are
nevertheless isolated from the specifics of the "wire format"
of different IKEv2 messages as well as from the interface
to in-kernel IPsec related databases.

Figure 2 illustrates thestatic view of the architecture
of the IKEv2 protocol implementation. Shaded boxes be-
long to the framework while the unshaded ones are specific
to IKEv2, hence they are treated separately. We denote
each element in the figure asubsystem, thus we have a net-
working subsystem, a message subsystem, etc. The asyn-
chronous communication among different subsystems is
implemented via asynchronous queues, and in some cases,
via a callback mechanism. In case queues are used for com-
munication, the subsystem that waits for messages has its
own thread.

As it can be seen from the figure, there are multiple
inputs into the IKEv2 application. All the messages re-
ceived from the network are captured by the network sub-
system, which subsequently encapsulates the received data
into thenetwork_msg structure and after some interlayer
processing sends them to the appropriate upper layer sub-
system. In other words, if the received message is (i) an
IKEv2 message, it is forwarded to the message subsystem,
if it is (ii) a RADIUS message, it is forwarded to the respec-
tive RADIUS subsystem, while if it is (iii) a DHCP related
message, it is forwarded to the CFG one. Upon receiv-
ing the message from the networking subsystem, each of



Figure 2. Static architecture view of IKEv2 protocol implementation

the aforementioned subsystems does the necessary decod-
ing and creates its own message format that is forwarded to
the respective state machines.

The other input to the IKEv2 protocol implementa-
tion comes from the IPsec databases in the kernel (SPD and
SAD). The IPsec subsystem of the IKEv2 daemon com-
municates with the kernel through the PF_KEY interface
described in [11]. This interface is underspecified hence
Linux (as well as other operating systems) introduced a
number of extensions, here including SPD management
and NAT traversal. Additionally, as NETLINK is Linux’s
native interface to the in-kernel network subsystem, the
IKEv2 daemon has been planned to use either PF_KEY
or NETLINK’s NETLINK_XFRM, whichever be available
and/or most convenient.

Not all the components that make IKEv2 implemen-
tation are shown in the static architecture view, the reason
being that many of them are only passive in nature. How-
ever, the more important ones will be also mentioned later
in this section.

The dynamic view of the IKEv2 architecture is shown
in Figure 3. By a "dynamic" architecture we understand
both threads (represented by circles in Figure 3) and com-
munication channels between them. There exist two thread
types: those constantly running throughout IKEv2’s life-
time (and denoted with athread suffix), and those in-
voked by another thread (denoted with a_cb suffix). Com-
munication queues are represented by squares in Figure 3.
The association of threads (and coupled queues if there are
any) to some specific subsystem is denoted by suitable pre-
fixes (e.g.message_, sm_).

From the dynamic architecture view it can be
seen that the input network traffic is handled by the
network_cb thread, which, after processing the received
data and creating thenetwork_msg structure, forwards
messages into the appropriate receiving subsystem queue.

Figure 3. Dynamic architecture view of IKEv2 protocol
implementation



There, the structure is taken over, processed, and a new
message sent to the state machine queue to undergo a
short preprocessing step (searching for the appropriate data
structure describing the peer to whom the message be-
longs), and is eventually pushed into the thread pool. The
thread pool does the main processing of requests, generates
the appropriate responses, and processes those received.
Since the load on the IKEv2 daemon (as is anyway the
case with every network application) depends on the en-
vironment where it is used, the number of working threads
in the thread pool should be configurable.

The description of IKEv2 architecture components is
detailed in the remainder of this section.

3.1 The Framework

The framework is the reusable IKEv2 architecture part,
which consists of networking, timer and logging subsys-
tems. Additionally, it also includes netlib, config, and
crypto modules, not shown in Figure 2.

The purpose of the netlib module is to hide differ-
ences between different socket addresses, but also to al-
low manipulation of network addresses. The main struc-
ture for that purpose isnetaddr, as this functionality is
hard to achieve with the standard socket structures. One
of the salient features ofnetaddr is reference counting
in order to save memory and increase efficiency when han-
dling duplicate addresses. The config module is used to
read the configuration data necessary to adjust the behav-
ior of the network application (i.e. IKEv2). At the current
stage of development, it is intended to be further enhanced
by introducing a higher degree of modularization in order
to be easily extensible without need to substantially rewrite
the parser each time it is reused. Finally, the crypto mod-
ule contains frequently used cryptographic (e.g. hashing,
encryption) functions, and also supports certificate func-
tions. As of this writing, certificates are specific to IKEv2
requirements thus they are not yet treated as a part of the
framework.

The networking subsystem offers the registration
function, which opens a socket (either anonymous, serving
for sending data only, or bound to a specific port/address).
An important registration function parameter is the queue
to which the received data is sent after being appropriately
preprocessed. Preprocessing includes obtaining network
level data, like source and destination IP addresses. Regis-
tered sockets can be closed at any time during the network-
ing subsystem lifetime. Users of the networking subsystem
are also offered an appropriate function to send data, re-
spective parameters encompassing destination address em-
bedded in thenetaddr structure. The send function is
synchronous, as it is not expected to block. In order to
send data it is not necessary to previously register a socket
because one will be created dynamically. The networking
subsystem currently supports UDP and link layer sockets
with planned extensions to both SCTP and TCP protocols.

Apart from sending and receiving data, the network-

Figure 4. Static architecture view of RSTP protocol imple-
mentation

ing subsystem also monitors both network interfaces and
IP addresses. This is necessary so that the application can
have better control over data it sends or receives, but also
because some applications require knowledge of available
IP addresses and interfaces. Monitoring will be further ex-
panded in order for network subsystem to be able to asyn-
chronously notify upper subsystems of possible dynamic
changes.

Similar to the networking subsystem, the timer one
offers functions to register and cancel timeouts. Timeouts
can be one-shot, or recurring. During timeout registra-
tion two ways to notify timeout event are offered: (i) via
queues, and (ii) callback functions which are allocated a
separate thread. It should be noted that in case of callback
functions, to avoid congestion, processing should be non-
blocking and fast.

The generic architecture and the framework can be
applied to other network protocols implementations. E.g.,
one that is in the early development stage is the RSTP pro-
tocol [12]. Its architecture, which is based on the afore-
mentioned framework and uses similar concepts as in the
IKEv2 implementation, is shown in Figure 4. Naturally, as
this is a completely different protocol, showing a different
behavior, it possesses different state machines.

The BPDU subsystem takes care of creating (coding)
and interpreting (decoding) RSTP specific messages. Since
RSTP manipulates interfaces, and not IPsec databases, this
part of the architecture is also changed. The CFG subsys-
tem offers the possibility for an RSTPd application to be
controlled via same external means, e.g. a command line
interface that connects via the network. This is actually
quite common for different network applications, hence
this module might be added in the future as a part of the
framework. The dynamic architectures of the both imple-
mentations differ in only a small details.

3.2 IKEv2 specific subsystems

Specific subsystems of the IKEv2 protocol implementation
encompass the following ones: the state machines subsys-
tem, the message subsystem with the payload module, the



CFG module with different providers, the RADIUS subsys-
tem, the supplicant module, as well as the IPsec subsystem.
During source code configuration process, some modules
can be excluded from the compilation phase thus making
the IKEv2 daemon smaller and more efficient.

IKEv2 messages are composed of one or more pay-
loads. Thus, the functions for creating and parsing pay-
loads are placed in a separate module. When an IKEv2
message has to be sent, the state machines subsystem in-
vokes the appropriate function from the message subsys-
tem. This function calls in turn the appropriate functions
for creating payloads. Eventually, the message subsystem
invokes the network subsystem function for data to be ac-
tually sent. When an IKEv2 message is received from the
network, the networking subsystem queues it to the mes-
sage subsystem, which subsequently verifies and decodes it
by calling appropriate functions from the payload module
hence generating the appropriatemessage_msg struc-
ture. Finally, this structure is queued to the state machines
subsystem for processing.

Generating messages is a very complex task because
of many possibilities payload combinations. Because of
that, generating some of the more complex messages is an
iterative two-step process. The first step is represented by
the main payload generating function that loops until the
complete IKEv2 message is created. This function calls
another - helper function, which determines the next pay-
load to be included in the message, based on the current
payload and data in appropriate structures.

The CFG module allows the IKEv2 daemon to ob-
tain the IP configuration parameters from external sources.
Each potential source is represented by a single provider: a
DHCPv4 provider, a DHCPv6 or a private provider, this
latter being different by actually using a private pool of
configuration data instead of services being provided by
a network server. The DHCPv4 provider is specific as it
is neither a DHCPv4 relay nor a DHCPv4 client. On the
contrary, it behaves as a combination of those two roles.

The RADIUS subsystem is used during EAP authen-
tication simply relaying received EAP messages from the
initiator to the RADIUS server, and vice versa. The initia-
tor includes a supplicant module, but doesn’t use any thread
of its own. This stems from the fact that the calling sup-
plicant functions are not expected to introduce any delays,
therefore they can be implemented synchronously, what is
actually the case. Behind the supplicant module there is an
essentially customized version of the wpa_supplicant [13].

4 Implementation

IKEv2 is implemented in the C programming language,
mostly because of the following two reasons: (i) C is one
of the most efficient programming languages currently in
use, and (ii) is the programming language of choice for the
majority of system programs. In order to assure portability
across different platforms we chose the Glib2 [14], which
is a C library distributed with almost all existing Linux dis-

tributions and heavily used in the GNOME desktop envi-
ronment. This library is also ported to the MS Windows
family of operating systems. GLib2 provides the imple-
mentation of different basic algorithms and data structures,
and also gives access to threads and thread pools in an op-
erating system independent way. GLib2’s scheduling of
threads and events further simplifies the task of developing
any application using it. It is very intensively used through-
out the IKEv2 protocol implementation and we believe that
it made IKEv2 even more efficient and smaller.

All the modules and subsystems are placed in separate
files, as well as data structures exchanged between differ-
ent modules. For each structure there are constructor and
destructor functions, as well as getter and setter methods
along with functions providing some additional function-
ality. This loosely mimics classes and methods from OO
programming languages. All the functions belonging to a
subsystem or module have a specific prefix in order to be
easily recognizable and to avoid name clashes.

Currently, all the source code is placed inside a single
directory (src/) but at some later time the framework will
be moved to a separate directory in order to be more easily
includable into other network applications built upon the
same architecture. The whole IKEv2 implementation con-
sists of over 46,000 lines of code. The most complex part
is certainly the state machine module of about 6,000 lines,
implementing three major state machines: (i) the initiator
(seven states), (ii) the responder (seven states), and (iii) a
separate state machine handling the behavior of IKEv2 for
possible later events, e.g. creating additional Child SAs
(eight states). In this latter case, the initiator and responder
state machines have additional five shared states. The mes-
sage module is larger in terms of number of lines, but is less
complex in terms of functionality. Still, because it is IKEv2
deamon’s entry point for network traffic, thus representing
a possible point of attack, the message module bears some
additional complexity that makes it not so easy to program.

The build infrastructure is based on the classical GNU
Tools, i.e. automake and autoconf for preparing the part of
the build infrastructure that performs code configuration.
After code configuration, the make utility invokes the gcc
compiler to compile the code and build the binary code.
The tools for preparing the build infrastructure allow the
code to be more generic so as the target platform features
are dynamically discovered prior to compilation phase, and
applied to the compilation process. The build system per-
mits the user to influence what functionality will be in-
cluded in the compiled application binary code.

5 Conclusion and Future Work

In this paper we present the architecture of an IKEv2 pro-
tocol implementation along with the most interesting im-
plementation details. As the IKEv2 protocol is a good ex-
ample of complex protocols, we found it useful to develop
the implementation by taking special care of reuse issues.
Because of that we identified the reusable protocol imple-



mentation parts as a framework, providing the means for
future developers to produce some more efficient and less
error prone protocol implementations in a shorter time. In
comparison to the referent ACE framework, our one is less
complex, thus also easier to understand and deploy.

As of this writing, our IKEv2 protocol implementa-
tion is operational, and is undergoing a series of tests for
evaluating its performance, with special emphasis being
given to processing and memory requirements put forth by
the framework, what will provide us with a feedback to be
used to improve it.

We are currently studying the possiblity to add mobile
extensions to the IKEv2 protocol, and more specifically, the
MOBIKE ones [15]. In our opinion this is quite a demand-
ing task since the Linux kernel doesn’t implement all the
necessary add-ons like the address changes for the entries
in the SAD, so as to force us to implement them along with
the necessary changes to IKEv2.

At a later stage of our development endeavor, we
plan to implement some features described in recently pub-
lished RFCs, like the multiple authentication exchanges
[16]. Long term goals are certainly related to the results
of the "Better than nothing security" working group [17]
and solutions to some PF_KEY problems we experienced
during our IKEv2 development.
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