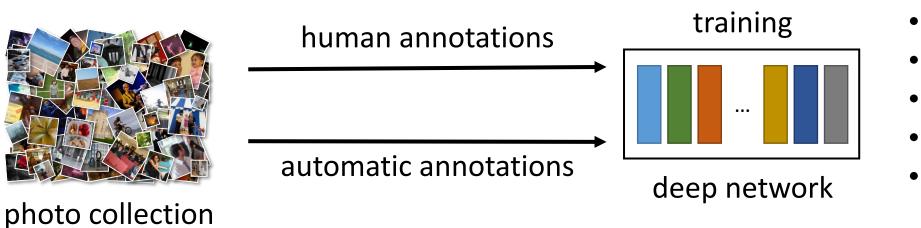
Ranking on manifolds for learning with limited supervision

Giorgos Tolias

Czech Technical University in Prague Visual Recognition Group

Supervision for deep learning



tasks:

- classification
- metric-learning
- detection
- segmentation

•

[Iscen, Tolias, Avrithis, Chum. CVPR'18. Mining on Manifolds: Metric Learning without Labels]

[Iscen, Tolias, Avrithis, Chum. CVPR'19. Label Propagation for Deep Semi-supervised Learning]

[Iscen, **Tolias**, Avrithis, Chum, Schmid. ECCV'20. Graph convolutional networks for learning with few clean and many noisy labels]

Smoothness assumption

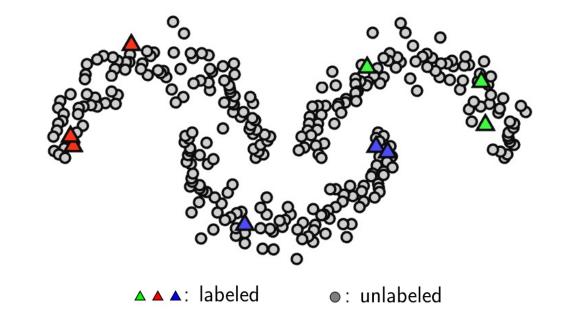
``if two points are close, then, so should be the corresponding output".

- classification \rightarrow same label
 - Label propagation [Zhou et al, NeurIPS 2003, Learning with Local and Global Consistency]
- similarity search \rightarrow same similarity w.r.t a reference point
 - Ranking on manifolds [Zhou et al, NeurIPS 2003, Ranking on data manifolds]

Background: label propagation (LP)

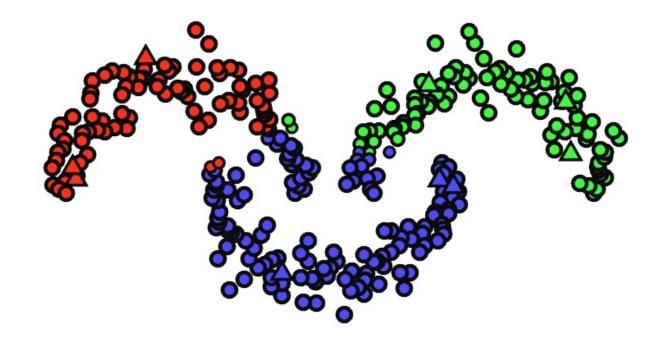
- semi-supervised classification
- transductive learning
- N examples, C classes

$$F^t = \alpha S F^{t-1} + (1-\alpha)Y$$

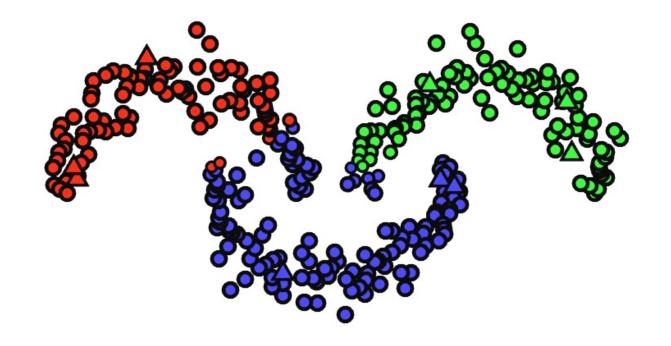


Y: N x C 1-hot-coded label matrix
S: N x N normalized affinity matrix (k-nearest neighbor graph)
α: propagation parameter in (0,1)
F: N x C class confidence matrix

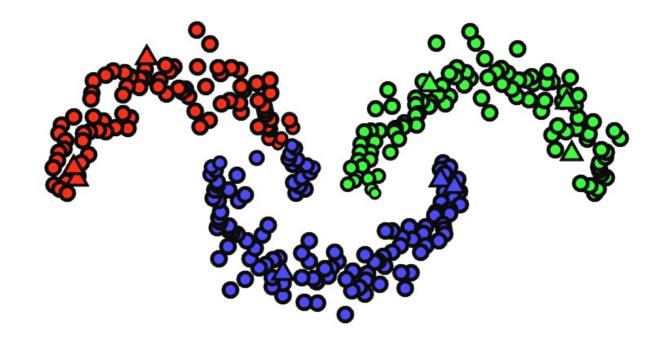
iteration 0



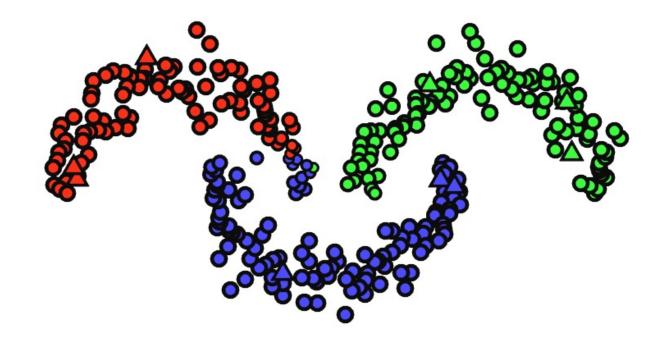
iteration 1



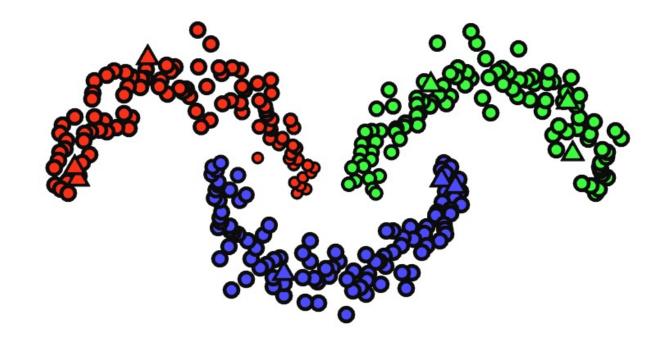
iteration 2



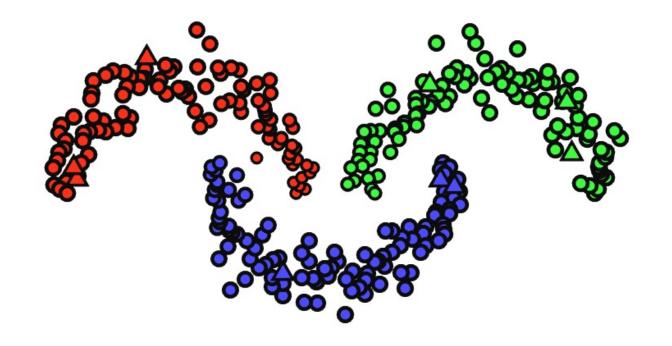
iteration 5



iteration 10



iteration 50



iteration 100

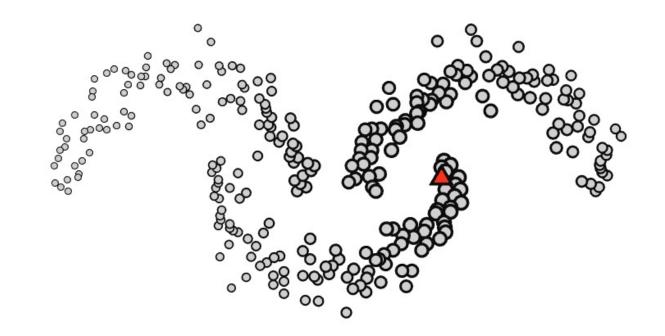
Background: ranking on manifolds

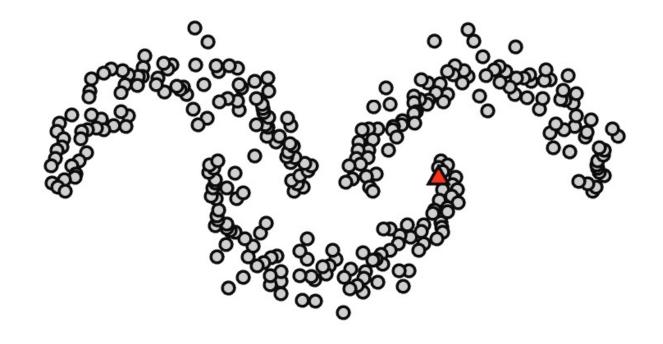
- similarity search (unsupervised)
- *N* examples, **1** query

$$\mathbf{f}^t = \alpha S \mathbf{f}^{t-1} + (1-\alpha) \mathbf{y}$$

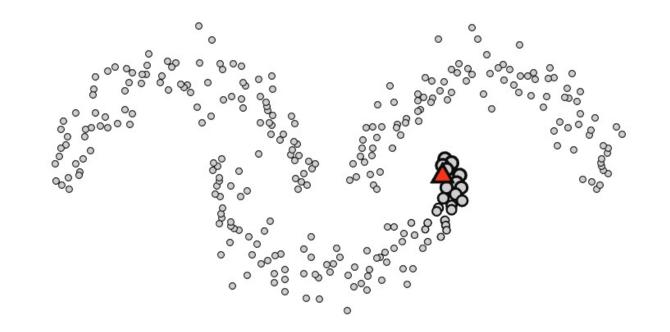
y: N x 1 1-hot-coded vector that defines the query
S: N x N normalized affinity matrix (k-nearest neighbor graph)
α: propagation parameter in (0,1)
f: N x 1 similarity vector w.r.t the query

Background: Euclidean similarity

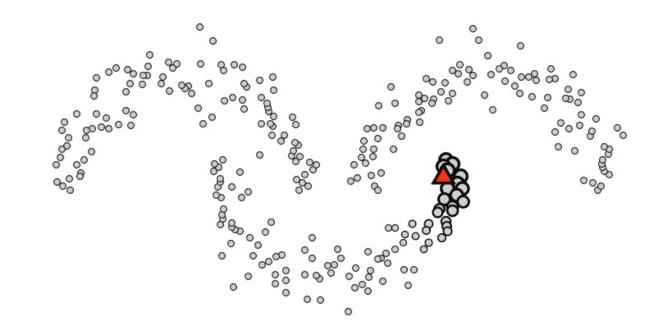




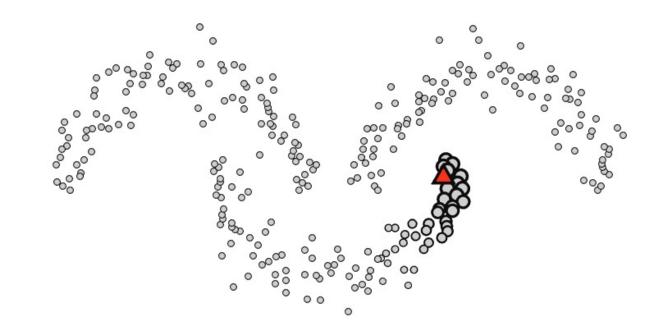
iteration 0



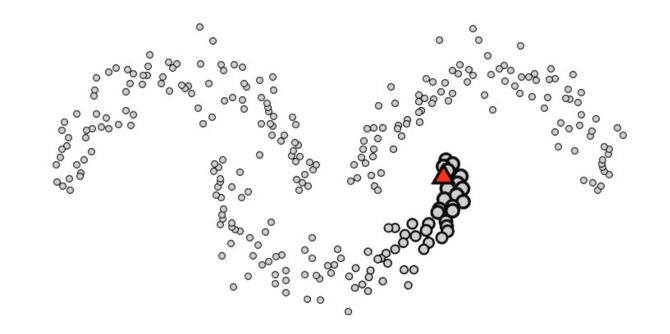
iteration 1



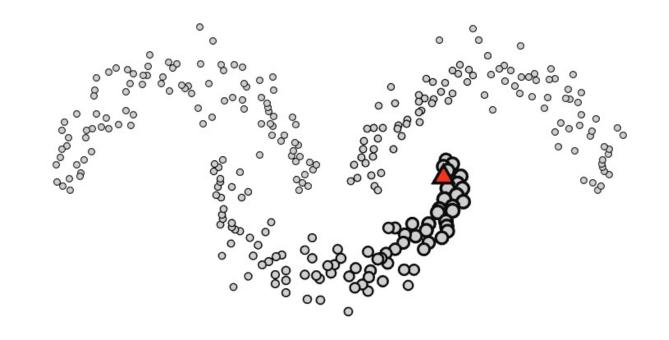
iteration 2



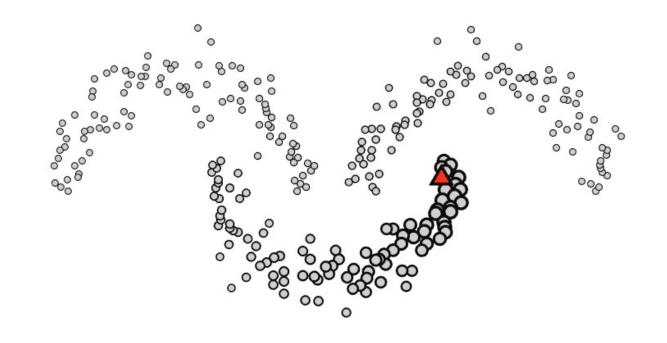
iteration 5



iteration 10

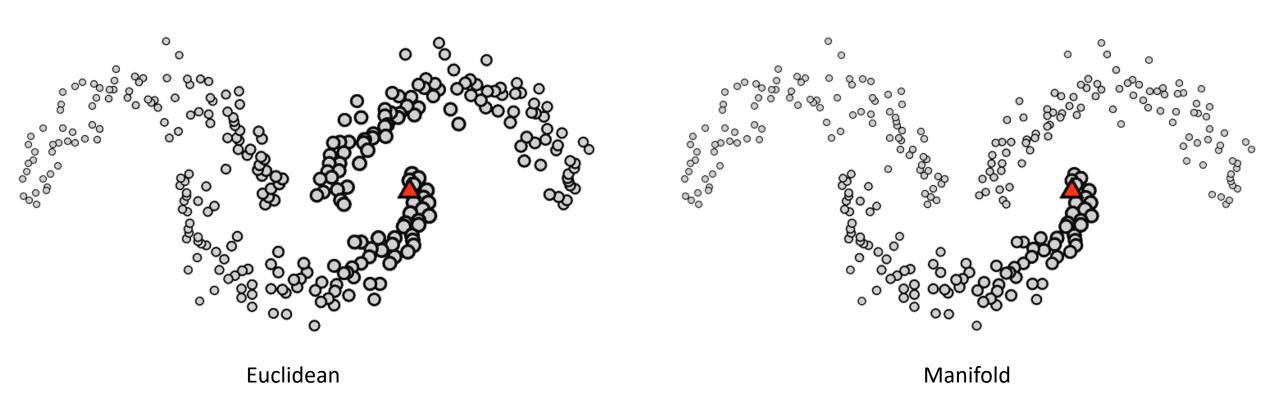


iteration 50



iteration 100

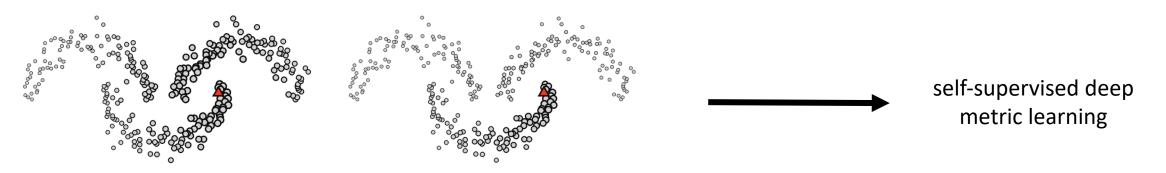
Background: Euclidean vs manifold similarity



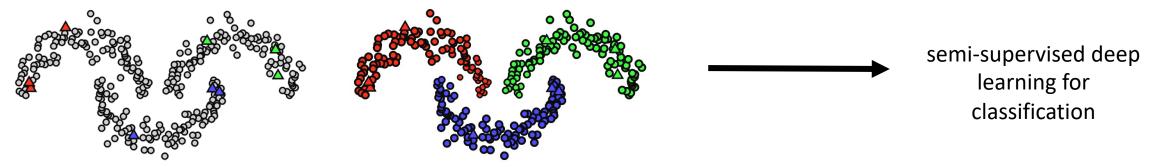
PCA example

PCA example

Propagation for deep learning

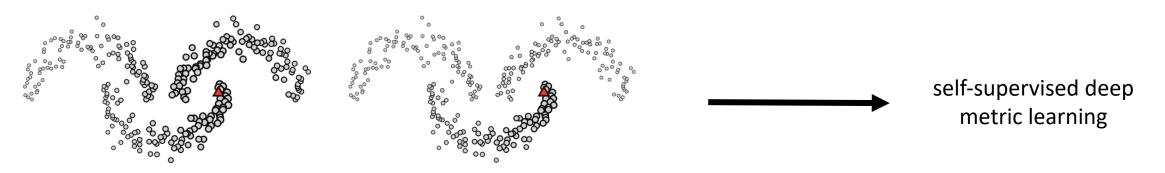


[Iscen, Tolias, Avrithis, Chum. CVPR'18. Mining on Manifolds: Metric Learning without Labels]



[Iscen, Tolias, Avrithis, Chum. CVPR'19. Label Propagation for Deep Semi-supervised Learning]

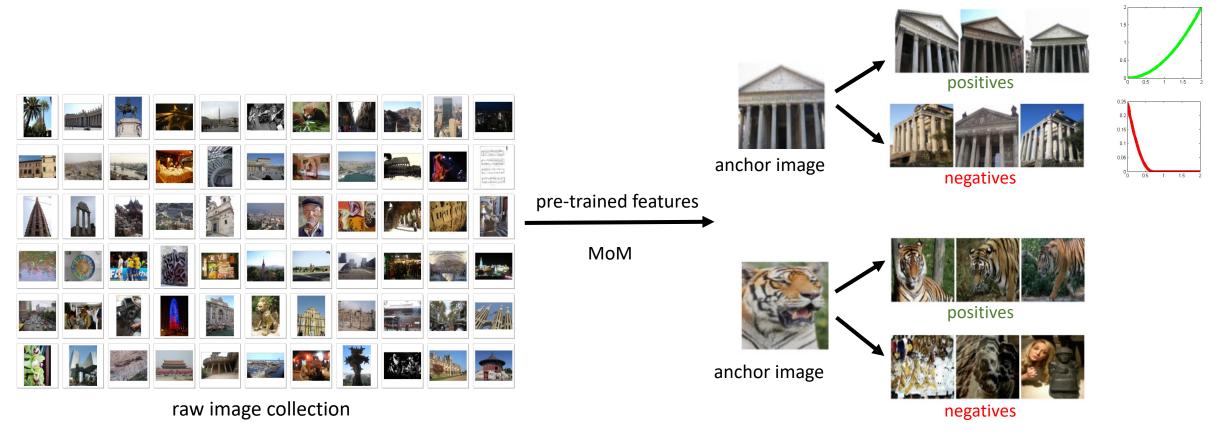
Self-supervised deep metric learning



[Iscen, Tolias, Avrithis, Chum. CVPR'18. Mining on Manifolds: Metric Learning without Labels]

Mining on manifolds (MoM) - goal

contrastive loss



- automatically mine pairs of matching and non-matching images
 - use with any standard pairwise loss

Anchor images

- nearest neighbor graph A
- stationary probability distribution π of random walk on A

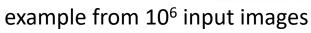
π = π P,

 $\mathsf{P} = \mathsf{D}^{-1}\mathsf{A}$

- D = degree matrix of A
- anchors: graph local-max based on $\boldsymbol{\pi}$

top-100 anchors: random sample

top-1000 anchors: random sample



Mining on manifolds

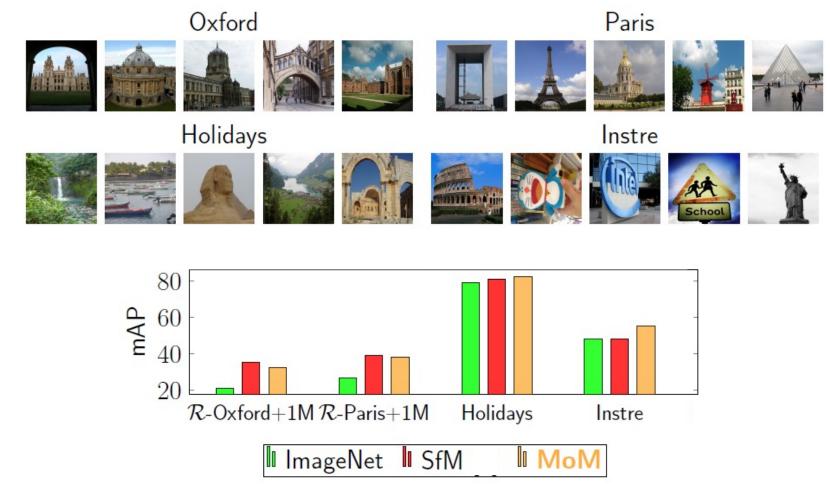
e : anchor
Euclidean NN (orange): E(y)
Manifold NN (purple): M(y)

Hard positives (green): $S^+ = M(\mathbf{y}) \setminus E(\mathbf{y})$ Hard negatives (red): $S^- = E(\mathbf{y}) \setminus M(\mathbf{y})$

Mining of training samples from 10⁶ images

Use VGG16 pre-trained on ImageNet as feature extractor

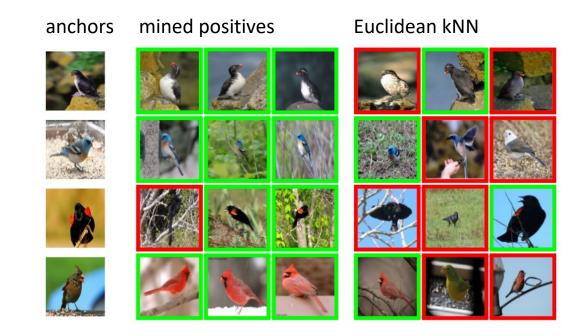
Experiments on instance search



initialize: pre-training on ImageNet -- fine-tune: MoM on 10⁶ images

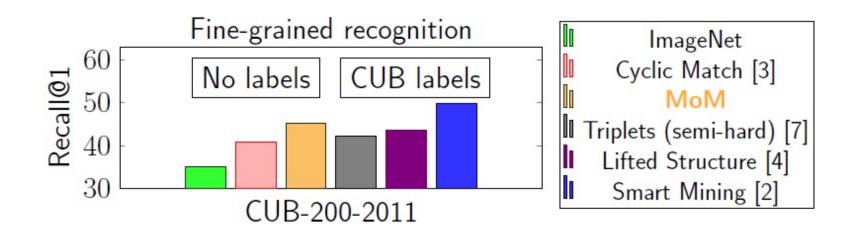
SfM: [Radenović et al. ECCV'16. CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples]

Mining of training samples



CUB 200

Experiments on fine-grained recognition



Cyclic Match: [Li et al. ECCV'16. Unsupervised visual representation learning by graph-based consistent constraints] Triplets (semi-hard): [Schroff et al. CVPR'15. Facenet: A unified embedding for face recognition and clustering] Lifted Structure: [Song et al. CVPR'16. Deep metric learning via lifted structured feature embedding] Smart Mining: [Harwood et al. ICCV'17. Smart mining for deep metric learning. In ICCV, 2017]

Ablation experiment

Positive	Negative	CUB	Oxford5k	
Anchors		All	Random	$ \mathcal{A} $
Initial 3.		35.0	52.6	
NN_5^e	$X \backslash \mathrm{NN}_5^e$	38.5	37.4	41.9
P^+	$X \backslash \mathrm{NN}_5^e$	43.0	48.2	38.1
NN_5^e	P^-	42.1	57.8	71.3
$ P^+ $	P^-	43.5	64.4	73.7
$P^+ + W$	P^-+W	45.3	67.0	76.7

Ablation experiment: anchors

Positive	Negative	CUB	Oxford5k	
Anchors		All	Random	\mathcal{A}
Initial		35.0	52.6	
NN_5^e	$X \backslash \mathrm{NN}_5^e$	38.5	37.4	41.9
P^+	$X \backslash \mathrm{NN}_5^e$	43.0	48.2	38.1
NN_5^e	P^-	42.1	57.8	71.3
P^+	P^-	43.5	64.4	73.7
$P^+ + W$	P^-+W	45.3	67.0	76.7

random anchors vs proposed anchors

Ablation experiment: weights

Positive	Negative	CUB	Oxford5k	
Anchors		All	Random	\mathcal{A}
Initial		35.0	52.6	
NN_5^e	$X \backslash \mathrm{NN}_5^e$	38.5	37.4	41.9
P^+	$X \backslash \mathrm{NN}_5^e$	43.0	48.2	38.1
NN_5^e	P^-	42.1	57.8	71.3
$ P^+ $	P^-	43.5	64.4	73.7
P^++W	P^-+W	45.3	67.0	76.7

manifold similarity as pair weight

Ablation experiment: hard positives

Positive	Negative	CUB	Oxford5k	
Anchors		All	Random	\mathcal{A}
Initial		35.0	52.6	
NN_5^e	$X \backslash \mathrm{NN}_5^e$	38.5	37.4	41.9
P^+	$X \backslash \mathrm{NN}_5^e$	43.0	48.2	38.1
NN_5^e	P^{-}	42.1	57.8	71.3
P^+	P^-	43.5	64.4	73.7
$P^+ + W$	P^-+W	45.3	67.0	76.7

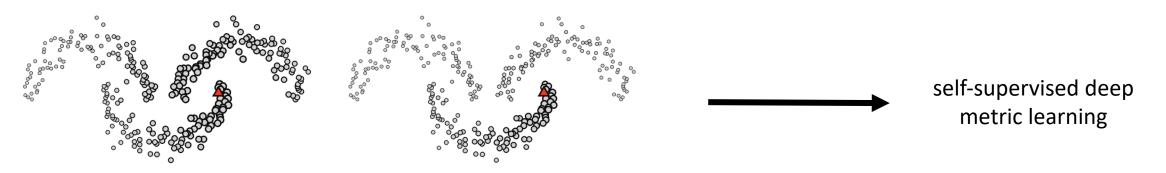
hard positives (P⁺) vs easy positives (NN^e)

Ablation experiment: hard negatives

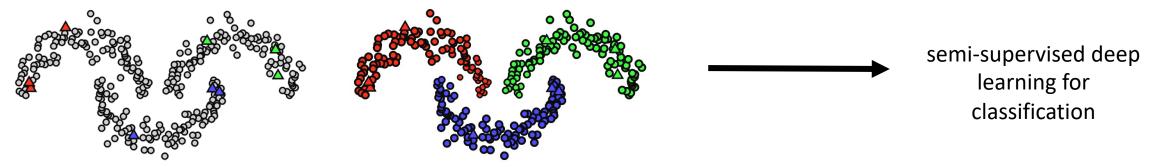
Positive	Negative	CUB	Oxford5k	
Anchors		All	Random	\mathcal{A}
Initial		35.0	52.6	
NN_5^e	$X \backslash \mathrm{NN}_5^e$	38.5	37.4	41.9
P^+	$X \backslash \mathrm{NN}_5^e$	43.0	48.2	38.1
NN_5^e	P^-	42.1	57.8	71.3
P^+	P^{-}	43.5	64.4	73.7
P^++W	P^-+W	45.3	67.0	76.7

hard negatives (P⁻) vs easy negatives (X\NN^e)

Propagation for deep learning

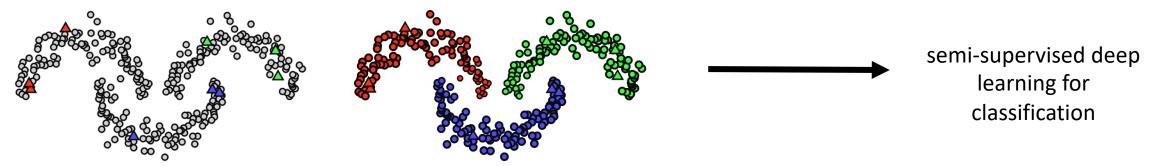


[Iscen, Tolias, Avrithis, Chum. CVPR'18. Mining on Manifolds: Metric Learning without Labels]



[Iscen, Tolias, Avrithis, Chum. CVPR'19. Label Propagation for Deep Semi-supervised Learning]

Semi-supervised deep learning for classification

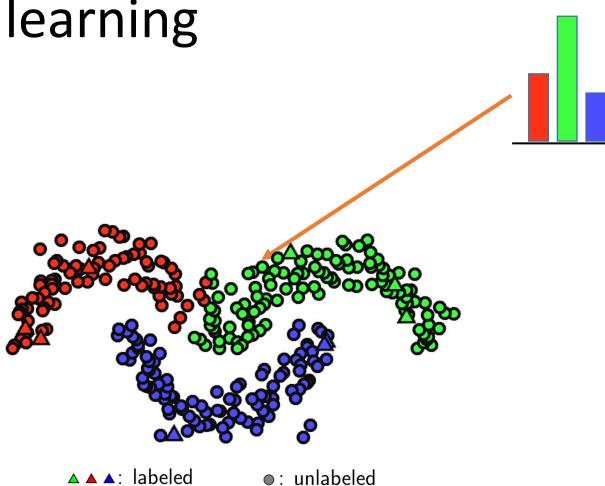


[Iscen, Tolias, Avrithis, Chum. CVPR'19. Label Propagation for Deep Semi-supervised Learning]

Semi-supervised deep learning

1. fully supervised training

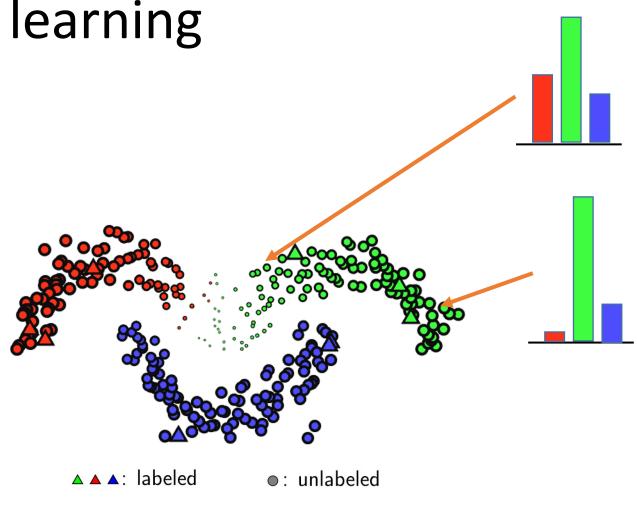
- on labeled examples
- cross-entropy loss
- 2. use trained network
 - extract features for all examples
 - nearest neighbor graph
- 3. perform label propagation
- 4. obtain vectors of class confidence
- 5. assign pseudo-label (arg-max)



Semi-supervised deep learning

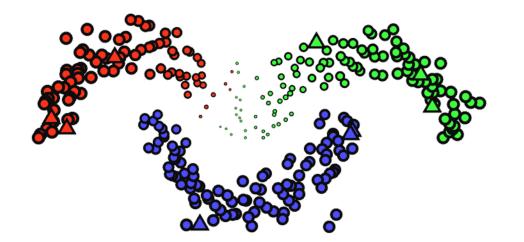
1. fully supervised training

- on labeled examples
- cross-entropy loss
- 2. use trained network
 - extract features for all examples
 - nearest neighbor graph
- 3. perform label propagation
- 4. obtain vectors of class confidence
- 5. assign pseudo-label (arg-max)
- 6. estimate certainty of the prediction
- 7. train with labels + pseudo-labels
 - weighted cross-entropy loss
 - certainty \rightarrow example weight



8. go to step-2

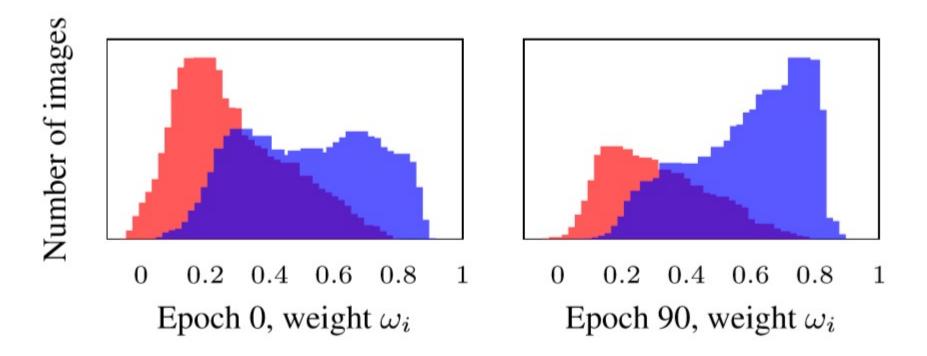
Example weights



maximum confidence value

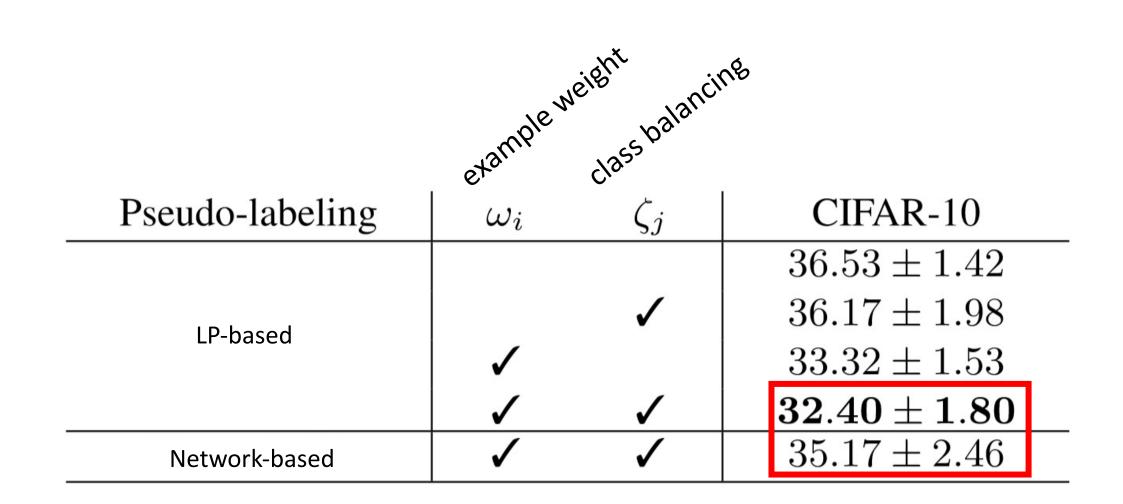
certainty = 1 – normalized entropy

Prediction certainty as weight on CIFAR10



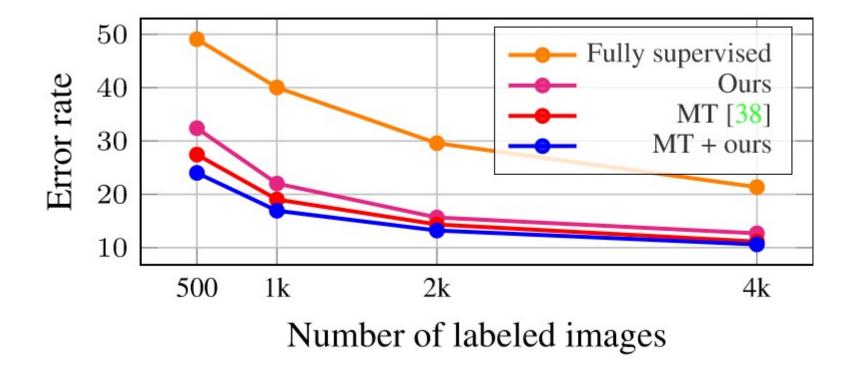
correctly and incorrectly pseudo-labeled

Ablation experiment on CIFAR10



Network-based pseudo-labeling in [Shi et al. ECCV'18. Transductive semi-supervised deep learning using min-max features.]

Number of labeled images

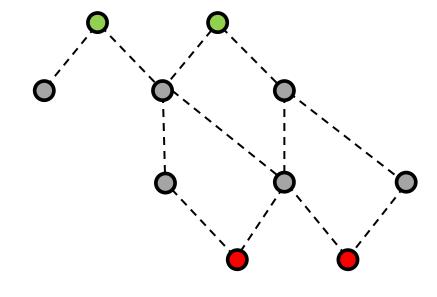


Mean Teacher (MT): [Tarvainen et al. NeurIPS'17. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results]

Graph convolutional networks for learning with few clean and many noisy labels ECCV'20

Iscen, Tolias, Avrithis, Chum, Schmid

From MLP to GCN



- Image: Optimized and the second se
 - labeled, 2-class problem
 - : unlabeled

Inductive approach

- train Multi-Layer Perceptron (MLP) on labeled
- pseudo-labeling by prediction on unlabeled

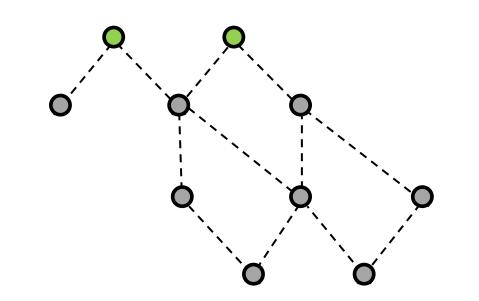
$$Z_o = f_{\Theta}(Z_i) = h(\Theta^{\top} Z_i)$$

Transductive approach

- construct affinity matrix
- train Graph Convolutional Network (GCN)
 - loss on labeled
- pseudo-labeling by prediction on unlabeled

$$Z_o = f_{\Theta}(Z_i) = h(\Theta^\top Z_i A)$$

Graph Convolutional Networks for noisy data cleaning



Clean label

noisy (weak) label

GCN binary classifier

- 2 layers: $d \rightarrow m \rightarrow 1$
- non-linearity: 1st: ReLU, 2nd: sigmoid

 $F: \mathbb{R}^{N \times N} \times \mathbb{R}^{d \times N} \to \mathbb{R}^N$

- binary cross-entropy loss
 - targets output 1 for clean and 0 for noisy
 - noise examples with importance weight λ

$$-\frac{1}{k}\sum_{i=1}^{k}\log\left(F(A,Z)_{i}\right) - \frac{\lambda}{N-k}\sum_{i=k+1}^{N}\log\left(1 - F(A,Z)_{i}\right)$$

- relevance prediction for noisy examples
 - GCN scalar output after training

Task description

- Extension of standard few-shot learning
 - available feature extractor
 - k labeled examples per class
 - class names are known

admiral

- textual web crawling: retrieve noisy images
- learn classifier with clean and noisy examples

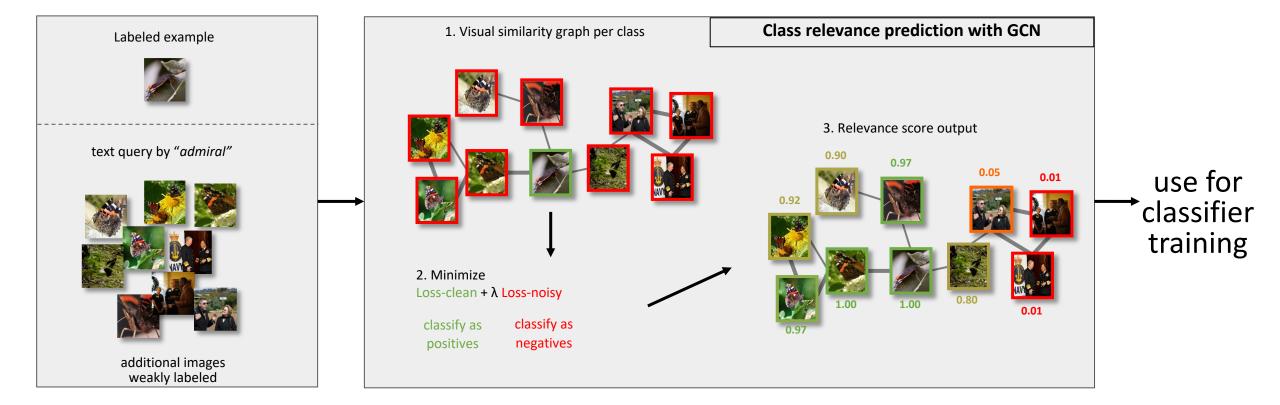
clean image

web collection (tags, captions)

weakly labeled images (noisy)

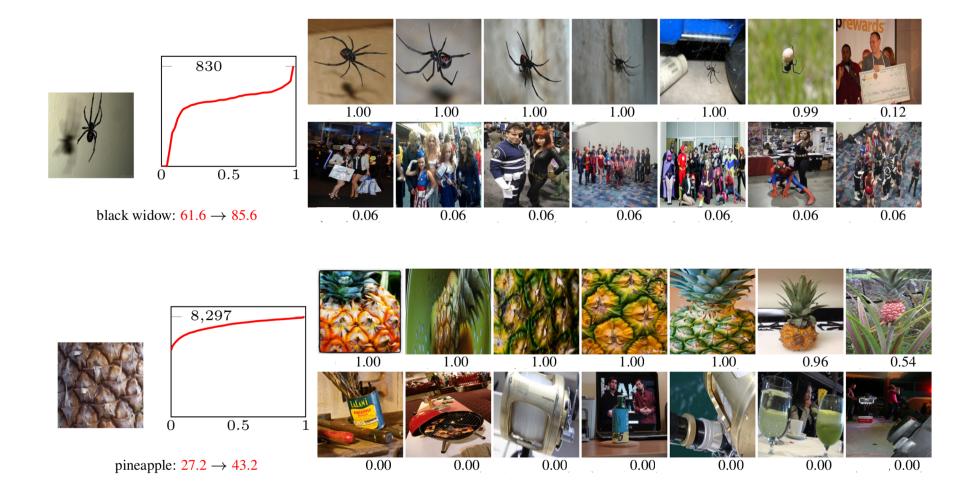
Our approach

appropriate use of noisy examples: GCN-based cleaning

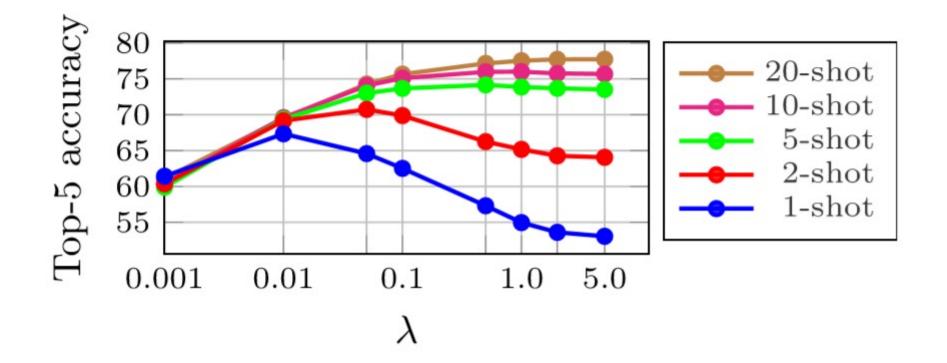


cleaning is performed separately per class

Examples of relevance scores



Importance of negative examples



- Low-shot learning benchmark based on ImageNet [Hariharan & Girshick]
- Extended with noisy images from YFCC100M (free form user tags)

Results on extended low-shot Imagenet

Method	$k{=}1$	2	5	
	FEW CLEAN	N EXAMPLES		
Class proto. [9]	45.3 ± 0.65	$57.1{\pm}0.37$	69.3 ± 0.32	without noisy
	FEW CLEAN	N & MANY N	OISY EXAMPLES	
Similarity β -weighting, $\beta = 1$	49.8 ± 0.29 56.1 ± 0.06	$56.3 {\pm} 0.27$ $56.4 {\pm} 0.08$	$64.2 {\pm} 0.32$ 57.1 {\pm} 0.05	noisy without cleaning
β -weighting, β^*	$55.6{\pm}0.24$	$58.3{\scriptstyle \pm 0.14}$	$63.4{\scriptstyle \pm 0.25}$	noisy without cleaning
Linear Label Propagation	$59.8 {\pm} 0.00 \\ 62.6 {\pm} 0.35$	$59.3 {\pm} 0.00 \\ 67.0 {\pm} 0.41$	$58.4{\pm}0.00\ 74.6{\pm}0.30$	
MLP	63.6 ± 0.41	$68.8 {\pm} 0.42$	73.7 ± 0.25	cleaning with MLP
Ours	67.8 ± 0.10	$70.9{\pm}0.30$	73.9 ± 0.17	cleaning with GCN

[9]: Gidaris, Komodakis, CVPR'18, Dynamic few-shot visual learning without forgetting

Ahmet Iscen

@google

Yannis Avrithis

@inria

co-authors

@ctu

@google

Mining on manifolds: <u>https://github.com/gtolias/mom</u>

- LP for semi-supervised deep learning: <u>https://github.com/ahmetius/LP-DeepSSL/</u>
- GCN for noisy data cleaning: <u>https://github.com/google-research/noisy-fewshot-learning</u>

Cordelia Schmid