
Deep feed-forward models

Josip Krapac and Siniša Šegvić

1

Overview

• About deep feed-forward models
• Loss function and output layers
• Activation functions in hidden layers
• Universal approximation: depth matters
• Backprop: efficient computation of the loss gradient

2

Overview

• About deep feed-forward models
• Loss function and output layers
• Activation functions in hidden layers
• Universal approximation: depth matters
• Backprop: efficient computation of the loss gradient

3

About deep feed-forward models

Deep feed-forward network

• the simplest formulation of a deep model
• network: consists of a number of interconnected
processing elements

• implemented as a sequence of fully connected layers i.e.
affine transformations with non-linear activation

Goal:

• approximate the desired function y = f ∗(x) with a
parametric model ŷ = f (x,Θ).

• the model f maps the input x into predictive output ŷ
• we jointly learn the parameters Θ from end to end

4

About deep feed-forward models

Details:

• the function y = f ∗(x) corresponds to the exact
relationship between input x and output y

• our model ŷ = f (x,Θ) aproximates the exact function
• we want to find the set of parameters Θ∗ that provides
the "best" approximation

• problem: we do not know what the function f ∗(x) looks
like in most x; we only know f ∗(x) in a finite training set
{(xi, yi)}Ni=1.

• hence, we care about the ability to generalize
• the choice of the model will depend on the data (cf. no
free lunch theorem)

5

About deep feed-forward models

Basic properties of deep models:

• information flows from input to output (feed-forward),
there are no loops

• can be represented as a composition of simpler functions:
f (x,Θ) = o(fL(fL−1(· · · (f1(x,Θ1)), · · ·),ΘL−1),ΘL)),

• we refer to fi as layers
• each layer includes exactly one non-linear activation
• the model depth (L): the number of layers fi

6

About deep feed-forward models

We express the model in terms of auxiliary variables {hl}:

h1 = f1(x,Θ1)

...
hL−1 = fL−1(hL−2,ΘL−1)

hL = fL(hL−1,ΘL)

f (x,Θ) = o(hL)

We denote the auxiliary variables as hidden or latent features

Layer width (Dl): dimension of its feature vector, hl ∈ RDl .

The supervision involves only the input x and the output y:
model has a freedom to arrange hidden features in a manner
that ensures the best approaximation. 7

About deep feed-forward models

The basic form: sequence of fully-connected layers

• each fi models an elementary non-linear transformation:
parametric afine mapping with non-linear activation σ:

fk(hk−1) = σ(Wkhk−1 + bk)
• We must get to know the fully-connected layers well:

• basis for more complex layers (eg. convolutional)
• building blocks of more complex architectures (eg.
attention)

Other names:

• (feed-forward, deep) fully-connected model (with affine
transformations)

• multi-layer perceptron (MLP)
• (feed-forward) (artificial) neural network 8

Fully connected layer

+ σ

σ()

f (x;W,b) = σ(W · x+ b)

σ(s)i = σ(si) 9

Fully connected model

Problem: determine the struc-
ture, equations and total number
of parameters of a fully connected
model for 2D data. if we know that
the layer widths are: 5, 10, 5, 2..

f1(x,Θ1)

x
Θ1

f2(h1,Θ2)

h1

f3(h2,Θ3)

h2

f4(h3,Θ4)

h3

p(govedo|x)

Θ2

Θ3

Θ4

p(bizon|x)

10

Fully connected model

Problem: determine the struc-
ture, equations and total number
of parameters of a fully connected
model for 2D data. if we know that
the layer widths are: 5, 10, 5, 2..

f1(x,Θ1)

x
Θ1

f2(h1,Θ2)

h1

f3(h2,Θ3)

h2

f4(h3,Θ4)

h3

p(govedo|x)

Θ2

Θ3

Θ4

p(bizon|x)
10

About deep feed-forward models

Relation to artificial neural networks:

• artificial neural networks study machine learning
algorithms that are inspired by early models of the human
brain

• on the other hand, deep learning is concerned with good
generalization on real data

11

Linear and nonlinear models

Question: how deep should a fully connected model be?

Seductive idea: L=1!

f (x,Θ = (w,b)) = σ(w⊤x+ b)

• strength: usual loss functions lead to convex optimization
• strength: guaranteed convergence
• weakness: our world is non-linear.

12

Linear and nonlinear models

If a single layer is not an option, what solutions remain?

• Solution: use a nonlinear solution Φ in order to map the
data into linearly separable features:

f (x,Φ,Θ = (w,b)) = Φ(x)⊤w+ b

• Three dominant ways to construct Φ:
• design a generic function Φ (suitable for all algorithms)
• hand-craft an algortihm-specific function Φ,
• learn the function on the data Φ(x|ΘΦ).

13

Generic feature mappings

Example: kernel functions

• eg. RBF function k(x, ·) implicitly maps the data into the
infinite-dimensional feature vector Φ(x)

Problem: such functions assume local smoothness

• unfortunately, local smoothness is not good enough when
dim(x)=105

14

Hand-crafted features

Examples: SIFT descriptor (vision), word normalization
(language), MFCC descriptors (speech).

Problem: requires domain knowledge, time-consuming process

Problem: (today we know) limited generalization power

15

Learning features

The only approach left: learn the function Φ(x|ΘΦ), by
optimizing parameters ΘΦ

We can try to learn the layers separately: first learn the
features ΘΦ (eg. unsupervised), and only then learn the
classifier w,b

• that would work better than linear model
• but nobody succeeded by learning more than two layers
that way

Only one approach remains: learn a deep model from end to
end:

• joint learning Θ = (w,b) ∪ΘΦ

16

Deep learning (end-to-end)

Advantages with respect to generic and hand-crafted
mappings:

• we specify a class of functions Φ(x|ΘΦ) except of a
specific function Φ(x)

• class of functions is determined by the model structure
• we can have arbitrarily many layers (there is a sweet spot
in practice)

Disadvantage with respect to generic and hand-crafted design:

• the optimization problem is no longer convex
• global convergence is not guaranteed

17

Deep learning (end-to-end)

However, it turns out that the non-convex loss does not pose a
problem in practice

Deep models are best suited when the data is generated by a
composition of factors, for example, the face consists of a
mouth, eyes, nose...…

If such factors exist, factored recognition can ensure efficient
representation in the input space.

Some works suggest exponential efficiency with respect to
approaches that rely on local smoothness prior
[montufar14nips]

• shallow models, prototypes (k-NN), kernel functions
18

Deep learning (end-to-end)

Problem: learn a function that maps 2D points into RGB color

• these are the training data

19

Deep learning (end-to-end)

Problem: learn a function that maps 2D points into RGB color

• these are the training data
• intuitively unclear how to generalize

19

Deep learning (end-to-end)

Problem: learn a function that maps 2D points into RGB color

• these are the training data
• intuitively unclear how to generalize
• the problem becomes much easier if we express the
model as a sum of two independent 1D functions

f(x, y) = (fR(x) + fB(y))/2

19

Example: learning the XOR function

• Consider the following function of two binary variables:
f ∗(x) = (x0 ∧ x1) ∨ (x0 ∧ x1).

• Let us try to learn a linear model to approximate f ∗:
f (x,Θ = (w,b)) = w⊤x+ b

• We are looking for Θ∗ = (w ∗,b ∗) such that mean square
error of the predictions becomes minimal:

JMSE(Y, f (X,Θ)) =
1
4

4∑
i=1

(f (xi,Θ)− yi)2

• Later we shall see that such loss is not a good choice for
classification problems, but here it is convenient because
we can get the solution in a closed form.

20

Example: learning the XOR function

Notation:

w ′ =
[
w1,w2,b

]⊤
, X′ =


x11 = 0, x12 = 0, 1
x21 = 0, x22 = 1, 1
x31 = 1, x32 = 0, 1
x41 = 1, x42 = 1, 1

 , y =


y1 = 0
y2 = 1
y3 = 1
y4 = 0


Let us express the loss in a convenient form:

JMSE(y, X′,w ′) =
1
N ∥X′w ′ − y∥22 =

q⊤q
N ,q = X′w ′ − y

Now we can determine the gradient by chaining rule:

∇w ′ JMSE(y, X′,w ′)⊤ =
∂J
∂w =

∂J
∂q

∂q
∂w

=
2 · q⊤
N · X′ = 2

N (X′w ′ − y)⊤X′ 21

Example: learning the XOR function

We are looking for the minimum of the function J:

∇w ′ J = 0 → w ′ =
(
X′⊤X′

)−1
X′⊤y

Solution: w ∗ = 0,b ∗ = 0.5 (??!)

Conclusion: linear model has insufficient capacity to solve the
XOR problem.

• Minski and Papert published this in their 1969 book:
Perceptrons: An Introduction to Computational Geometry

• this was viewed as a limitation of all learning approaches
and contributed to the first AI winter (1974-1980)

• backprop was invented in 1970 by Seppo Linnainmaa...

22

Example: learning the XOR function

• Let us introduce an additional non-linear layer
• it has to be such if we wish a non-linear composite model

• The hinge function is a default non-linear function today:
g(x) = ReLU(x) = max(0, x).

• Non-linearity affects each vector element separately:
g(x)i = g(xi)

• Now we can formulate our composite modeli:

f (x,Θ) = w⊤
2 h+ b2,

h = g(W⊤
1 x+ b1)

• h: vector of (learned) hidden features
• W1, b1: learned parameters for mapping data to hidden
features

23

Example: learning the XOR function

Solution : W1 =

[
1 1
1 1

]
, b1 =

[
0
−1

]
, w2 =

[
1
−2

]
, b2 = 0.

f (x, y) = 1 ·max (x+ y, 0)− 2 ·max (x+ y− 1, 0) + 0

X =


0 0
0 1
1 0
1 1


24

Example: learning the XOR function

Solution : W1 =

[
1 1
1 1

]
, b1 =

[
0
−1

]
, w2 =

[
1
−2

]
, b2 = 0.

f (x, y) = 1 ·max (x+ y, 0)− 2 ·max (x+ y− 1, 0) + 0

W1X =


0 0
1 1
1 1
2 2


24

Example: learning the XOR function

Solution : W1 =

[
1 1
1 1

]
, b1 =

[
0
−1

]
, w2 =

[
1
−2

]
, b2 = 0.

f (x, y) = 1 ·max (x+ y, 0)− 2 ·max (x+ y− 1, 0) + 0

W1X+ b1 =


0 −1
1 0
1 0
2 1


24

Example: learning the XOR function

Solution : W1 =

[
1 1
1 1

]
, b1 =

[
0
−1

]
, w2 =

[
1
−2

]
, b2 = 0.

f (x, y) = 1 ·max (x+ y, 0)− 2 ·max (x+ y− 1, 0) + 0

ReLU(W1X+ b1) =


0 0
1 0
1 0
2 1


24

Example: learning the XOR function

• We have shown the solution without going into details of
how to find it

• parameters of deep models are most often determined
through gradient optimization of the loss.

• The presented solution is the global minimum of the loss
• in the general case, the gradient descent will lead to some
local minimum (if we train to convergence), since the loss
will typically be non-convex

• choice of the local minimum will depend on initialization

25

Overview

• About deep feed-forward models
• Loss function and output layers
• Activation functions in hidden layers
• Universal approximation: depth matters
• Backprop: efficient computation of the loss gradient

26

Learning by minimizing empirical risk

• Learning corresponds to finding Θ∗ that minimizes the
empirical risk:

J(Θ|X, Y) = 1
N

N∑
i=1

ℓ(yi, f (xi,Θ)) + λΩ(Θ)

Θ∗ = argmin
Θ

J(Θ|X, Y)

• The loss ℓ(y, ŷ) reflects our ``disappointment'' due to
model prediction ŷ being different than the desired value
y.

• The regularizer Ω(Θ) penalizes parameter vectors that
correspond to mappings that we assume unlikely

27

0-1 loss

ℓ01(y, ŷ) =

0, ako y = ŷ
1, inače

• This loss is not differentiable, so that minimizing J(X, Y,Θ)

requires combinatorial optimization

28

Probabilistic loss

• Suppose we allow probabilistic predictions in the form of
a distribution: P(Ŷ|x;Θ)

• Then, a principled loss can be formulated as negative
log-likelihood:

ℓMLE(y, Ŷ) = − log P(Ŷ = y|x;Θ)

• we can formulate regression by predicting a normal
(Gaussian) distribution (simplest case - unit covariance)

p(Ŷ = y|x;Θ) = N (y|µ = f (x,Θ),Σ = I)

• we can formulate classification by predicting a categorical
posterior distribution (generalized Bernoulli)

P(Ŷ|x;Θ) = σ(f(x,Θ))

• we can even formulate deterministic prediction by
plugging in the Dirac δ-distribution (this leads to 0− 1 loss) 29

Negative log-likelihood

• Maximum likelihood estimation is versatile:
• no need for model-specific loss formulations
• the only requirement is probabilistic output: p(Ŷ|x;Θ)

• the loss function is ℓMLE(y, Ŷ) = − log p(Ŷ = y|x;Θ)

• Gaussian predictions with unit covariance lead to mean
square error:

ℓMSE(y, Ŷ) = (y− f(x,Θ))2

• Categorical predictions lead to multinomial logistic loss:

ℓMLL(y, Ŷ) = − log σy(f(x,Θ))

• All these variants of negative log-likelihood are
differentiable.

⇒ can be learned with gradient descent

30

Negative log-likelihood vs cross-entropy

Sometimes we wish to treat the labels as random variables

• eg. use smooth labels instead of one-hot ones (a form of
regularization)

• eg. produce the labels with another probabilistic model
(distillation, semi-supervised learning)

In this case, the loss can be expressed as cross entropy:

ℓCE(Y, Ŷ) = −
∑
y
p(Y = y) log P(Ŷ = y|x;Θ)

The following statements are easily shown (homework):

• cross entropy is related to KL divergence, a measure of
"distance" between two distributions

• negative log-likelihood is a special case of cross entropy 31

Categoric predictions

A categoric model M must meet the following constraints:

• Mi(x,Θ) ∈ [0, 1] ∀i,
•
∑C

i Mi(x,Θ) = 1

Typically, we ensure this through softmax activation:

P(Ŷ|x;Θ) = M(x,Θ) = softmax(f(x,Θ))

Learning with softmax enforces unnormalized log-posteriors in
the the last layer features z = f(x,Θ) (also known as logits):

zi = log const+ log P(ŷ = i|x;Θ) .

Proof:
softmax(z)y =

exp(zy)∑
j exp(zj)

= P(Ŷ = y|x;Θ) 32

Classification with softmax

Let us apply the negative log-likelihood to the softmax:

ℓ(y, Ŷ) = − log softmax(z)y = log
∑
j
exp(zj)− zy ≈ max

j
zj − zy

We draw the following intuitive conclusions:

• when the model is correct (maxj zj = zy) the loss is ≈ 0.
• when the model is incorrect (maxj zj ̸= zy), the loss is
mostly affected by the strongest incorrect prediction.

• such behavior is very similar to 0-1 loss: negative
log-likelihood is an upper bound of the 0-1 loss.

The following relation is easily shown (homework):
dℓMLE(y, softmax(z))

dzi
= softmax(z)i − [[y = i]]

33

Softmax properties

Invariance to the addition of a constant:

softmax(z) = softmax(z+ c) = softmax(z−max
j
zj)

A better name (which did not catch on): softargmax

"Real softmax" would correspond to log-sum-exp:

LSE(z) = log
∑
i
ezi = max(z) + log

∑
i
ezi−max(z)

Softmax-weighted average corresponds to scalar product of
softmax and input:

softmax-mean(z,q) = softmax(z)⊤x

34

Softmax parameterization

Although the softmax output is C-dimensional, there are only C
− 1 degrees of freedom (output is a distribution)

Consequently, we can fix one input (eg. to 0) without reducing
the generality.

Often there is no difference between the two variants

• in these cases we choose C-dimensional inputs for
simplicity

35

Binary classification: sigmoid-activated outputs

If C = 2 then:

P(ŷ = 1|x) = softmax(z)1 =
exp(z1)

exp(z0) + exp(z1)

=
1

1+ exp(z0 − z1)

If we set z0 := 0, we get:

P(ŷ = 1|x) = σ(z1)

⇒ soft-max generalizes the sigmoid activation for C > 2
⇒ categorical distribution generalizes Bernoulli distribution

for C>2.

The following relation is easily shown (homework):
dℓCE(y, σ(z))

dz = σ(z)− y 36

MSE as classification loss??

Why prefer negative log-likelihood to mean-square error for
classification?

ℓMSE(y, σ(z)) = (y− σ(z))2

Let us observe the ℓMSE gradient with respect to the logits:
∂ℓMSE(y, σ(z))

∂z = 2(σ(z)− y)(1− σ(z))σ(z)

When the sigmoid saturates (z >> 0 ili z << 0), the loss
gradient is small:

• this holds regardless of whether σ(z) is close to y or not
• the model can not learn from such examples.

37

MSE as classification loss??

Main weakness: MSE ignores the intrinsic constraints of
probabilistic distribution

Suppose we have data x1 i x2 that belong to the class y=2:

yOH1 = yOH2 = [0, 0, 1]

Moreover, suppose we get the following predictions:

P(Y|x1) = [0.8, 0, 0.2], P(Y|x2) = [0.4, 0.4, 0.2]

Equally wrong predictions lead to different losses:

LMSE(x1, YOH1) = 1.28, LMSE(x2, YOH2) = 0.96

In the classification context, MLE outperforms MSE.
38

Overview

• About deep feed-forward models
• Loss function and output layers
• Activation functions in hidden layers
• Universal approximation: depth matters
• Backprop: efficient computation of the loss gradient

39

Example: learning the XOR function

We had solved the problem by inserting a non-linear layer

• it had to be non-linear, otherwise the composite problem
would be (again) linear.

The hinge function (ReLU) is the default non-linearity today:

g(x) = ReLU(x) = max(0, x)

Non-linearities activate each dimension separately:

g(x)i = g(xi)

40

ReLU activation

The hinge function (rectified linear unit):

g(x) = ReLU(x) = max(0, x)

.

Advantages:

• in the active state it admits both the signal (forward pass)
and the gradients (backward pass)

• allows to propagate gradients according to output
activations

"Shortcoming" 1: the gradient is undefined at x = 0

• implementations use either the left (0) or the right (1)
subgradient.

41

ReLU activation

Shortcoming 2: in the non-active state the hinge function
stops both the signal and the gradient, but:

• there exist bijective generalizations
• Leaky ReLU: g(x, α) = max(0, x) + αmin(0, x).
• Soft Plus: g(x) = log(1+ ex).

• batch normalization ensures that ReLU inputs have zero
mean and unit variance
⇒ in each learning iteration we have 50% active

activations for each feature

Shortcoming 3: the outputs have non-zero means

• this problem is again solved by batch normalization
• models that do not use batchnorm prefer GELU activation

42

sigmoid-like activations

Sigmoid: σ(x) = (1+ exp(−x))−1

• supresses the gradijent when saturated
• the learning stops due to vanishing gradients

• mostly avoided in modern architectures
• they are sometimes used in specialized roles (LSTMs, flows)

hyperbolic tangent: tanh(x) = exp(2x)−1
exp(2x)+1

• similar to the sigmoid, but better due to resembling
identitety around x = 0

• it ensures zero-mean outputs (for zero-mean inputs)
• simple backprop in case of small inputs

• it still suppresses the gradients when saturated
• relationship between tanh and σ:

tanh(x) = 2σ(2x)− 1
43

Other non-linear activations

Exp.-linear function:

ELU(x;α) = λ ·

α(ex − 1); for x < 0
x; for x ≥ 0

Gaussian Error Linear Unit:

GELU (x) = x · Φ(x) = x · 12

[
1+ erf(x/

√
2)
]

Advantages: does not saturate; zero mean and unit variance

Disadvantages: complex, non-bijective (requires caching)

Other contenders:

• maxout (see the book...)
• any non-linear function may work fine (even cosine...) 44

Overview

• About deep feed-forward models
• Loss function and output layers
• Activation functions in hidden layers
• Universal approximation: depth matters
• Backprop: efficient computation of the loss gradient

45

Universal approximation theorem

Theorem: a fully connected model with at least one hidden
layer with non-polynomial activation can approximate any
finite-dimensional Borel measureable function with arbitrary
small error, if the model has enough hidden dimensions.

• each continuous fuction defined on a bounded closed
subset of Rn is Borel measureable.

• no need to adjust activations: it suffices that we have one
hidden layer.

46

Universal approximation theorem (caveat 1)

The theorem only guarantees sufficient capacity:

• if the function f ∗ were known, then we could approximate
it arbitrarily well

• however, the function is not known: instead we only have
training data (X ,Y).

The theorem says nothing about whether some algorithm can
learn an f ∗ that generalizes well.

• the theorem only states that a sufficiently powerful model
can overfit to training data

47

Universal approximation theorem (caveat 2)

The theorem does not specify the hidden dimensionality that
ensures a given approximation error, but there is an upper
bound

• in the worst case, we need exponentially many hidden
features:

dim(h) ∼ O(adim(x))

• each of these features corresponds to the input
configuration that requires a distinctive output

• intuition: we require O(2n) minterms to learn an arbitrary
logical function of n variables

48

Universal approximation theorem

Problem: design a two-level model that uses affine and Relu
mappings to approximate the following function:

Rješenje:
h10 = np.maximum(X-0,0)
h11 = np.maximum(X-1,0)
h12 = np.maximum(X-2,0)
h13 = np.maximum(X-3,0)
h14 = np.maximum(X-6,0)
h21 = 1*h10 - 1*h11 + 2*h12 - 3*h13 + 1*h14

Literature: http://neuralnetworksanddeeplearning.com/chap4.html 49

http://neuralnetworksanddeeplearning.com/chap4.html

Deep models and mapping efficiency

Deep models may require fewer hidden activations

• some functions can be very efficiently represented with
composite mappings.

Deep models can be exponentially more efficient than their
shallow counterparts

Consider learning the n-way XOR:

• shallow model requires O(2n) hidden activations
• a suitable deep model requires O(n) hidden activations

50

Deep models and mapping efficiency

ReLU-activated models define piecewise linear functions over
regions of the input space:

• the number of these regions is proportional to model
flexibility (capacity)

• deep models have exponentially more regions than
shallow models with the same number of activations

[montufar14nips]
51

SVHN sequence transcription [goodfellow17]

Empirical results show that image classification models
generalize better when we increase the depth

• x: model depth, y: classification accuracy

Increasing the model width leads to smaller improvements
52

[goodfellow17]

Deep convolutional models for image classification generalize
better than the shallow ones on SVHN sequence transcription

• x: number of parameters, y: classification accuracy

Increased depth introduces a bias that favors generalization

• shallow models already overfit with 2 · 107 parameters
• deep models generalize well even with 6 · 107 parameters 53

Overview

• About deep feed-forward models
• Loss function and output layers
• Activation functions in hidden layers
• Universal approximation: depth matters
• Backprop: efficient computation of the loss gradient

54

Supervised learning

Forward pass —computes the model predictions ŷ = f (x,Θ)

and the loss J(y, ŷ) = J(y, f (x,Θ))

Backward pass —computes the loss gradient with respect to
model parameters: ∇ΘJ(y, f (x,Θ)) = (∂J(y,f (x,Θ))

∂Θ)⊤

Optimization algorithm —typically a variant of the stochastic
gradient descent:

• Θ′ = Θ− δ · ∇ΘJ(y, f (x,Θ))

• more details about this some other time...

Backward propagation of errors (backprop); a simple and
efficient approach to compute gradients of composite
functions.

55

Derivatives of composite functions

Chain rule: a recipe to find derivatives of a composition of
differentiable functions.

In the scalar case, y = g(x) and z = f (y) = f (g(x)), we get:
dz
dx =

dz
dy
dy
dx =

df (y)
dy

dg(x)
dx

In the vector case, y = g(x) and z = f (y) = f (g(x)), we get:
∂z
∂x =

∂z
∂y

∂y
∂x or ∇xz =

(
∂y
∂x

)⊤
∇yz.

• ∂z
∂y and

∂y
∂x are Jacobians 1× n and n×m;

• ∂z
∂xi =

∑
j

∂z
∂yj

∂yj
∂xi

We perform such steps to compute the gradients in each layer. 56

Backprop: iterative application of the chain rule

Consider a model fΘ that maps a datum x into predictions ŷ:

ŷ = f(x,Θ)

The loss gradient with respect to parameters of the l-th layer is:
∂L(y, ŷ)
∂Θl =

∂L(y, ŷ)
∂ŷ

∂ŷ
∂hL

∂hL
∂hL−1 · · ·

∂hl
∂Θl

=
∂L(y, ŷ)
∂hL

∂f L(hL−1,ΘL)

∂hL−1 · · · ∂f
l+1(hl,Θl+1)

∂hl
∂f l(hl−1,Θl)

∂Θl

For each layer we must determine the partial derivative...

• ... with respect to parameters (if they exist) ∂f l(hl−1,Θl)
∂Θl ,

• and with respect to the input ∂f l(hl−1,Θl)
∂hl−1 (only if we have

not computed all required gradients);
• problem: Θl can be a matrix (fully connected layer)
• problem: hl i Θl can be a 4th-order tensor (conv. layer) 57

Gradients with respect to higher-order tensors (>1)

We can compute the gradients with respect to tensors in the
same way as for vectors:

• we first determine the gradients for a vectorized tensor...
• ... and subsequently reshape them according to the tensor
shape.

Assume X ∈ Rm1 × Rm2 × · · ·RmM , Y ∈ Rn1 × Rn2 × · · ·RnN

• Then ∂vec(Y)
∂vec(X) is a Jacobian with dimensions

(n1n2 · · ·nN)× (m1m2 · · ·mM).
• again, the backprop boils down to multiplication of
Jacobians:

∂z
∂vec(X) =

∂z
∂vec(Y)

∂vec(Y)
∂vec(X)

58

Backprop for parameters of a fully connected layer

However, the default recipe is often inefficient due to ignoring
the fine-grained structure of the particular layer.

We focus on the parameters of a fully connected layer.

• this is the default formulation:
∂L

∂vec(Wk)
=

∂L
∂hk

· ∂hk
∂vec(Wk)

• This is the efficient recipe from the lab instructions:
∂L
∂Wk

=

(
∂L
∂wkij

)
Dk×Dk−1

=

[
∂L
∂hk

]⊤
· h⊤k−1

The following statements are easily shown (homework):

• the two formulations deliver the same gradients
• their complexities are O(D2k · Dk−1) and O(Dk · Dk−1) 59

Fully connected model: forward pass

W1·x+b1

x
W1,b1

s1

60

Fully connected model: forward pass

W1·x+b1

x
W1,b1

ReLU(s1)

s1

h1

60

Fully connected model: forward pass

W1·x+b1

x
W1,b1

ReLU(s1)

s1

W2·h1+b2

h1
W2,b2

s2

60

Fully connected model: forward pass

W1·x+b1

x
W1,b1

ReLU(s1)

s1

W2·h1+b2

h1
W2,b2

- log softmax(s2)[yi]

s2

Li 60

Fully connected model: backprop (=dynamic programming)

W1·x+b1

x
W1,b1

ReLU(s1)

s1

W2·h1+b2

h1
W2,b2

- log softmax(s2)[yi]

s2

Li

∂Li / ∂s2

61

Fully connected model: backprop (=dynamic programming)

W1·x+b1

x
W1,b1

ReLU(s1)

s1

W2·h1+b2

h1
W2,b2

- log softmax(s2)[yi]

s2

Li

∂Li / ∂s2

∂Li / ∂W2
 = [∂Li / ∂s2]T · h1

T

61

Fully connected model: backprop (=dynamic programming)

W1·x+b1

x
W1,b1

ReLU(s1)

s1

W2·h1+b2

h1
W2,b2

- log softmax(s2)[yi]

s2

Li

∂Li / ∂s2

∂Li / ∂h1=∂Li / ∂s2 · ∂s2/ ∂h1

∂Li / ∂W2
 = [∂Li / ∂s2]T · h1

T

61

Fully connected model: backprop (=dynamic programming)

W1·x+b1

x
W1,b1

ReLU(s1)

s1

W2·h1+b2

h1
W2,b2

- log softmax(s2)[yi]

s2

Li

∂Li / ∂s2

∂Li / ∂h1=∂Li / ∂s2 · ∂s2/ ∂h1

∂Li / ∂s1=∂Li / ∂h1 · ∂h1/ ∂s1

∂Li / ∂W2
 = [∂Li / ∂s2]T · h1

T

61

Fully connected model: backprop (=dynamic programming)

W1·x+b1

x
W1,b1

ReLU(s1)

s1

W2·h1+b2

h1
W2,b2

- log softmax(s2)[yi]

s2

Li

∂Li / ∂s2

∂Li / ∂h1=∂Li / ∂s2 · ∂s2/ ∂h1

∂Li / ∂s1=∂Li / ∂h1 · ∂h1/ ∂s1

∂Li / ∂W1
 = [∂Li / ∂s1]T · xT

∂Li / ∂W2
 = [∂Li / ∂s2]T · h1

T

61

Automatic differentiation

In order to compute the gradients automatically, we represent
a deep model as a computational graph.

The roots of the graph represent inputs, labels, parameters
and hyperparameters.

All other nodes represent differentiable functions.

All nodes have only one output (for simplicity):

• this restriction does not reduce the generality
• the output can be a scalar, vector, matrix or tensor.

Example: a classification model with two fully connected layers
and L2 regularization

• for the sake of simplicity, we omit the offsets b
62

Representation of a deep model with computational graph

63

PyTorch hello world

import torch

step = 0.13

x = torch.tensor(2.0,
requires_grad=True)

for i in range(100):
y = x**4 - x**3 - 2*x**2 + 3
y.backward()
print(x, y, x.grad)

x.data = x - step * x.grad
x.grad.zero_() 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

5

6

7

Main ingredient: reverse-mode automatic differentiation

Homework: solve x5 − x4 − x = −1 with gradient descent.
64

Let us go back to our computational graph

65

The corresponding code in PyTorch

import torch, torch.nn.functional as F

roots: input, label, parameters, hiperparameter
x = torch.tensor([1.,1.])
y = torch.tensor(0.)
W1 = torch.tensor([[0.5,0], [0,1]], requires_grad=True)
W2 = torch.tensor([1.,0.], requires_grad=True)
lambda1 = torch.tensor(0.01)

model
h1 = torch.relu(W1 @ x)
JMLE = F.binary_cross_entropy_with_logits(W2 @ h1, y)
J = JMLE + lambda1 * (W1.pow(2).sum() + W2.pow(2).sum())

ask autograd to compute the gradients
J.backward()
print(W1.grad)

66

