
State Machines in an IKEv2 implementation

Stjepan Groš, Domagoj Jakobović, Leonardo Jelenković
Faculty of Electrical and Computing Engineering

University of Zagreb
Unska bb, 10000 Zagreb, Croatia

E-Mail: {stjepan.gros, domagoj.jakobovic, leonardo.jelenkovic}@fer.hr

Abstract—State machines are very important aspect of
network protocol description, implementation and verifi-
cation. In this paper we describe state machines used to
implementat behavior of IKEv2 protocol.

Index Terms—IKEv2, state machines

I. I NTRODUCTION

The essence of any protocol of even moderate com-
plexity is it’s behavior. There are multiple ways that
the behavior of an protocol can be specified, but the
most precise one is via state machines. State machine
description, while very hard to understand by humans,
allows formal reasoning about the properties of the
protocol as well as fast implementation by mapping
description into appropriate programming language.

In this paper we describe state machines as imple-
mented in ikev2[1], an IKEv2[2] protocol implementa-
tion. It should be noted that this particular implementa-
tion has the following state machines:

• IKE SA state machine
• CHILD SA state machine
• DHCP client behaviour
• EAP state machines

Of all of them, we do not describe EAP state machines
since our implementation of IKEv2 protocol doesn’t
implement them directly but takes the WPA_supplicant
implementation, which in turn is described in a [3].

The purpose of descriptions in this paper are two-
fold. The first one is to describe how is our ikev2
implementation structured and how it works. The other
purpose is to allow more implementations to be built on
experiences we learned during development.

The paper is structured as follows. Fist, in the Section
II we describe preliminaries necessary for the rest of
the paper, i.e. basic terminology from the IKEv2 speci-
fication, operating environment of ikev2 implementation,
and notation used to describe state machines and all
the transitions. Then, in Section III we describe state
machines. Section IV outlines implementation of state

machines in ikev2. The paper finishes with conclusions
and future work in Section V and bibliography.

II. PRELIMINARIES

A. Basic terminology

IKE SA, CHILD SA, Initiator, Responder
IRAC
IRAS
SAD
SPD
acquire
pfkey
message
udp, port 500, port 4500
request
response
exchage
payload
notify payloads

B. Operating environment

Ovdje treba mozda staviti opis ike-a i okoline, tj.
odakle dolaze dogadaji

C. Notation for describing state machines

This section describes notation we use throughout the
paper to depict and describe state machines.

States are shown in ellipses with the name of the state
written inside the ellipse. Transitions between the states
are shown with arrows with attached label. Labels are of
the form <event>/<action> meaning that this particular
transition happens whenevent occures and that, during
transition,action is performed. The event will usually be
some packet received from the network, or notification
from the kernel, while the action will usually be a
message sent to a network, or to the kernel.

Sometimes <event> will be of the form N(something)
and simetimes simply assomething. For example,



STATE1

STATE2

<event>/
<action>

Fig. 1. Example states and transition

N(AUTH_FAILED) and AUTH_FAILED. The differ-
ence is that N() denotes that we received notify, and
without N() it means that the error condition occured lo-
caly. To take given example further, N(AUTH_FAILED)
denotes that we received notify about failed notification
on the peer, while AUTH_FAILED means authentication
failed localy.

III. STATE MACHINES DESCRIPTION

As we already mentioned in the introduction section,
the ikev2 implements three state machines, each of which
is described in the following subsections. The first one
is IKE SA state machine which governs establishment,
maintenance and termination of IKE SA. For the clarity,
the state machine that governs IKE SA behavior is
divided into four parts, i.e. the Initiator role, Responder
and two common parts, one for sending requests and
one for sending replies. Each of those parts is described
separately in the following subsesctions.

Then, we describe CHILD SA state machines that im-
plement behavior of CHILD SAs within IKE SA. Finally,
when ikev2 provides configuration data to VPN clients, it
can use DHCPv4 provider and, in order to do that, has to
implement specific state machine, different than client’s
or relay’s usually found in DHCPv4 implementations.

In all the descriptions we use the same pattern. First,
we describe successful exchange, and at the end we
enumerate and describe error conditions that can occur.

A. IKE SA Initiator’s state machine

Initiator’s state machine, without error transitions, is
shown in Figure 2. The state machine is instantiated for
each IKE SA, i.e. when new security associtation has to
be established or when reauthentication is performed.

Immediately after instantiating state machine it is
placed into SMI_INIT state. In this state memory for
the necessary structures is reserved and initialized, and
configuration data for the given peer is found. If the

SMI_INIT

SMI_AUTH

ACQUIRE, CONNECT, REAUTH/
Send IKE_SA_INIT request

N(INVALID_KE)/
Send IKE_SA_INIT request

N(COOKIE)/
Send IKE_SA_INIT request

SMI_AUTH_WAIT

IKE_SA_INIT response/
Send IKE_AUTH request

SMI_AUTH_PEER

IKE_SA_INIT response/
-

SMI_INSTALLCSA_DL

-/
Download CRL

SMI_EAP

-/
Send IKE_AUTH request

SM_MATURE

-/
Install CHILD SA

CRL dl finished/

IKE_AUTH response/
Send IKE_AUTH request

SMI_INSTALLCSA

IKE_AUTH response/
Send IKE_AUTH request

-/
Install CHILD SA

Fig. 2. Initiator state machine

NAT traversal is enabled, then hash of all the source IP
addresses is calculated. Finally, IKE_SA_INIT request
is constructed and sent to the peer and the state machine
advances into SMI_AUTH state.

In SMI_AUTH state we are waiting for IKE_SA_INIT
response that will secure the channel communication
using encription and integrity protection with keys ne-
gotiated in the IKE_SA_INIT exchange. After that we
are certain that we are securily communicate with the
peer, though, we are do not know yet if the peer is the
intended one.

Responder can send three different responses. The
first one is COOKIE notify meaning that it’s in DoS
protection mode and tries to validate our IP address. In
that case we repeat IKE_SA_INIT request with COOKIE
included. The second response that we can receive is
INVALID_KE notify. In that case, we receive proposed
DH group by responder, and if it’s allowed by the local
policy, we repeat the request. Finally, the third response
we can receive isregular IKE_SA_INIT response.

When we receive regular IKE_SA_INIT response we
know what cryptographyc algorithms peer selected and
we are able to generate keys necessary for IKE SA
protection and encryption. We also check NAT-T payload
to determine if there is a NAT between the two peers. If
there is, then all the further communication is perfomed
over port 4500 instead of the default port 500. Addition-



ally, if we are behind NAT, then we periodically send
keepalive packets in order for NAT to keep it’s bindings
alive.

The next step is to prepare IKE_AUTH message.
We search through configuration file to find appropriate
sections that define our behavior with respect to a given
peer. From the found sections we take traffic selectors
and proposals for the CHILD SA. The key part in the
process is to generate AUTH payload, but it is only
performed in the case shared keys or certificates are used
for the authentication. After sending IKE_AUTH request
state machine transitions into SMI_AUTH_WAIT state.
In that state we are waiting for the IKE_AUTH response.

After receiving IKE_AUTH response, we perform
peer authentication. In case peer uses certificates to
authenticate there is possibility that we need either
CRL, or certificate itself if we were given URL where
to obtain certificate along with it’s hash value. Un-
til those are obtained, state machine transitions into
SMI_INSTALLCSA_DL and returns when appropriate
certificate material is successfuly obtained.

Upon successful authentication, if initiator used shared
keys or certificates, then CHILD SA is installed into the
SAD and state machine transitions into SM_MATURE
state.

When EAP is used to authenticate to a peer we
go through few more states. The EAP authentication
is based on a series of EAP requests and responses.
RADIUS server sends EAP requests to responder. Re-
sponder places EAP request into IKE_AUTH response.
Initiator receives this message, unpacks EAP request
and based on it constructs EAP response which is sent
to the responder in a new IKE_AUTH request. During
this circular behavior of sending EAP responses and
EAP requests Initiator’s state machine is constantly in
SMI_EAP state.

The process of authentication finishes when RADIUS
server sendsEAP Success message. At that point state
machine makes transition into SMI_INSTALLCSA state
and simultaniously sends final IKE_AUTH request. This
final request is used to prove knowledge of MSK by both
the initiator and the responder in order to prevent MITM
attack.

It should be noted that in cases when EAP supplicant
is asynchronous it might be necessary to introduce
additional state that will be used to wait for responses
from supplicant.

When Responder sends it’s reponse, it contains AUTH
payload as well as selected proposal and traffic selectors
for the CHILD SA. Based on the received data Initiator

SMI_AUTH

SM_TERMINATE

INVALID_KE/-

SM_DEAD

TIMEOUT/-NO_PROPOSAL_CHOSEN/-

SMI_AUTH_WAIT

TIMEOUT/-N(AUTH_FAILED)/-

SMI_AUTH_PEER

AUTH_FAILED/-

SMI_EAP

EAP Failure/-

TIMEOUT/-

SMI_INSTALLCSA

Install CSA FAILED/-

SM_DYING

-/DELETE_IKE_SA request

TIMEOUT/-

DELETE_IKE_SA response/-

Fig. 3. Error transitions in the Initiator state machine

install CHILD SA into the SAD and makes transition
into MATURE state.

Transitions caused by errors are shown in Figure 3.
There are two major reactions to all the possible errors.
The first one is simple removal of state machine, i.e. state
SM_DEAD. This state is used when initiator doesn’t
need to send error notify to responder, e.g. if timeout
has occured so responder is unavailable, or when we
conclude that responder tried to do something illegal
and in that case we assume we are attacked and thus,
we ignore responder.

The second reaction is termination of session. It in-
volves sending DELETE notify to responder (from state
SM_TERMINATE) and waiting for the reponse in the
state SM_DYING. When we receive the response, or if
timeout occured, we transition into state SM_DEAD and
state machine should be removed.

B. IKE SA Responder’s state machine

Responder has more complex functionality than Ini-
tiator, and thus it has larger state machine to govern it’s
behavior. It is shown in the Figure 4. Again, this state
machine is initiated for each Initiator that Responder
communicates with. What is not shown is the DoS
protection mode. This mode is activatedbefore state
machine is created since, by definition, it’s purpose is
not to create any state before validity of the request is
confirmed.

Everything starts with the reception of valid
IKE_SA_INIT request. At that moment the state ma-
chine is created and placed into SMR_INIT state. Then,
based on the received request all the necessary crypto
algorithms are selected based on the set proposed by the
Initiator. Additionaly necessary crypto material is gen-
erated (e.g. DH value, noces) that allows crypto keys to
be generated. Then, IKE_SA_INIT response is generated
and sent to the initiator. The state machine advances
into SMR_AUTH state where IKE_AUTH request is
expected.



SMR_INIT

SMR_AUTH

IKE_SA_INIT request/
IKE_SA_INIT response

SMR_AUTH_RESPONSE_ID

IKE_AUTH request/
RADIUS request

SMR_AUTH_RESPONSE

IKE_AUTH request/
-

SMR_AUTH_FINALIZE

IKE_AUTH request/
-

RADIUS response/
-

SMR_EAP_INITIATOR_REQUEST

-/
IKE_AUTH response

SMR_EAP_AAA_REQUEST

IKE_AUTH request/
RADIUS request

IKE AUTH request/
-

RADIUS ID response/
IKE_AUTH response

SMR_CFG_WAIT

-/
CFG request

SMR_AUTH_DL_PEER

-/
Download CRL

SM_MATURE

-/
IKE_AUTH response

CFG response/
-

CRL downloaded/
-

Fig. 4. Responder state machine

After IKE_AUTH request is received we have three
transitions that can be followed, based primary wether
Initiator requested EAP authentication or not. In a
case a certificate or a shared key authentication has
been requested, the received authentication material is
checked and if it’s valid then responder transitions into
SMR_AUTH_FINALIZE state where further processing
is performed and response is generated.

In the case of the EAP authentication by the Initiator
we have to send EAP identity to the backend server as
the first EAP response. What ikev2 does is that it checks
received IKEv2 ID payload. If it’s mail address then this
is used as EAP ID and request is sent to the RADIUS
server. The state machine simultaniously transitions into
the state SMR_AUTH_RESPONSE_ID. There, we wait
for RADIUS’s response and, after receiving it, we go
into SMR_AUTH_RESPONSE state. Otherwise, if we
do not know EAP identity of the Initiator, we internally
generate EAP Identity request and make transition into
SMR_AUTH_RESPONSE state.

In the SMR_AUTH_RESPONSE state we prepare
Responder’s authentication material to be sent to the
Initiator in order to authenticate Responder. IKE_AUTH
response is then sent with the embedded authentication
material (and appropriate certificate if necessary) as well
as the first EAP request. At the same time transition is
made into SMR_EAP_INITATOR_REQUEST state.

At that point state SMR_EAP_AAA_REQUEST and

SMR_EAP_INITATOR_REQUEST are traversed as long
as EAP authentication doesn’t finish by receiving EAP
Success message from the RADIUS server, and fi-
nally, sending that message to the Initiator. This pos-
itive response is received when state machine is in
the SMR_EAP_AAA_REQUEST state. At that mo-
ment we have to prepare MSK, or it’s replacement
in case MSK is not generated as part of the EAP
authentication, and then make final transition into
SMR_EAP_INITATOR_REQUEST state while at the
same time sending IKE_AUTH response with the final
EAP message. After receiving new IKE_AUTH request
from the Initiator, this time the message wan’t con-
tain embedded EAP payload, but only the final AUTH
payload used to prove knowledge of MSK by the Re-
sponder. At the moment of the reception of this last
AUTH payload, the state machine makes transition into
SMR_AUTH_FINALIZE state.

In SMR_AUTH_FINALIZE state authentication data
of the Initiator has to be verified, no matter what au-
thentication method was used. The difference is only in
the parameters, e.g. certificates, shared keys, or MSK
in case of EAP, but the authentication method is the
same in all three cases. There are a number of possible
transitions in this state. First, we might transition into
SMR_AUTH_DL_PEER state where we wait for the
CRL or certificate to be downloaded. Certificates are not
necessary in case of the EAP authentication and shared
key authentication by the Initiator, so this state won’t be
used in those cases.

Next, if the client requested configuration data, then
we request it from the configuration provider and wait
for the response in the state SMR_CFG_WAIT. In case
configuration provider works synchronously with the
ikev2, i.e. it is embedded into the ikev2 itself, then no
additional state is necessary and this transition doesn’t
happen.

Final transition that will happen is when we send
final IKE_AUTH response message to the Initiator. In
that case we also make transition into SM_MATURE
state meaning that IKE SA and first CHILD SA are
fully established. Still, in order for IKE_AUTH to be
sent to Initiator parameters for the CHILD SA have to
be selected and generated, i.e. traffic selectors, crypto
algorithms, and crypto keys.

Error transitions in Responder’s state machine are
shown on Figure 3. We distinguish two types of er-
rors. One group prevents establishment of IKE SA,
and other prevent CHILD SA establishment. All the
errors that prevent IKE SA from beeing established lead



SMR_INIT

SM_DEAD

TIMEOUT/
-

SMR_AUTH
-/

N(AUTH_FAILED)

SMR_AUTH_RESPONSE_ID
TIMEOUT/

-

SMR_EAP_INITIATOR_REQUEST

TIMEOUT/
-

EAP Failure/
-

SMR_EAP_AAA_REQUEST

TIMEOUT/
-

SMR_AUTH_FINALIZE

TIMEOUT/
-

Fig. 5. Error transitions in the Responder state machine

to SRM_DEAD state, while those preventing CHILD
SA establishment lead to the SMR_AUTH_FINALIZE
state. On the given figure, only those errors that pre-
vent IKE SA establishment are shown because in the
second case the only difference is in the logic of
SMR_AUTH_FINALIZE state that should skip prepa-
ration of CHILD SA parameters to be sent back to
Initatiator, and also, doesn’t have to install anything into
SAD.

TIMEOUT condition occurs when Initiator doesn’t
issue new request within a specified time. In that case,
state machine is advanced into SM_DEAD state and
removed from the memory. Authentication failure can
occur beacuse of the number of reasons:

1) no local configuration data
2) unsupported authentication method requested by

the Initiator
3) no authentication material for the Responder
4) authentication of the Initiator failed
5) CRL/Certificate download failed

C. Common IKE SA state machine

As we already mentioned in the introduction of this
section, common part are the states that Initiator and
Responder enter upon successful IKE SA establishment.
For the clarity this part of the state machine is broken
down into two parts, the requestor and responder’s part.
The more complex part, Figure 6, shows transitions for
all the requests that can be made by the implementation.

SM_MATURE

IKE_MSG_DPD/
Empty message

SM_REKEY

MSG_IKE_REKEY/
-

SM_REAUTH

MSG_IKE_REAUTH/
-

MSG_IKE_LEASE_RENEW/
-

SM_CRL_UPDATEMSG_IKE_CRL_UPDATE/
Download CRL

SM_DYING

MSG_IKE_TERMINATE/
IKE_SA_DELETE request SM_DEAD

MSG_IKE_REMOVE/
-

MSG_IKE_TIMEOUT/
-

SM_REKEY_RESPONSE

-/
IKE_SA_REKEY request

IKE_SA_REKEY response/
-

MSG_IKE_CRL_UPDATE/
Download CRL

SM_TERMINATE -/DELETE_IKE_SA request

TIMEOUT/-

DELETE_IKE_SA response/-

Fig. 6. IKE SA common state machine for requests

TABLE I
INTERNAL MESSAGES

MSG_IKE_REKEY Rekey IKE SA

MSG_IKE_DPD Dead peer detection process

MSG_IKE_CRL_UPDATE Download CRL

MSG_IKE_REAUTH Start IKE SA reauthentication

MSG_IKE_TERMINATE Delete IKE SA by sending

DELETE notify

MSG_IKE_LEASE_RENEW Start renewal of lease time

For all the requests that the ikev2 issues, first internal
message is sent that is processed inside the thread pool.
This message causes the state machine to transition from
the SM_MATURE state. From there, the request is sent
and state machine makes transition into another state
where it waits for the response. Note that this design
makes state machine able to process only one request at
a time that acts upon the IKE SA state machine.

Messages and their purpose are listed in the Table I.

The response part is much simpler because the pro-
tocol is based on simple requests and responses so it
is not necessary to keep any additional state. In other
words, when we receive request we immediatelly act
upon it, send response, and we are ready for a new
request. This design allows us to receive and process
multiple requests in parallel. Still, there is one transition
involved, as shown in the Figure 7. It’s the case when
we receive request to delete IKE SA. In that case, after
sending response, the state machine makes transition into
SM_DEAD and it’s removed from the memory.



MATURE
IKE_SA_REKEY request/
IKE_SA_REKEY response

DEAD

IKE_SA_DELETE request/
IKE_SA_DELETE response

Fig. 7. IKE SA common state machine for responses

SA_INIT

SA_CREATE

ACQUIRE,REKEY/-

SA_CREATE_WAIT

-/CREATE_CHILD_SA request

SA_MATURE

CREATE_CHILD_SA response/-

SA_REKEY

SA_REKEY_WAIT

-/CREATE_CHILD_SA request

CREATE_CHILD_SA response/-

REKEY/-

SA_REMOVE

MSG_SA_DELETE/N(DELETE) request

SA_DEAD

N(DELETE) response/-

Fig. 8. CHILD SA state machine

D. CHILD SA state machine

All the CHILD SAs established during IKE SA have
also their state machine, though it is much simpler than
the state machine for IKE SA. It is shown in Figure 8.

E. DHCP client state machine

ikev2, in the role of the Responder, uses DHCPv4
server as one of the providers for the configuration
data to be sent to the Initiator. The state machine that
DHCPv4 client uses is proposed in [4]. The problem
with the given state machine is that ikev2 is not actually
a regular DHCPv4 client, but it’s also not a regular relay.
So, the modifications made are related to the way ikev2
works. It behaves as a client since it has to obtain IP
configuration parameters and to take care of lease times.
On the other hand, it obtains IP addresses for IRAC, so
it bahaves as a relay in order for DHCPv4 server to be
aware of a real client. As a result, the state machine from
[4] is extended with some retransmission mechanisms
and two additional states, while states INIT-REBOOT,
REBOOTING and REBINDING are removed. This is
shown in the Figure 9.

States ERROR and FINISHED are besically the same,
but they give the information on how the state machine
finished it’s operation, with error or orderly.

INIT

SELECTING

-\Send DHCPDISCOVER

TIMEOUT1/
Send DHCPDISCOVER

REQUESTING

DHCPOFFER/
Send DHCPREQUEST

ERROR

TIMEOUT2/
-

DHCPOFFER/
Discard

TIMEOUT1/DHCPREQUEST

BOUND

DHCPACK/
Record lease,

set T1,T2

DHCPACK (not accept.)/
Send DHCPDECLINE

DHCNAK/
Discard offer

TIMEOUT2/-

RENEWING

T1 expires/
Send DHCPREQUEST

to leasing server

FINISHED

Release/
Send DHCPRELEASE

DHCPACK/
Record lease,

set T1,T2

TIMEOUT1/
Send DHCPREQUEST

DHCPNAK/-
TIMEOUT2/

-

Fig. 9. Modified DHCPv4 state machine

When created, state machine is initially in the state
INIT. Immediately from that state it transitions to state
SELECTING while in the same timeDHCPDISCOVER
is sent to the DHCP server.

During the design phase, there was a question what to
do in case timeouts occur because DHCP server isn’t
responding. There are three possibilities, immediately
report an error, try few more times and then report an
error, or try another DHCP server. The first variant, i.e.
when we immediately report an error, is problematic
because DHCP uses UDP that can loose packets. Thus
we have to count on that problem and this option is not
acceptable. That leaves us with the two other choices. We
argue that the behavior by which we try several times
more and that report an error is an optimal one. The
argument is that it’s unnecessary to implement DHCP
fail over logic in ikev2 when DHCP itself has fail over
capabilities. The consequence of this decision is that
state REBINDING is removed from the original state
machine. Namely, the purpose of REBINDING state
is to find other DHCP servers capable of providing
configuration data but, which is not necessary any more.

Upon receiving DHCPOFFER message, the state ma-
chine makes transition into REQUESTING state while
in the same time sending DHCPREQUEST to the DHCP
server. In REQUESTING state ikev2 is waiting for
acknowledgment from the DHCP server. While in the
REQUESTING state any additional DHCPOFFER mes-
sages are discarded. When DHCPACK is received, state
machine makes transition into BOUND state and all
the lease times are recorded. When T1 expires we send
DHCPREQUEST to try to renew a lease, and transition
into RENEWING state where we wait for DHCPACK



after which, we go again into state BOUND. Note that,
in RENEWING state, we immediatelly make transition
into ERROR state in case no response is received, or,
negative acknowledgment is received.

It’s obvious from the preceding description that we do
not rely on T2 since we don’t support backup DHCPv4
server. It’s also worth noting that primary purpose of
the lease time is to count for the clients that simply go
away and don’t release their resources back to DHCPv4
server. If there whould be no lease time, it could happend
that there are more available resporces, though there’s
no client connected to the network. This is not such a
problem for the ikev2, as it’s always known when the
client disconnects. Still, because of the unreliability of
UDP and the way DHCPv4 protocol works, it might
happen that resources are not released.

Finally, when the client disconnects, ikev2 releases
it’s resources by sending DHCPRELEASE message and
makes transition into FINISHED state. At that moment,
the state machine can be removed from the memory by
some garbage collection process.

Transitions marked with TIMEOUT1 are activated af-
ter timeout expires and new request is sent. TIMEOUT2
occurs after predefined number of times TIMEOUT1
exceeds.

IV. I MPLEMENTATION

Additional states IKE_SMI_COOKIE,
IKE_SMI_INVALIDKE

Linux differences from the IPsec architecture spec
In state machines that handle IKE SAs and CHILD

SAs there are no states that handle illegal messages, e.g.
those that have illegal checksum, or some field in the
header. This is because such cases are handled before
they reach state machines and they are usually dropped
without any further notice. Also, state machines do not
have any provision for retransmissions and repeating old
responses. This is also handled by the lower level code
and thus, such problems do not come to the ikev2 state
machines. Only in the case that there is no response after
a number of retries, state machines are given TIMEOUT
message.

V. CONCLUSIONS ANDFUTURE WORK

REFERENCES

[1] “ikev2,” Dec. 2007. [Online]. Available: http://sourceforge.net/
projects/ikev2

[2] C. Kaufman, “Internet Key Exchange (IKEv2) Protocol,” RFC
4306 (Proposed Standard), Dec. 2005, updated by RFC 5282.
[Online]. Available: http://www.ietf.org/rfc/rfc4306.txt

[3] J. Vollbrecht, P. Eronen, N. Petroni, and Y. Ohba, “State
Machines for Extensible Authentication Protocol (EAP) Peer
and Authenticator,” RFC 4137 (Informational), Aug. 2005.
[Online]. Available: http://www.ietf.org/rfc/rfc4137.txt

[4] R. Droms, “Dynamic Host Configuration Protocol,” RFC 2131
(Draft Standard), Mar. 1997, updated by RFCs 3396, 4361.
[Online]. Available: http://www.ietf.org/rfc/rfc2131.txt


