(will be inserted by the editor)

International Journal of Information Security manuscript No.

Mario Kozina - Marin Golub - Stjepan Gros

A method for identifying Web applications

the date of receipt and acceptance should be inserted later

Abstract Web applications are ubiquitous in today’s
businesses. The security of these applications is of utmost
importance since security breaches might negatively im-
pact good reputation, and even result in bankruptcy.
There are different methods of assessing security of Web
applications, mainly based on some automated method
of scanning. One type of scan methods feeds random
data to the application and monitors its behavior. The
other type uses a database with predefined vulnerabili-
ties that are checked one by one until either a vulnera-
bility is found, or it can be claimed that the application
doesn’t have any known vulnerabilities. The important
step in latter type of scan process is the identification of
the application since in that case we are narrowing num-
ber of checks and, as a consequence, the scan process is
faster. This paper describes a method for Web applica-
tion identification based on a black box principle. Our
method is based on the invariance of certain characteris-
tics of Web applications. We experimentally tested and
confirmed the usefulness of this approach.

Keywords Web security - Web application identifica-
tion - Fingerprinting

This work has been carried out within projects 036-
0361994-1995 Universal Middleware Platform for Intelligent
e-Learning Systems and 036-0362980-1921 Computing Envi-
ronments for Ubiquitous Distributed Systems both funded
by the Ministry of Science and Technology of the Republic
Croatia.

M. Kozina - M. Golub - S. Gro§

Department of Electronics, Microelectronics, Computer and
Intelligent Systems, Faculty of Electrical Engineering and
Computing, University of Zagreb, Unska 3, 10000 Zagreb,
Croatia

E-mail: mario.kozina@gmail.com

M. Golub
E-mail: marin.golub@fer.hr

S. Gro3
E-mail: stjepan.gros@fer.hr

1 Introduction

Today’s Web applications’ complexity ranges from a very
simple, few lines of a code, to a complex applications
supporting enterprises. Furthermore, the availability of a
general purpose Web applications, e.g. Web mail clients,
forums, CMS, makes it even more attractive for use be-
cause of non-existing development cost and a low deploy-
ment cost. Still, all these benefits come with the great
security risks [17,18]. This is particularly true for the
Web applications that are used in business critical tasks
where compromise might reveal sensitive data and lead
to financial loss, and the most importantly, severely im-
pact business reputation and trustworthiness. The fur-
ther complication with respect to the security is the prin-
ciple don’t fix if it isn’t broken rule! Because of that rule,
companies are very reluctant to regularly update their
applications without being forced to do so and this opens
potential for unpatched vulnerabilities.

All this makes the security of the Web applications
a challenging task. Manual search for vulnerabilities in
the applications, while the most thorough, has two draw-
backs. The first one is that’s labor intensive. The second
one is that it requires highly skilled expert which can not
be found so easily. So, it would be the best that the pro-
cess of discovering vulnerabilities is based on some kind
of automated procedures. Automated scan of network
and network application for known vulnerabilities is not
a new idea. There are a number of available tools for that
purpose, e.g. Nessus [4], or Satan [6]. The main purpose
of these tools is to do automated network security as-
sessment in order to improve security. There are tools of
different complexity for assessing Web application secu-
rity that can do certain part of the security assessment
tasks, more or less automated, but this area is not even
close to the mentioned tools like Nessus or Satan.

To be able to verify the existence of vulnerabilities in
an application it is important to have a list, or database,
of all the known vulnerabilities of all the known applica-
tions. The process of searching for a vulnerability con-

Mario Kozina et al.

sists of serial check of each vulnerability in turn. Obvi-
ously, it’s not a very fast process, and to shorten it, it
is useful to know which application we are dealing with.
Then, we can check only a subset of all the vulnerabili-
ties in a database related to the given application. The
process of identifying the exact type and version of the
Web application on a given URL is called fingerprint-
ing. In this paper we present fingerprinting method for
Web applications we developed and implemented. We
also present experimental results done with the imple-
mentation.

The paper is structured as follows. In section 2 we
describe the idea of Web application identification pro-
cess. Then, in section 3 we describe scanner developed
based on the presented ideas. Experiments we’ve done
with the scanner are given in the section 4. Finally, we
give conclusions and overview of future work in section
5.

2 A method for identifying Web applications

In the indentification process we assume that the only
available source of the information is via HTTP. Based
on that assumption the identification process can be di-
vided in two main phases:

— collecting characteristic information from the known
Web application in order to build fingerprint database,
and

— collecting characteristic information from an unknown
Web application and comparing it to a data in the
application database

In the following subsections we first describe what
we mean by characteristic information. Then, we de-
scribe process of collecting the information from known
Web applications, and finally, we describe the process of
identifying unknown Web application based on gathered
data.

2.1 Information used in the identification process

Identification process is based on collecting and com-
paring information from Web applications. When finger-
printing Web applications, all the gathered information
differ in their reliability. Characteristic information is
the information that is used in the decision process. The
ones that are more reliable have greater impact on the
final decision. Information is more reliable if it is not eas-
ily changed by a person deploying or administering Web
application. For example, information collected from the
HTML itself, e.g. tables and styles, can be easily changed
and are thus less reliable. On the other hand, we assume
that the information which is related to the source code
of a Web application can’t be changed easily, since not

many users are proficient in programming tasks or have
enough time for program modifications.

So assuming that source code of a Web application
is not changed, we can use two types of characteristic
information for the identification process: link patterns
and forms.

A link patterns is a set constructed from all the http
URLs collected from a Web application. For the pur-
pose of the set construction process we assume that the
http URL consists of the host part, followed by a path
component and followed by the optional query part that
contains parameter and value pairs. If there is a query
part then it is delimited from the path component with
the question sign (?), and multiple parameters and value
pairs are delimited with the ’&’ sign. Parameter and
value are separated with the equal sign [15]. Link pattern
consists of the path component, and all the parameters
found in the URL with the order of the parameters pre-
served, and values ignored. As an example, suppose that
we have the following URLs:

http://www.
http://www.
http://www.
http://www.
http://www.
http://www.

com/index .php
com/index.php?i=1&a=2
com/index.php?7i=2&a=3
example.com/index.php?j=2&a=3
example.com/index.php7a=2&j=3
example.com/index.php?j=2

example.
example.
example.

DU WN -

Then we have the following link patterns:

(index.php)
(index.php, i, a)
(index.php, i, a)
(index.php, j, a)
(index.php, a, j)
(index.php, j)

DO WN -

When comparing two link patterns we say that they
match if they have the same number of components and
each respective component of each link pattern is the
same. Thus, in the given example we can unify 2nd and
3rd link patterns as they are the same.

We assume that each Web application has a specific
set of the link patterns and the link patterns can only
be changed by adjusting a source code of the Web ap-
plication. Based on the assumption that source code is
not easily changed, link patterns represent reliable infor-
mation for fingerprint process. Thus, collected link pat-
terns of the same Web application installed on multiple
locations on the Internet/intranet will be very similar.
By collecting and comparing link patterns of a different
Web application, we can precisely fingerprint a certain
Web application. Due to their reliability, we assume that
the link patterns have a significant impact on the final
decision in the identification process.

Forms are entry points in the Web applications that
allow users to supply data. Every form can be identified
by its name, id, method, and URL to which data is sub-
mitted and by names and values of its input fields. Most

A method for identifying Web applications

Web applications have characteristic forms in HTML
which can be easily identified and thus used in a finger-
print process. On the other hand, of all the possible forms
in a single Web application only a subset may be present
because administrator, via different control mechanisms,
can easily disable certain forms. This leads us to the con-
clusion that the forms are potentially less reliable than
link patterns. Additional reason the forms are less reli-
able is that fields in the forms can be dynamically added
or removed by the backend, depending on the context.
For example, if we are entering address inside the United
States then we are presented with the State field, while
for Croatia this field might not be shown.

Apart from the link patterns and forms, we also take
into account certain keywords in HTML documents. They
could be easily changed, but some licenses require users
to embed different keywords into HTML documents, users
intentionally leave identifiers, or, in some cases, the spe-
cific keywords are generated by code and thus are not
easily changed by the user. As an example of a keyword,
we can take Mambo Web application which uses key-
words "Mambo" and "hitp://mambo-foundation.org” in
HTML documents. As a conclusion, we assume that key-
words have small, but non negligible, impact in the final
decision of the identification process.

2.2 Information gathering

Before the identification process, we need to have a da-
tabase of known Web applications containing their char-
acteristic information. Characteristic information is col-
lected from the HTML documents generated by the tar-
get Web application using crawling (or spidering). To ex-
tract a characteristic information from each HTML doc-
ument, we analyze it’s structure. This effectively means
searching for <a> and <form> elements from which we ex-
tract links and forms. Crawling ends when all the links
in the Web application up to the certain depth were tra-
versed.

During the crawling process we collect and organize
links into link patterns, as described in the previous sec-
tion. As it was already mentioned, the most usual sepa-
rators are '%’, ’?’ and ’=’, but today’s Web applications
can use more complex separators like ’Q@Q’ and *EE’ [1].

Forms are extracted from a <form> element in the
HTML document. The <form> element often has at-
tribute name and a list of <input> elements. In a crawl-
ing process, all the forms are organized into list, where
each element of the list is itself again a list with the fol-
lowing elements: form name, URL where data will be
submitted, and a list of input name entries. Input values
already present in the from, e.g. the default values in the
case user doesn’t enter them, are not taken because they
depend on the localization of a Web application which
makes them unreliable information for identification pro-
cess.

During the process of collecting useful information
from a known Web application keywords have to be added
manually by the user into a fingerprint database as there
is no way for the program to know which words on the
page are important and can be used for this purpose.
It is important to choose a set of keywords which will
best characterize a certain Web application and differ-
entiate it with respect to other Web applications. When
collecting characteristic information from an unknown
Web application and comparing it to a known applica-
tion database (fingerprint), keywords are searched any-
where in a HTML document body.

Crawling can be very comprehensive and time-consu-
ming process because of a enormously large number of a
very similar links in a certain Web application. For ex-
ample, there could be a page where some items from the
database are shown. In that case there will be as many
pages as there are entries in the database, but for our
purpose all those pages are the same. As the identifica-
tion process needs to be done in a reasonable time and
the number of almost the same links doesn’t bring any
new information that might be useful for fingerprint pro-
cess it is suggested to go through only a certain number
of a links in a Web application. So, when the crawler dis-
covers that the traversed links are the same it can stop
further processing of the given pages and skip to the next
link.

When collecting characteristic information from a known

Web application, we collect and structure useful infor-
mation into a database that will be used to fingerprint
unknown Web applications. For the reliability purposes,
we use several instances of the Web application for which
we generate the fingerprint database. Then, the final step
of this phase is to select the best fingerprint database,
among the several available, for the Web application. The
selection is based on the process similar to the identifi-
cation process, but that is performed on the known Web
application. The best fingerprint database should have a
large number of different forms and link patterns. The
selection of the best database thus reduces a chance of
failure in the identification process.

2.3 Identification process

In the identification process we collect characteristic in-
formation from the Web application that has to be iden-
tified and compare collected information with the data
stored in the fingerprint database. For each application
in the fingerprint database we calculate similarity with
the unknown Web application using the following for-
mula:

rating = k * keywords, + | x linkp, + f = forms, (1)
In (1) the following variables are used:

— keywords, is relative number of identical keywords
found in all the pages;

Mario Kozina et al.

— linkp, is relative number of identical links found in
all the pages;

— forms, is relative number of identical forms found
in the pages;

— k, l and f are weight factors in the inclusive range 0
to 1.

Relative numbers are calculated to the best achieved
result. E.g. if we collected 30 link patterns, and in the
three fingerprint databases we have 20, 16 and 10 matches,
then linkp, for the first database will be 1, 0.8 for the
second and 0.5 for the last database. Note that abso-
lute number of link patterns doesn’t influence the rela-
tive number of link patterns. Thus, in order to reliably
identify application there should be at least three link
patterns. It is of course advisable that this number is
as higher as possible. In our case, number of collected
characteristic information per application is shown in the
Table 1.

In order to normalize the final result (rating) the sum
of all parameters has to be equal to 1. In our case iden-
tification of Web applications reduces to evaluation of
three parameters: keywords (k), forms (f) and link pat-
terns (1). So the following equation holds:

k+l+f=1 (2)

Web applications which have rating 1 (100 percent)
are exact match by the all three criteria, i.e. forms, link
patterns and keywords. The Web application with rating
100 percent is chosen as the final result of an identifica-
tion process. Moreover, in general, Web application with
the best rating, not necessarily 100 percent, is chosen as
the final result. On the other hand, if we have the same
best ratings for several Web applications, final decision
of the identification process can be determined only with
a certain probability, and to come to a final decision we
need to manually check those Web applications with best
ratings.

3 Framework design

The Web Security Assessment Tool[14] (WSAT) is the
framework we are developing for experimenting with new
ideas in a Web application security assessment. Web se-
curity assessment is a complex process which we divided
into several phases. So, to represent each phase of the
process and to provide a capability of future enhance-
ments, WSAT is implemented as a modular system whose
architecture is shown in the Figure 1. Of all the shown
modules, the exploit module will not be described as it is
not interesting for this work. As an implementation lan-
guage for WSAT we selected very popular, and widely
supported, high level object oriented language Python.
Crawler module is used to abstract communication
details between WSAT and a Web application. It gathers
Web pages from the Web application and extracts differ-
ent information for it’s own purpose, e.g. links to fetch.

JE———
[S——

Fingerprint

Exploit
database

database

HTTP resp Useful data
_, HTTPreq Crawler | . URL

N Application id
Fingerprint URL

URL

v

A

Exploit

¢

T Exploit data ‘

WSAT

Fig. 1 The Web Security Assessment Tool architecture

It also gives fetched pages to the other modules in the
WSAT framework (fingerprint, exploit). Crawler imple-
mentation is based on Wapiti security tool programming
code [13], on which various communication structures
and iterative crawling method were based. The Crawler
module goes through these phases:

— collecting HTML,

— analyzing HTML,

— building Web application link structure, and
— organizing links.

Crawler is the only module which communicates di-
rectly with a Web application and it’s purpose is to
fetch HTML document starting from the URL given by
fingerprint module. It contains communication handlers
for different types of the communication protocols and
mechanisms (e.g. HTTP, HTTPS, proxy, cookies). After
fetching an HTML document, tag parser is used to an-
alyze HTML and grab important information from the
HTML: forms and links. The web application link struc-
ture is then built by using iterative crawling process. The
process of crawling uses three lists of URLs. In the first
list there are all as of yet unvisited URLs. This is list is
at the start of the crawling process initialized to a start-
ing URL of a Web application. The second list is a list
of visited links, which at the end of the crawling pro-
cess is composed of all the gathered links. From this list
the link patterns for the given application are generated.
Finally, the third list is a list of banned URLs that con-
tains forbidden links defined at the start of the crawling
process.

The crawling process takes new links from HTML,
checks if any of them is in the banned list and discards
those that are. Then, the remaining links are added into
the non visited list and the process is repeated for the
links in the non visited list until the list becomes empty.
If a link has already been visited, i.e. it is in the vis-
ited list, then it is skipped. As we said before, this pro-
cess can be time consuming, so we use smart module
to optimize it. Smart module organizes links into link
patterns and checks when a link with a certain pattern
repeats a certain number of times, defined by some user
defined threshold. In case when this threshold is reached,
a patterns that matches the link group is added into the
banned list which prevents further crawling of that link

A method for identifying Web applications

Table 1 Number of characteristics

Characteristic [y, | postNuke| Mambo|bbPress| PHP-Nuke phpBB|MyBB |UseBB|PunBB|Total
information
Keywords] 3]] 3 3 3 3 3 30
Forms 11 1 5 7 14 7 1] 3 63
Link patterns 10 27 17 g 18 50 37 16 13 226

group. The additional functionality of the smart mod-
ule is to generate link patterns that are handed to the
fingerprint module.

Fingerprint module implements the identification pro-
cess described in the previous section. As we stated be-
fore, data collected from a known Web application should
be structured in a fingerprint database. To simplify gath-
ering and comparing phases of the identification process
and to standardize structure of a useful information, we
have chosen XML format for the database. The XML
fingerprint file consist of some general information and
information needed for the identification process. The
general structure of the XML database is:

<7xml version="1.0" encoding="utf-8"7>
<fingerprint>
<name></name>
<id></id>
<keywords>
<keyword></keyword>

</keywords>
<link_patterns>
<separator></separator>
<pattern >
<weight></weight>
<url></url>
<params>
<param name=""></param>
</params>
</pattern>

</link_patterns>

<forms>
<form name="" location="">
<from></from>
<to></to>

<field name=""></field>
</form>
</forms>
</fingerprint>
Some of the most important elements included in
a XML fingerprint file are: <name>, <id>, <keywords>,
<link_patterns>, and <forms>.

The element <name> is used to store Web applica-
tion’s full name and it’s version while <id> element con-

tains a unique number that identifies a certain Web ap-

plication under the WSAT framework. The element <keywords>

contains one or more <keyword> elements which contain
different keywords for Web application. Link patterns are
organized into <link_patterns> element which consist
of a variable number of <pattern> elements, one for each
link pattern found during the crawling process. Pattern
has an <url> element which represents relative URL to
the document (e.g. /index.html) and adequate number
of parameters, each included into <param> element and
described by name and all values of parameters. Forms
are placed in a <forms> top level element which contains
a <form> element for each form that was found in the
Web application. Element <form> has a name attribute
and adequate number of <field> elements used to de-
scribe field (input) name and content.

Fingerprint module operates in two modes. The first
mode is the generator mode, which is used to collect a
characteristic information from a known Web application
and to store it into XML fingerprint file. These XML files
are used in the second mode of the Fingerprint module
to compare and determine which XML file best describes
unknown Web application. The second mode is also used
to determine the best fingerprint database for a certain
Web application. The determination process is done by
comparing each type of information from the XML fin-
gerprint file to each type of characteristic information
collected from an unknown Web application. There are
certain rules that are enforced when comparing the in-
formation:

— To count keyword as matched, the complete string
has to be identical including case.

— Link pattern must have the same relative URL, same
number of parameters and identical names of param-
eters,

— Forms must have same name and a certain, mini-
mum, number of a identical field names. The min-
imum number of identical field names in the form
comparison is used because some forms have dynam-
ically added or removed fields. This minimum number
is determined by the user of the fingerprint module.

After comparing and calculating each type of infor-
mation, (1) is used to rate each fingerprint database and,
indirectly, to assess which application was fingerprinted.

Mario Kozina et al.

4 Experimental verification

After developing the fingerprint module inside WSAT
framework we performed experiments to validate our ap-
proach of fingerprinting Web applications. Furthermore,
we wanted to determine approximate optimal values of
the weight factors k, f, and [, used in the rating (1)
which forms the base of the identification process. In
other words, it is necessary to confirm hypothesis that
link patterns, forms and keywords can be used to fin-
gerprint a Web application and to find best measures
(weight factor values) to accurately fingerprint a Web
application.

Experiments were performed in three phases, each
phase using a separate set of URLs:

— Collecting fingerprint databases from the known Web
applications;

— Rating and selecting the best fingerprint XML database

for each Web application;
— Identification process of unknown Web applications
and the result analysis.

In the first phase we collected characteristic informa-
tion from the URLs that contain known Web applica-
tion. Then, in the second phase we compared collected
fingerprint databases with another set of the URLs with
the known Web applications to select the best XML fin-
gerprint database for each Web application that will be
detected. The selected XML fingerprint database will be
used in the identification process. Finally, in the third
phase, a few tests with different weight factor values
were tried to determine where the optimal values for
the weight factors are placed and to determine how well
the process of identification of unknown Web application
performs.

To perform all the experiments, we selected the fol-
lowing open source Web applications:

— Content Management Systems (CMS): Joomla[2],
Mambo[3], PHP-nuke[5], Post Nuke[10]

— Forums: MyBB[8], PhpBBJ[9], UseBB[12], BBpress[7],
PunBBJ11]

Of all the selected applications, Joomla and Mambo
are specific since Joomla is a fork of Mambo. Thus we
expect them to be very similar in terms of forms and links
which is an additional test for our method of recognizing
Web applications.

4.1 Collecting and rating fingerprint XML files

Before fingerprinting unknown Web applications, we need
to have the best possible fingerprint XML database de-
scribing each Web application selected for the experi-
ment. The good XML file should have large amount of
characteristic information to reduce chance of making

Table 2 Choosing the best Joomla XML fingerprint file
Sites/ XML files | A B C | D

Site 1 84 | 100 | 53 | 7
Site 2 100 | 100 | 60 | 10
Site 3 100 | 100 | 57 | 7
Site 4 100 | 90 | 60 | 10

Site 5 100 | 90 | 63 | 9

wrong decision when identifying unknown Web applica-
tions. To collect XML files, the threshold of the smart
module was set to high a level, i.e. 40 for a CMS ap-
plications and 10 for forums. After collecting a number
of fingerprint XML databases per the Web application,
we rated each XML file on a test applications by using
rating formula (1).

For example, we gathered four fingerprint databases
for Joomla Web application. Three XML files (A,B,C)
were gathered from different sites where the same Web
application was running and fourth (D) was gathered
from a fresh, locally installed Web application. In next
step, we used fingerprint module to rate these XML files
on five different Web sites with Joomla to see how well
can they identify Web application type. To simplify this
process, we used weight factor with values [=1, k = 0,
and f =0, i.e. the decision was based on a link patterns
only. The obtained results are shown in the Table 2.

The table shows that A and B variant XML files have
the best ratings, but A has the best overall rating, so we
selected XML file A to fingerprint Joomla applications.
Surprisingly, XML file D, which is from the fresh install,
has the worst rating for all the sites. The main reason for
such result is that fresh installations of Web applications
don’t have all features installed, thus they don’t have
enough usable information like link patterns and forms
which could be gathered and used in the identification
process. To support this hypothesis, we checked internal
structure of A and D fingerprint files and revealed that
XML file A had 25 link patterns and D file had only 9
link patterns.

4.2 Characteristic data

After collecting and selecting the best XML fingerprint
data for every Web application in the list, the next step
is the identification of unknown application and result
analysis. In this part we conducted three different tests
for each Web application listed above on the randomly
chosen URLs. Every test had a different values of the
weight factors which depends on assumed characteris-
tic data reliability. When examining characteristic data
reliability, we assume:

— Link patterns are the most reliable type of useful in-
formation of a Web application. We assume that link
patterns are least susceptible to changes from a Web

A method for identifying Web applications

Table 3 Weight factors used in experiments

Test /weight factor | k f 1

Test 1 0.1 1027107
Test 2 0 0 1
Test 3 0 0.4] 0.6

developer or a Web administrator. Thus, function-
ality of most Web applications is based on links, so
they can be easily gathered.

— Forms are reliable type of useful information, but not
so as link patterns. Forms are susceptible to changes
and they can easily be eliminated from the Web ap-
plication using some kind of administrative interface
available to the Web administrator.

— Keywords are not very reliable type of useful infor-
mation. They are susceptible to changes and can be
easily changed or even eliminated from the HTML.
Furthermore, keywords can easily guide to a wrong
conclusion as it is possible that they are used in some
other context in a Web application content, e.g. dis-
cussing Mambo on the Web forum based on phpBB.

Therefore, the three listed assumptions give the ad-
ditional constrain on parameters k, [, and f:

E<f<l (3)

4.3 The weight factors influence analysis
4.8.1 Parameter setings

Based on the previous discussions we selected three sets
of weight factors, show in the Table 3.

As it can be seen, keywords are taken into consider-
ation in the first test where they participate in the final
decision with minimal 10 percent. Forms haven’t effect
the rating in the second test, have less effect in first (20
percent) and moderate effect in the third test (40 per-
cent). Link patterns are used in every test with largest
effect, especially in the second test where final decision
is based on link patterns only (100 percent).

All nine selected Web applications were being tested
three times, each time with different weight values, where
testing was made on average 6-10 URLs where certain
Web application was installed. For instance, we had 10
URLs with Joomla and 6 URLs for MyBB. We were cer-
tain that these sites had a certain Web application in-
stalled but for our experiments (identification), we acted
as they are unknown Web applications. In the following
subsection we will show a representative results of the
experiments.

4.3.2 The results for the CMS Web applications
identification

First, we shall examine results from CMS Web applica-
tions. CMS Web applications don’t have large amount of

content and useful information gathering isn’t time con-
suming. So, the threshold value in the crawler module
was set to 20 in order to collect large amount of char-
acteristic information. Larger amount of characteristic
information allows fingerprint module to make better de-
cisions and thus give better results.

As arepresentative for the analysis of the CMS group,
we present Joomla Web application. In the Table 4, the
results of the first test of Joomla are shown with the
weights k = 0.1, f = 0.2, and [= 0.7.

The results of the first test show a similarity between
Joomla and Mambo. Other Web applications have sub-
stantially smaller ratings or they even don’t have a rat-
ing (0 percent), so we can, with great certainty, say that
these application weren’t present at tested URLs. Al-
though we knew that on the tested URLs was Joomla,
URLs S1-URL2 and S1-URL9 gave us surprising results
for Joomla and Mambo. At first URL, Joomla has a
slightly better result (100) than Mambo (90), and at the
second URL Joomla had better rating (100) than Mambo
(70). S1-URLS is also interesting because it shows ab-
sence of keywords, thus, maximum rating is decreased
by 10 percent which is rating influence of keywords. To
gain a better understanding at the influence of the se-
lected weights, we also show the results of second and
third test. The Table 5 shows the results for the weights
k=0, f=0,and [= 1, and the Table 6 results for the
third test with the weights £k =0, f = 0.4, and [= 0.6.

Results of the second test show that Joomla and
Mambo have a very similar link patterns, especially if we
look at S1-URL9 and S1-URL2. For these URLs, both
Joomla and Mambo have high ratings (100), so final de-
cision can’t be made when looking at link patterns only.

If we look at the results of the third test, we can
notice that there is also similarity between Mambo and
Joomla in the forms. Looking at all the results, starting
from weight set 1 to set 3, the difference between rat-
ings have increased in Joomla’s favor. This tells us that
Mambo and Joomla are less similar in the forms than in
the link patterns. The confirmation of this can be found
in the difference between the results of the second and
third test at SI-URL9 where Mambo rating decreased
from 100 percent to 60 percent. The cause of this de-
crease is that Web application at the given URL doesn’t
contain any form which can be found in Mambo XML
fingerprint file. On other hand, if we look at S1-URL2
we notice that ratings haven’t changed from second test
which means that the same number of forms was found
in the Mambo and the Joomla XML fingerprint files.
By exploring S1-URL2 we determined that there is only
one form in the Web application. When comparing login
forms in Joomla and Mambo XML fingerprint files, great
similarity can be noticed. Because we use flexible rating
of forms, where 80 percent of fields must be the same,
forms of the both Web applications are adequate. So, in
this case (third test) for SI-URL2 final decision can’t be
made.

Mario Kozina et al.

Table 4 The results for Test 1 of Joomla Web application detection

Total score

Test URL | —155mTa [PostNuke | Mambo | bbPress | PHP-Nuke [PhpBB | MyBB [UseBB | PunBB | Petected?
S1-URL1 100.0 0.0 51.5 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL2 100.0 0.0 90.0 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL3 100.0 0.0 40.0 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL4 100.0 0.0 14.0 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL5H 100.0 0.0 58.2 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL6 90.0 0.0 23.8 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL7 100.0 0.0 30.8 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URLS8 100.0 3.3 52.8 3.3 3.3 3.3 3.3 3.3 3.3 Y
S1-URL9 100.0 0.0 70.0 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL10 100.0 0.0 25.2 0 0 10.0 0.0 0.0 0.0 Y
Table 5 The results for Test 2 of Joomla Web application detection
Test URL Total score Detected?
Joomla | PostNuke | Mambo | bbPress | PHP-Nuke | PhpBB | MyBB | UseBB | PunBB
S1-URLI1 100.0 0.0 45 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL2 100.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 N
S1-URL3 100.0 0.0 50 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL4 100.0 0.0 20 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL5 100.0 0.0 76 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL6 100.0 0.0 34 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL7 100.0 0.0 44 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URLS 100.0 0.0 66 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL9 100.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 N
S1-URL10 100.0 0.0 36 0.0 0.0 0.0 0.0 0.0 0.0 Y
Table 6 The results for Test 3 of Joomla Web application detection
Test URL Total score Detected?
Joomla | PostNuke | Mambo | bbPress | PHP-Nuke | PhpBB | MyBB | UseBB | PunBB
S1-URL1 100.0 0.0 67.0 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL2 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 N
S1-URL3 100.0 0.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL4 100.0 0.0 12.0 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL5) 100.0 0.0 55.6 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL6 100.0 0.0 20.4 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URLT7 100.0 0.0 26.4 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URLS 100.0 0.0 39.6 0.0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL9 100.0 0.0 60.0 0,0 0.0 0.0 0.0 0.0 0.0 Y
S1-URL10 100.0 0.0 21.6 0.0 0.0 20.0 0.0 0.0 0.0 Y

By analyzing the results, we came to the conclusion
that first test performs the best when identifying un-
known Web application. Keywords helped us in solving
the final doubt for S1-URL2. Although our initial hy-
pothesis given in the Section 2 assumes that link patterns
and forms are the most important when making final de-
cision, sometimes it also beneficial to take keywords in
consideration.

In the CMS group, it is also interesting to look at the
results of the third test for Mambo, shown in the Table
7.

Although this test was made on URLs where Mambo
was installed, the results of the test show again a similar-
ity between Mambo and Joomla when looking at char-
acteristic information. This behavior is expected as we

already noted that Joomla is a fork of Mambo. Besides
that, it is also interesting to look at S2-URL4, S2-URL?7,
and S2-URL10 where the rating is only 60 percent in fa-
vor of Mambo. This rating shows that not even one form
from Mambo XML fingerprint file was found on these
URLs. By exploring these URLs, we noticed that there
is only one voting form present on each URL. Although
Mambo has voting form stored in his XML fingerprint
file, a number of voting fields in the forms present at
the tested URLs is larger than number of voting fields
in forms in XML file. So, by comparing these forms, the
fingerprint module rated them as unequal.

For the other applications from the CMS group, PHP-
Nuke and PostNuke, it is important to say that they have
unique link patterns. As a consequence, in the second

A method for identifying Web applications 9

Table 7 The results for Test 3 of Mambo Web application detection
Test URL Total score Detected?

Joomla | PostNuke | Mambo | bbPress | PHP-Nuke | PhpBB | MyBB | UseBB | PunBB :

S2-URL1 45.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 Y
S2-URL2 62.6 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 Y
S2-URL3 39.6 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 Y
S2-URL4 34.2 0.0 60.0 0.0 0.0 0.0 0.0 0.0 0.0 Y
S2-URL5 77.2 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 Y
S2-URL6 77.2 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 Y
S2-URL7 42.6 0.0 60.0 0.0 0.0 0.0 0.0 0.0 0.0 Y
S2-URLS 70.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 Y
S2-URL9 91.0 0.0 100.0 0.0 20.0 0.0 0.0 0.0 0.0 Y
S2-URL10 60.0 0.0 60.0 0.0 0.0 0.0 0.0 0.0 0.0 N

test both Web applications for their URLs have maxi-
mum ratings (100), while all the other Web applications
don’t have even a one adequate link pattern (rating 0).
There are also a few results in third test where a rating
is 60 percent, which shows absence of forms in the Web
application.

4.8.83 The results for the forums identification

The next group of the Web applications we tested were
forums. Forums have relatively bigger amount of data
than the CMS Web applications. Reason lies in their
functionality, to enable user to exchange information by
using different categories and topics of forum. If forum
has a large number of users, then amount of data with
reference to amount of characteristic information can
also be very large. So, it is necessary to customize crawler
module with a relatively small threshold in the smart
module to gather useful information in a reasonable time.
But, as a consequence of the small threshold, there is a
greater chance of introducing errors and uncertainties in
the identification process. We set the treshold value to 5
during the fingerprint process.

As a representative for the forum group, we took
UseBB forum. In the Table 8 results of first test with
the wight factors £ = 0.1, f = 0.2, and [= 0.7 for
UseBB are shown.

From the results of the first test for UseBB, shown in
Table 8, we can notice that for the most URLs, UseBB is
properly identified using all three criteria - it has rating
100 percent. Other Web applications have ratings which
are less then or equal to 15%, so those Web applications
can be excluded from consideration. But, we can also
notice few exceptions, especially on S3-URL4 and S3-
URLS5 where ratings are relatively low (30%). To explain
this exceptions it is necessary to analyse results from the
second and third test, which are shown in the Tables 9
and 10.

From the results of the second test, we can notice that
a cause for the exceptions in the first test lies in absence
of correct link patterns in UseBB XML fingerprint file.
It we look at the other results from the same test, the

ratings are 100 percent, which is at first a little confus-
ing. But, by exploring UseBB forums on S3-URL4 and
S3-URLS5, we determined that administrator of UseBB
forum has the ability to change names of parameters in
the links. For example, S3-URL4 has parameter of f _sid
instead of standard UseBB parameter usebb sid. As a
consequence, link patterns are not adequate and compa-
rable, so it is logical that ratings for these two URLs in
second test are 0. This also shows that in some situations,
link patterns are not so reliable.

The results of the third test reveal the cause of the
exception in the second test for URL S3-URL9 is the
absence of adequate forms. By further examination, we
determined that the crawler didn’t find any form at the
given URL, which is very likely because crawler used
very low value for the treshold in the smart module to
successfuly gather enough forms. It is also interesting to
notice, relatively high ratings in third test for PHP-Nuke
at two URLs. This shows that some forms in PHP-Nuke
fingerprint file are very similar to the ones in UseBB
XML fingerprint file.

Other results for Web applications from forum group
are mostly consistent and expected. This particulary refers
to the second test, where is no doubt, because ratings
were 100% for one Web application and other applica-
tion have rating of 0%. In the third test, there are some
higher ratings for the Web applications which are not
present at a certain URLSs, but bellow 20%.

4.4 Final results

Analyzing all nine instances of Web applications, we de-
termined that the first test, with the weights & = 0.1,
f =0.2,and | = 0.7, gave the best results. The results
of all the tests have shown that we need to take into
considerations all three types of characteristic informa-
tion to get better results and especially to resolve doubts
where final decision can’t be made. It is also shown that
it is necessary to respect the condition (3), because the
major difference between Web applications is in the link
patterns, followed by the difference in the forms with
keywords at the end.

10

Mario Kozina et al.

Table 8 The results for Test 1 of UseBB Web application detection

Total score

Test URL | —155mTa [PostNuke | Mambo | bbPress | PHP-Nuke [PhpBB | MyBB [UseBB | PunBB | Detected?
S3-URL1 0.0 10.0 0.0 5.0 15.0 0.0 0.0 100.0 0.0 Y
S3-URL2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 Y
S3-URL3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 Y
S3-URL4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 0.0 Y
S3-URLb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 0.0 Y
S3-URL6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 Y
S3-URL7 0.0 0.0 0.0 6.6 10.0 0.0 6.6 100.0 0.0 Y
S3-URLS8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 Y
S3-URL9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 80.0 0.0 Y
Table 9 The results for Test 2 of UseBB Web application detection
Test URL Total score Detected?
Joomla | PostNuke | Mambo | bbPress | PHP-Nuke | PhpBB | MyBB | UseBB | PunBB
S3-URL1 0 0 0 0 0 0 0 100 0 Y
S3-URL2 0 0 0 0 0 0 0 100 0 Y
S3-URL3 0 0 0 0 0 0 0 100 0 Y
S3-URL4 0 0 0 0 0 0 0 0 0 N
S3-URLb 0 0 0 0 0 0 0 0 0 N
S3-URL6 0 0 0 0 0 0 0 100 0 Y
S3-URLT7 0 0 0 0 0 0 0 100 0 Y
S3-URLS8 0 0 0 0 0 0 0 100 0 Y
S3-URL9 0 0 0 0 0 0 0 100 0 Y
Table 10 The results for Test 3 of UseBB Web application detection
Test URL Total score Detected?
Joomla | PostNuke | Mambo | bbPress | PHP-Nuke | PhpBB | MyBB | UseBB | PunBB
S3-URLI1 0.0 20.0 0.0 10.0 30.0 0.0 0.0 100.0 0.0 Y
S3-URL2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 Y
S3-URL3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 Y
S3-URL4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 40.0 0.0 Y
S3-URLH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 40.0 0.0 Y
S3-URL6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 Y
S3-URLT7 0.0 0.0 0.0 13.2 20.0 0.0 13.2 100.0 0.0 Y
S3-URLS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 Y
S3-URL9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60.0 0.0 Y

We are left with the final question of the optimal val-
ues for the parameters k, f, and [, i.e. how to determine
their optimal ratio. We suggest that the ratio k : f : [
is approximately in the ratio of the collected character-
istic information. According to the Table 1 this ratio is
30 : 63 : 226 which matches weight factors used in the
test 1,i.e. 1:2:7.

In the additional experiments we significantly extended

the number of tested Web sites which included some two
hundred samples. Some of them were not accessible all
the time. This left us with a 129 reliable cases, in ad-
dition to the already presented tests, on which we now
evaluate WSAT recall and precision. The results of the
additional set of tests are summarized in Table 11.

Looking into the table we can make several inter-
esting observations. First, the results for Mambo and
Joomla (recall and precision rows) are less then 1. By

closer inspection we noticed that in a few cases one was
mistaken for the other, and vice versa. This is easly ex-
plainable as Mambo and Joomla are very similar appli-
cations, i.e. Joomla is a fork of Mambo. This fact has
one significant implication. Namely, if the experiments
were performed only with Joomla fingerprint database,
then all Mambo Web applications would be mistakenly
identified as Joomla. Therefore, the conclusion is that
care should be taken in order to avoid such misidenti-
fication. The second observation is that phpBB’s preci-
sion and useBB’s recall is 0.93. The reason is that one
instance of useBB was mistakenly identified as phpBB.
Upon closer inspection of the given instance we deter-
mined that the administrators of useBB site changed
URLs in such a way that it uses different link patterns,
i.e. instead of topic.php&id=9 they use topic_9.html.
Finally, we note that the fingerprinting method achieves

A method for identifying Web applications

11

Table 11 Recall and precision of WSAT identification system

Joomla|PostNuke|Mambo|bbPress| PHP-Nuke|PhpBB|[MyBB|UseBB|PunBB|Total
Number of 18 14 18 13 18 13 10 14 11 | 129
applications
dN“mb.er of 21 14 16 13 18 14 10 13 11 | 130
etections
Relevant 17 14 15 13 18 13 10 13 11 | 124
applications
Recall 0.04 .00 083 100 .00 T00 | 100 | 093 | 1.00 | 096
Precision 0.81 1.00 0.04 1.00 1.00 003 | 100 | 1.00 | 100 | 095

the possible results in a majority of the cases (5 out of 9
Web applications).

Collecting characteristic information from the known
Web applications and generating fingerprint databases is
a critical step. The better fingerprint databases are, less
sensitive the decision process is to the variations in the
parameter values. Even with equal values of the parame-
ters, the method gives good results, as can be seen from
Figures 2 and 3. The figures are the result of exhaustive
search with parameter step 0.01 and restrictions given
by equations (2) and (3). The exhaustive search found
several optimal values for the parameters in which recall
is 0.969 and precision is 0.962, e.g. k = 0.22, f = 0.34
and [= 0.44. This is very close to the parameter values
determined by our heuristic method which gives recall
0.961 and precision 0.954 (k= 0.1, f =0.2 and [= 0.7).
The difference in optimal value and the value obtained
with our parameters is in a single misdetected Web ap-
plication of 129 tested applications. This shows that our
heuristic method for estimating optimal parameter val-
ues is good enough without necessity of performing ex-
haustive search.

5 Conclusions and future work

In this paper we described a method for fingerprinting
Web applications. Fingerprinting is a process of identifi-
cation of unknown Web applications by comparing their
characteristic data to the database with the data from
the known Web applications. Successful identification of
a Web application can make vulnerability scanning faster
and more precise as the scanning process is concentrated
on only a subset of all the known vulnerabilities.

The fingerprint process is based on comparison of
characteristic information: link patterns, forms and key-
words. Fingerprint process assumes that the harder to
change some parts of the application the more reliable re-
lated information is and thus has a bigger impact on the
final decision in the identification process. To verify this
hypothesis and to determine where the optimal impact
factors of a certain types of a characteristic information
are, we used experimental verification. The results of the
experimental verification validated our hypothesis that
link patterns have the greatest impact, followed by forms

0.85
Recall (R)
0.80

0.75
0.70

065 K~

0.20

0.2 0.15

Forms (f)

0.10

01 Keywords (k)

0.05
0.0 0.00

Fig. 2 The results of the exhaustive search for the optimal
value of R

and finally keywords with the lowest impact on final de-
cision. Although the results indicated that Web applica-
tions mostly differ by their link patterns, there were cases
where single comparison of link patterns (without usage
of other types of information) left some uncertainties. To
resolve those cases it is important to include other two
types of characteristic information in the final decision,
but with lesser impact. Final results were achieved with
the following values of impact (weight) factors:

— link patterns impact is 70%,
— forms impact is 20% and
— keywords impact is 10%,

that are in accordance with the ratio of the collected
characteristic information in fingerprint databases.

The framework we used (WSAT) and in which the de-
scribed fingerprint technique was implemented, can iden-
tify a particular Web application with high precision.
Except for some rare cases, for most URLs, the system

12

Mario Kozina et al.

Precision (P)
0.80

0.75
0.70

065 K~
05

0.20

0.2 0.15

Forms (f) 0.10

Keywords (k)

0.1
0.05

0.0 0.00

Fig. 3 The results of the exhaustive search for the optimal
value of P

correctly identified Web application with the ratings of
100%.

The implementation has some shortcomings that pre-
vent it from being used on the Web applications with
following characteristics:

— Web applications that don’t use standard link sep-
arators in links. These separators are composed of
characters which are hard to distinguish from link
content itself, so they cause difficulties in link analy-
sis and link organization into link patterns.

— Web applications that don’t use links for passing pa-
rameters and its values. This is often the case with
Web applications developed in ASP.NET environment
where parameters and its values are passed through
session variables with POST method.

— Web application that use JavaScript or Ajax technol-
ogy for link generation. In this case, links cannot be
gathered by simple analysis of HTML documents.

The given limitations are implementation problem,
which can be relatively easy resolved by further devel-
opment. The system’s design is such that the majority
of the upgrades should be done in the crawler module to
make it capable of gathering information from different
sources like JavaScript, Ajax and other new Web tech-
nologies.

Fingerprint databases should also be extended to in-

using JavaScript fragments of the code embedded into
the pages. There is also a possibility to experiment with
different fingerprint procedures, like algorithms from the
pattern recognition or data mining fields.

Finally, we note that there is a possibility that some-
one could purposely try to deceive the application by
manipulating keyword, and also links and forms. This
could be a problem but it is a matter of further research
to evaluate how the technique presented in this paper
could be made more robust against such cases.

References

1. eBay (2007). URL http://www.ebay.com

2. Joomla! (2007). URL http://wwu.joomla.org/

3. Mamboserver.com - Home (2007). URL http://www.
mamboserver . com/

4. Nessus vulnerability scanner (2007). URL http://www.
nessus.org

5. PHP-Nuke (2007). URL http://phpnuke.org/

6. Security Administrator Tool for Analyzing Networks

(SATAN) (2007).

satan/

bbPress (2008). URL http://bbpress.org/

MyBB - Free PHP and MySQL Forum Software (2008).

URL http://www.mybboard.net/

phpBB - Creating Communities Worldwide (2008). URL

http://www.phpbb.com/

10. PostNuke CMS :: A Flexible Open Source Content Man-
agement System (2008). URL http://www.postnuke.
com/

11. PunBB (2008). URL http://punbb.org/

12. UseBB — The Usable Forum Software (2008).
http://www.usebb.net/

13. WAPITI - Web application vulnerability scanner / secu-
rity auditor (2008). URL wapiti.sourceforge.net/

14. WSAT (2008). URL http://sourceforge.net/
projects/wsat

15. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Re-
source Identifier (URI): Generic Syntax. RFC 3986
(Standard) (2005). URL http://www.ietf.org/rfc/
rfc3986.txt

16. R Development Core Team: R: A Language and Envi-
ronment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria (2009). URL
http://www.R-project.org. ISBN 3-900051-07-0

17. Rubin, A.D., Geer, D., Ranum, M.J.: Web security
sourcebook. John Wiley & Sons, Inc., New York, NY,
USA (1997)

18. Rubin, A.D., Jr., D.G.: A survey of web security. Com-
puter 31(9), 34-41 (Sep 1998). DOI 10.1109/2.708448

URL http://wuw.porcupine.org/

© 0N

URL

M. Kozina obtained dipl. ing. degree at the University of
Zagreb in 2007. He is currently employed in the KING ICT,
Zagreb working in the field of information security.

M. Golub Ph.D. is an associate professor at the University
of Zagreb. His research interests include security and evolu-

clude other types of characteristic information which would tionary algorithms.

made identification process even more precise. By adding
these information, the identification method could be
also applied to a wider set of Web application technolo-
gies like ASP.NET, JavaScript and Ajax. For example,

S. Gro$ Ph.D. is a research assistant at the University of Za-
greb. His research interests include computer networks with

A method for identifying Web applications

13

the emphasis on the Internet protocols, operating systems,
security and software engineering.

