Deep Learning 1

Introductory lecture

Siniša Šegvić

University of Zagreb

Faculty of Electrical Engineering and Computing

CONTENTS

- □ **Motivation** for deep learning:
 - machine learning and artificial intelligence
 - composite data (consist of parts)

About the course:

- main topics
- structure of the course, scoring, literature

Basics of machine learning:

- basic concepts and techniques
- examples of algorithms
- Overview of contemporary challenges and benefits

MOTIVATION: MACHINE LEARNING

- Machine learning: express an algorithm by showing some examples (avoid handcrafted rules):
 - □ one of the central problems of artificial intelligence
- Artificial intelligence: studies creation of machines that (appear as if they) can think
 - □ tasks that are easy for humans but very difficult for computers
- □ Example: write program to find a cow:
 - □ intelligent behavior is easier to learn than to construct.

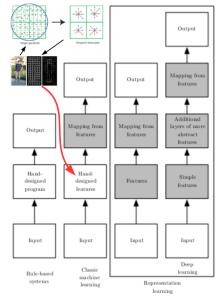
MOTIVATION: ARTIFICIAL INTELLIGENCE

Relationship between AI and ML

- early approaches: learning
- classical approaches: shallow models, handcrafted features
- representation learning: first
 the features and then the model
- deep learning: learn everything at once from end to end
 - the model is a sequence of non-linear transformations

Learning becomes increasingly important!

Learning representations too!



[goodfellow16]

Introductory lecture \rightarrow Motivation 4/39

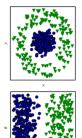
MOTIVATION: DATA REPRESENTATION

Computational complexity often depends on data representation:

- for a given task, some representations more suitable than others
- MCMLXXI + XIX vs 1971 + 19?
- $\hfill\square$ polar representation allows a shallow (=linear!) model \searrow

Features are often not easily handcrafted

- Greeks and Romans failed to invent a positional number system in more than 1000 years
- that considerably hindered the math development
 - $\square MCMLXXI + XXIX = ?$
 - $\Box MXXIV : LXIV = ?$
- $\square \Rightarrow$ learned representations extremely interesting!



[goodfellow16]

MOTIVATION: EXAMPLE

How to recognize images of bison from images of oxen?

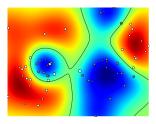
Computational complexity strongly depends on data representation

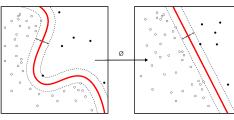
- the task would be easy if some magic algorithm converted the images into binary features: [fur?, hump?, wilderness?, ...]
- □ most bison would be: [Yes, Yes, Yes, ...]
- most oxen would be: [No, No, No, ...]

Best approach: jointly learn the representation and the classifier!

MOTIVATION: SHALLOW MODELS

- Dominant machine learning approach 1990-2006: handcrafted features and shallow classifiers with convex loss
 - □ SVM, logistic regression, generalized linear models.
- □ At the time, advantages of shallow models were clear:
 - learning convergence guaranteed and fast
 - kernel trick provides enormous representational capacity
 - competitive recognition accuracy in practice





[Wikipedia]

□ However, these approaches can not distinguish cows from bison...

MOTIVATION: DEEP LEARNING

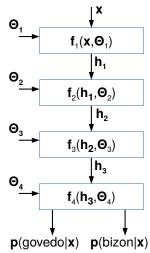
Deep model: a sequence of learned nonlinear transformations

Why was deep learning unpopular?
□ no guarantee of learning success
□ non-convex loss → local minima
□ could not exceed the state of the art

Why has deep learning become successful?

- new modeling and learning techniques
- \square large datasets (n=10⁶, 10⁹)
- high processing power (TFLOPS)
 - cuda, cuDNN, OpenBLAS, OpenMP

Applications: understanding of images language and speech, bioinformatics, etc



MOTIVATION: NO FREE LUNCH

Deep models did not "work" properly because we did not have:

- enough computational power to afford convergence
- enough data to learn the required capacity
- techniques that promote convergence

However, this does not explain why deep models would generalize better than other high-capacity models (kSVM, trees, ...)

 we cannot design learning algorithms independently from the real data: no free lunch theorem [domingos12cacm]

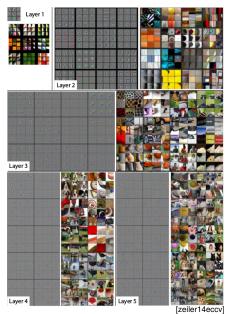
Performance on unseen data depends on the algorithm bias:

- □ if the bias matches the data the model will generalize well
- logistic regression: excellent choice for linearly separable data

MOTIVATION: COMPOSITE DATA

Composite structure: inherent bias of deep models

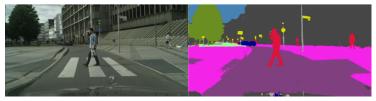
- data representation at level n built from representations at the level n-1
- that property is a good fit in many difficult tasks
 - eg. a motorcycle has wheels, wheels have rims, rims have spokes
 - letters make syllables, syllables - words, words sentences..



MOTIVATION: DEEP LEARNING - APPLICATIONS

□ Applications:

 computer vision: image classification, object localizaction, content-based image retrieval, semantička segmentacija



[kreso17iccvw]

- natural language processing: sentiment analysis, automatic translation, question answering...
- information retrieval: learning to rank
- speech recognition

MOTIVATION: ANOTHER EXAMPLE

□ Let the upper images be negatives and the lower ones - positives:

□ The task is to localize objects in test images:

[krapac16gcpr]

ABOUT THE COURSE: PLAN

Topic overview

- □ Discriminative deep learning:
 - fully connected models (lab exercise one)
 - discriminative convolutional models (lab exercise two)
 - optimization techniques
 - regularization
- recurrent models
 (lab exercise three)
- metric embeddings (lab exercise four)

ABOUT THE COURSE: LITERATURE

- Deep Learning; Ian Goodfellow, Yoshua Bengio and Aaron Courville; MIT Press; 2016.
- Neural Networks and Deep Learning; Michael Nielsen; Determination press; 2015.
- PyTorch tutorials and documentation
 - https://pytorch.org/tutorials/
 - https://pytorch.org/docs/stable/index.html

ABOUT THE COURSE: PRIOR KNOWLEDGE

Required prior knowledge to follow the course::

- □ linear algebra (§2.1 §2.11) and probability theory (§3.1 §3.11)
- analysis of multivariate vector-valued functions (§4.3.1)
- basic concepts and techniques of machine learning (§5.1 §5.11)
- basics of the Python programming language

Lab exercise #0: instrument for checking/acquiring prior knowledge

- □ you can (should!) start immediately
- □ if you do not solve the lab #0 the lab #1 will be too difficult
- □ all laboratory exercises will be included in the exams

ABOUT THE COURSE: LAB

There are 4 lab exercises:

- 0. vector algebra, shalow models, Python, numpy
- 1. fully connected models
- 2. basic convolutional models
- 3. recurrent models
- 4. metric embeddings

Guidelines:

- the exercises should be solved at home
- □ they should be submitted before the final exam
 - □ let us know when you are ready!
- hardware ad software requirements: Python, Numpy, Scipy, Matplotlib and PyTorch

About the course: LAB (2)

Lab exercises are the core component of the course:

 \Box direct 20% points (4 \times 5)

□ you must have at least 1/2 of these before taking the final exam

□ at least additional 20% points at the exams

There are no points for solving (or not solving) the lab exercise #0.

ABOUT THE COURSE: DETAILS

Activities: lectures, exercises (Python), exams

Approximate calendar:		Continuous scoring:	
end of October:	L1	lab:	20
mid November:	L2	mid-term exam:	40
end of November:	ME	final exam:	40
start of February:	L3	condition:	1/2 of the lab points
mid February:	L4	Contaition	
end of February:	FE	Full exam:	
start of March:	Full	condition: 1/2 of the lab points	

We award **bonus points** for: useful suggestions, seminars, proposals of new problems and exercises

□ send e-mail to apply for a seminar before the mid-term exam

Scoring. 2: 50%, 3: 63%, 4: 76%, 5: 89%.

About the course: lecturers and assistants

lectures:

- Siniša Šegvić
- Petra Bevandić
- Josip Šarić
- Iabexercises:
 - Petra Bevandić
 - Josip Šarić

Marin Kačan, Iva Sović, Ivan Sabolić, Anja Delić, Ivan Martinović.

MACHINE LEARNING: BASIC CONCEPTS

Machine learning studies data-processing algorithms that improve with experience

A machine learning algorithm is a meta-algorithm that involves two sub-algorithms:

- □ the model: a data processing algorithm that will be deployed
 - must supply a performance metric
 - $\diamond~$ eg. classification accuracy on the **test set** $\{x_i, y_i\}$
 - ◊ eg. number of wrongly classified examples
 - we distinguish empirical and generalization performance

□ the optimizer: fits the model to the data (eg. gradijent descent)

- □ requires a training dataset $\{x_i, y_i\}$
 - o should be sampled from the same distribution as the test set!
- requires an optimization objective (loss)
 - eg. negative log-likelihood of parameters on the training set

MACHINE LEARNING: DEFINITIONS

- In machine learning, a parametric (meta-)algorithm is defined with:
 model: a data-processing algorithm with free parameters
 - loss: formalized (anti-)goodness of fit of the model parameters
 - optimizer: finds parameters that make the loss acceptable (not necessarily minimal).
- □ Regarding the quality of learning data, we distinguish:
 - supervised learning: we have a desired output in each learning example
 - ◊ typical tasks: classification, regression
 - unsupervised learning: we have only the data
 - v typical tasks: density estimation, data generation.
 - reinforcement learning: we receive the feedback after a number of model evaluations.

MACHINE LEARNING: EXAMPLE

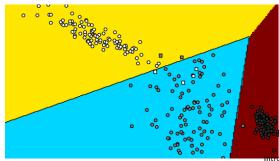
Logistic regression: supervised multi-class classification

the model returns the posterior distribution over the training taxonomy:

 $P(Y | \mathbf{x}) = \operatorname{softmax}(\mathbf{W}\mathbf{x} + \mathbf{b}), \operatorname{softmax}(\mathbf{s}) = [e^{s_j} / \sum_k e^{s_k}]^\top.$

□ loss (negative log-likelihood on the training set): $\mathcal{L}(\mathbf{W}, \mathbf{b} \mid \mathbf{Y}, \mathbf{X}) = -\sum_{i} \log P(\mathbf{Y} = y_i \mid \mathbf{x}_i)$

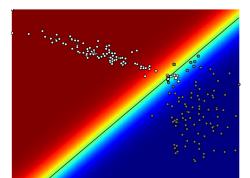
□ optimizer (gradient descent): $\mathbf{b}_{i+1} = \mathbf{b}_i - \delta \cdot \nabla_{\mathbf{b}_i} \mathcal{L} = \mathbf{b}_i - \delta \cdot (\frac{\partial \mathcal{L}}{\partial \mathbf{b}_i})^\top$



MACHINE LEARNING: EXAMPLE 2

Support vector machine (supervised binary classification):

- $\Box \text{ the model (binary classifier): } f(\mathbf{x}) = \begin{cases} c_0 & \text{if } \mathbf{w}^\top \mathbf{x} + b < 0 \\ c_1 & \text{if } \mathbf{w}^\top \mathbf{x} + b > 0 \end{cases}$
- □ the loss (total margin violation plus regularization): $\mathcal{L}(\mathbf{w}, b \mid \mathbf{Y}, \mathbf{X}) = \lambda \|\mathbf{w}\|^2 + \frac{1}{n} \sum_{i=1}^{n} \max \left(0, 1 + (-1)^{\left[y_i = c_1\right]} (\mathbf{w}^\top \mathbf{x}_i + b)\right)$
- optimizer: quadratic programming or gradient descent

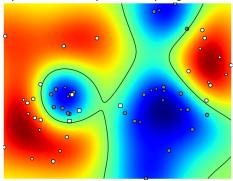


MACHINE LEARNING: EXAMPLE 3

SVM with support vectors \mathbf{x}_i and kernel function k:

$$\square \text{ model: } f(\mathbf{x}) = \begin{cases} c_0 & \text{if } \sum_i \alpha_i \cdot k(\mathbf{x}_i, \mathbf{x}) + b < 0 \\ c_1 & \text{if } \sum_i \alpha_i \cdot k(\mathbf{x}_i, \mathbf{x}) + b > 0 \end{cases}$$

- □ loss (regularization + margin violation): $\mathcal{L}(\alpha, \mathbf{b} | \mathbf{Y}, \mathbf{X}) = h(\alpha \alpha^{\top}) + \frac{1}{n} \sum_{i=1}^{n} \max \left(0, 1 + (-1)^{\llbracket y_i = c_1 \rrbracket} (\alpha_i \cdot k(\mathbf{x}_i, \mathbf{x}) + b) \right)$
- optimization: quadratic programming or gradient descent



MACHINE LEARNING: INDIRECT OPTIMIZATION

Peculiarity of machine learning: we optimize performance indirectly

- □ the optimization method can not "see" the loss on the test set
 - but it presumes that the empirical distribution corresponds to the generative distribution
 - ie. the learning and testing data are generated by the same random process
- the loss often cannot be equated with the empirical error
 - □ typically because the error formulation is not differentiable
 - □ in this case the loss is a proxy for the empirical error
 - a well-defined replacement loss can improve the generalization even after the empirical error drops to zero!

MACHINE LEARNING: CAPACITY

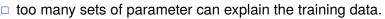
Capacity as the basic property of the model:

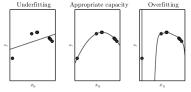
- describes the ability to adapt to data
- usually proportional to the number of degrees of freedom
- can be described as the number of examples (VC dimension) which the model can **shatter** (ie. explain with arbitrary labels)

Low capacity models prone to undertraining:

□ there is no set of parameters that can explain the learning set

High-capacity models are prone to overtraining:

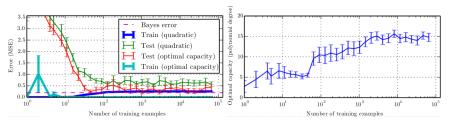




 $[goodfellow16] \\ Introductory lecture \rightarrow Machine learning (6) 26/39$

MACHINE LEARNING: IMPACT OF DATA

- The accuracy of the learned model depends on the number of data introduce the inevitable (Bayesian) error
 - it occurs due to stochastic data or labeling noise
 - □ the undercapacitated algorithm converges to:
 - empirical error that is noticeable (dark blue)
 - generalization error that is greater than the unavoidable (green)
 - a model with excess capacity may be better than model with the same complexity as the noisy generative process (n=5, right)



[goodfellow16]

MACHINE LEARNING: LEX PARSIMONAE

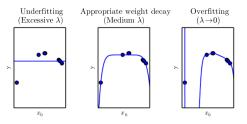
Limiting model capacity is not the only way to match the data complexity

Another way is to keep the high capacity but introduce a preference towards simpler models

If we look at regression, one way to regularize the loss would be:

 $J(\mathbf{w}) = \lambda \mathbf{w}^{\top} \mathbf{w} + \sum_{i} (\sum_{j} w_{j} x_{i}^{j} + b - y_{i})^{2}.$

The algorithm now prefers solutions where the input changes lead to smooth changes in the model output



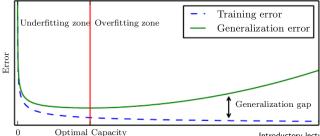
[goodfellow16]

MACHINE LEARNING: REGULARIZATION

Regularization is any modification aimed to improve generalization without reducing the empirical error

Regularization can be applied to all components of learning:

- loss: penalizing the norm of the parameters
- optimizer: early stopping
- data: jittering, label smoothing
- model: reduce capacity, parameter sharing



MACHINE LEARNING: STATISTICAL VIEW

Under-training and overfitting can be clarified by explaining the generalization error with bias and variance

Bias: a built-in tendency towards some solutions.

Variance: variation due to different training data.

Regularization reduces the variance and increases the bias.

Low High Variance Variance High Bias Low 8 Bias [domingos16cacm] Underfitting zone Canacity capacity

[goodfellow16]

Regularization should be adjusted to the data:

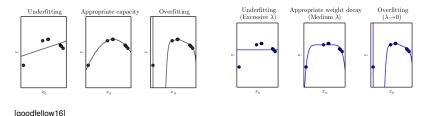
decrease the variance while avoiding inappropriate bias

MACHINE LEARNING: HYPERPARAMETERS

Hiperparameters regulate the algorithm behaviour, but they are not affected by optimization.

Examples: model complexity, factor of the parameter norm, optimization step, number of epochs...

Hyperparameters are often adjusted through exhaustive or random search on the validation subset



Introductory lecture \rightarrow Machine learning (11) 31/39

MACHINE LEARNING: LOSS

The most intuitive loss is the mean square error:

 $J(\theta) = \sum_{i} (\mathsf{model}(\mathbf{x}_i) - y_i)^2$

This loss is not suitable for probabilistic classification because it ignores that the model returns a distribution

□ eg. $d_{L2}^2([1,0,0], [0.2, 0.4, 0.4]) < d_{L2}^2([1,0,0], [0.2, 0.0, 0.8])$

A more consistent formulation of the classification loss is negative log-likelihood of model parameters:

$$J(\theta) = -\frac{1}{N} \sum_{i} \log \mathsf{P}_{\mathsf{model}}(y_i | \mathbf{x}_i, \theta).$$

It can be shown that the negative log-likelihood is a special case of cross-entropy (the equivalent of KL divergence).

If we model the regression deviation with a Gaussian distribution, negative log-likelihood becomes **squared loss**.

MACHINE LEARNING: SGD

One of the currently most popular optimization methods in machine learning is stochastic gradient descent

Gradient descent by negative log-likelihood must calculate: $\nabla_{\theta} J(\theta) = \frac{1}{N} \sum_{i}^{N} \nabla_{\theta} L(\mathbf{x}_{i}, y_{i}, \theta).$

Gradient descent may become slow when $N \cdot \dim(\theta) \sim 10^{12}$

We solve the problem by separating the data into batches:

$$abla_{\theta} J(\theta) = \frac{1}{N'} \sum_{i}^{N'} \nabla_{\theta} L(\mathbf{x}_{i}, y_{i}, \theta).$$

- □ the optimization step is performed in time $O(N' \cdot dim(\theta))$, N' < < N
- □ groups are randomly formed after each epoch (stochastics!)
- \square in large models (dim(θ) $\sim 10^6$): faster than higher order methods
- also used for large shallow models!

□ standard kSVM is ~ $O(N^2)$ in space, and ~ $O(N^3)$ in time.

TOWARDS DEEP LEARNING: CHALLENGE

Problems at AI-level consider complex data (D=dim $(\mathbf{x}_i) \sim 10^5$)

Therefore, the number of all possible data is at least $O(2^D)$

If the bias of the classifier does not match the bias of the data, we must have a representative in each hyper-cube of the data space

- □ in the <u>pessimistic</u> case we need $O(2^D)$ training examples!
- □ this is a form of the curse of dimensionality

TOWARDS DEEP LEARNING: CLASSICAL ANSWER

Classical approaches assume smoothness (or local constancy): the model should not change very much within a small region.

Such prior is endorsed by k-NN, kernel methods, trees:

- all these approaches require O(n) examples to discriminate O(n) regions in data space
- □ such approaches cannot work when $n = 2^{10^5}$

We can draw the following conclusions:

- smoothness prior does not hurt, but it can't handle the increase in dimensionality
- we need appropriate kinds of **bias** for **real data**.

TOWARDS DEEP LEARNING: COMPOSITE DATA

A fundamental assumption of deep models: the data is generated through recursive composition of parts

□ a person has a head, a head has a face, a face has eyes

Potential for independent learning of lower level features:

 a person with blue eyes and black hair can contribute to recognizing people with blue eyes and red hair.

We can express deep models with fewer parameters:

□ eg. learn xor_n as a sum of minterms: $xor_n(\mathbf{b}) = \sum_{j=1}^{2^n} w_j \cdot m_j$ □ $\rightarrow 2^n$ binary parameters

□ eg. learn xor as a composition of two-way logical functions f_i : □ $\operatorname{xor}_n(\mathbf{b}) = f_1(b_1, f_2(b_2, \dots f_{n-1}(b_{n-1}, b_n) \dots))$

 $\Box \rightarrow 4n$ parameters

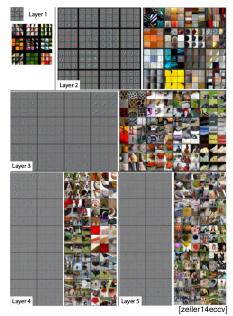
Such approach can counter the curse of dimensionality.

Introductory lecture \rightarrow Towards deep learning (2) 36/39

TOWARDS DEEP LEARNING: COMPOSITE DATA (2)

Composite structure: intrinsic bias of deep models

- data representation at level n built from representations at level n-1
- that property of deep models fits the data in many difficult tasks
 - eg. a motorcycle has wheels, wheels have rims, rims have spokes
 - letters make syllables, syllables - words, words sentences..



TOWARDS DEEP LEARNING: MANIFOLD LEARNING

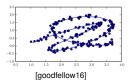
Manifold: a connected subset $\{\mathbf{x}_i\} \in \mathbb{R}^n$ that can locally be approximated with $\{\mathbf{x}'_i\} \in \mathbb{R}^m$, $m \ll n$ (left!).

Composite data reside at a particular manifold:

- □ eg. no people have eyes on their legs
- □ the model can specialize for dense portions of the data space

An intuition that the manifold assumption holds in practice:

- most of all possible input vectors are not valid data (middle!)
- we can imagine independent factors of variation that define local axes of the manifold: brightness, contrast, rotation (right!) etc.



TOWARDS DEEP LEARNING: CONCLUSION

Deep models are **biased**: they work best with data that consist of parts

- □ it makes sense to use them when the data is composite
- □ otherwise, better results could be achieved by shallow models

Deep models are **scalable**, they can work with:

- \square high-dimensional data (D=10⁵)
- \Box large training datasets (N=10⁶)
- □ huge numbers of parameters (dim(θ)=10⁹)

This makes deep models **a method of choice** in many problems of artificial intelligence.