Deep feed-forward models

Josip Krapac and Siniša Šegvić

Overview

- About deep feed-forward models
- Loss function and output layers
- Activation functions in hidden layers
- Universal approximation: depth matters
- Backprop: efficient computation of the loss gradient

Overview

- About deep feed-forward models
- Loss function and output layers
- Activation functions in hidden layers
- Universal approximation: depth matters
- Backprop: efficient computation of the loss gradient

About deep feed-forward models

Deep feed-forward network

- the simplest formulation of a deep model
- network: consists of a number of interconnected processing elements
- implemented as a sequence of fully connected layers i.e. affine transformations with non-linear activation

Goal:

- approximate the desired function $\boldsymbol{y}=f^{*}(\boldsymbol{x})$ with a parametric model $\hat{y}=f(x, \Theta)$.
- the model f maps the input x into predictive output \hat{y}
- we jointly learn the parameters Θ from end to end

About deep feed-forward models

Details:

- the function $y=f^{*}(x)$ corresponds to the exact relationship between input x and output y
- our model $\hat{y}=f(\boldsymbol{x}, \boldsymbol{\Theta})$ aproximates the exact function
- we want to find the set of parameters $\boldsymbol{\Theta}^{*}$ that provides the "best" approximation
- problem: we do not know what the function $f^{*}(x)$ looks like in most x; we only know $f^{*}(x)$ in a finite training set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$.
- hence, we care about the ability to generalize
- the choice of the model will depend on the data (cf. no free lunch theorem)

About deep feed-forward models

Basic properties of deep models:

- information flows from input to output (feed-forward), there are no loops
- can be represented as a composition of simpler functions: $\left.f(x, \boldsymbol{\Theta})=o\left(f_{L}\left(f_{L-1}\left(\cdots\left(f_{1}\left(x, \boldsymbol{\Theta}_{1}\right)\right), \cdots\right), \boldsymbol{\Theta}_{L-1}\right), \boldsymbol{\Theta}_{L}\right)\right)$,
- we refer to f_{i} as layers
- each layer includes exactly one non-linear activation
- the model depth (L): the number of layers f_{i}

About deep feed-forward models

We express the model in terms of auxiliary variables $\left\{\mathbf{h}_{l}\right\}$:

$$
\begin{aligned}
h_{1} & =f_{1}\left(x, \Theta_{1}\right) \\
\vdots & \\
h_{L-1} & =f_{L-1}\left(h_{L-2}, \Theta_{L-1}\right) \\
h_{L} & =f_{L}\left(h_{L-1}, \Theta_{L}\right) \\
f(x, \Theta) & =o\left(h_{L}\right)
\end{aligned}
$$

We denote the auxiliary variables as hidden or latent features
Layer width $\left(D_{l}\right)$: dimension of its feature vector, $h^{l} \in \mathbb{R}^{D_{l}}$.
The supervision involves only the input x and the output y : model has a freedom to arrange hidden features in a manner that ensures the best approaximation.

About deep feed-forward models

The basic form: sequence of fully-connected layers

- each f_{i} models an elementary non-linear transformation: parametric afine mapping with non-linear activation $\boldsymbol{\sigma}$:

$$
\mathrm{f}_{k}\left(\mathrm{~h}_{k-1}\right)=\boldsymbol{\sigma}\left(\mathrm{W}_{k} \mathrm{~h}_{k-1}+\mathrm{b}_{k}\right)
$$

- We must get to know the fully-connected layers well:
- basis for more complex layers (eg. convolutional)
- building blocks of more complex architectures (eg. attention)

Other names:

- (feed-forward, deep) fully-connected model (with affine transformations)
- multi-layer perceptron (MLP)
- (feed-forward) (artificial) neural network

Fully connected layer

$f(x ; W, b)=\sigma(W \cdot x+b)$
$\sigma(s)_{i}=\sigma\left(s_{i}\right)$

Fully connected model

Problem: determine the structure, equations and total number of parameters of a fully connected model for 2D data. if we know that the layer widths are: 5, 10, 5, 2 ..

Fully connected model

Problem: determine the structure, equations and total number of parameters of a fully connected model for 2D data. if we know that the layer widths are: 5, 10, 5, 2 .

About deep feed-forward models

Relation to artificial neural networks:

- artificial neural networks study machine learning algorithms that are inspired by early models of the human brain
- on the other hand, deep learning is concerned with good generalization on real data

Linear and nonlinear models

Question: how deep should a fully connected model be?

Seductive idea: L=1!

$$
f(x, \boldsymbol{\Theta}=(w, b))=\sigma\left(w^{\top} x+b\right)
$$

- strength: usual loss functions lead to convex optimization
- strength: guaranteed convergence
- weakness: our world is non-linear.

Linear and nonlinear models

If a single layer is not an option, what solutions remain?

- Solution: use a nonlinear solution Φ in order to map the data into linearly separable features:

$$
f(x, \Phi, \boldsymbol{\Theta}=(w, b))=\Phi(x)^{\top} w+b
$$

- Three dominant ways to construct Φ :
- design a generic function Φ (suitable for all algorithms)
- hand-craft an algortihm-specific function Φ,
- learn the function on the data $\Phi\left(x \mid \boldsymbol{\Theta}_{\Phi}\right)$.

Generic feature mappings

Example: kernel functions

- eg. RBF function $k(x, \cdot)$ implicitly maps the data into the infinite-dimensional feature vector $\Phi(x)$

Problem: such functions assume local smoothness

- unfortunately, local smoothness is not good enough when $\operatorname{dim}(x)=10^{5}$

Hand-crafted features

Examples: SIFT descriptor (vision), word normalization (language), MFCC descriptors (speech).

Problem: requires domain knowledge, time-consuming process

Problem: (today we know) limited generalization power

Keypoint descriptor

Learning features

The only approach left: learn the function $\Phi\left(x \mid \Theta_{\Phi}\right)$, by optimizing parameters $\boldsymbol{\Theta}_{\Phi}$

We can try to learn the layers separately: first learn the features Θ_{Φ} (eg. unsupervised), and only then learn the classifier w, b

- that would work better than linear model
- but nobody succeeded by learning more than two layers that way

Only one approach remains: learn a deep model from end to end:

- joint learning $\Theta=(w, b) \cup \Theta_{\Phi}$

Deep learning (end-to-end)

Advantages with respect to generic and hand-crafted mappings:

- we specify a class of functions $\Phi\left(x \mid \Theta_{\Phi}\right)$ except of a specific function $\Phi(x)$
- class of functions is determined by the model structure
- we can have arbitrarily many layers (there is a sweet spot in practice)

Disadvantage with respect to generic and hand-crafted design:

- the optimization problem is no longer convex
- global convergence is not guaranteed

Deep learning (end-to-end)

However, it turns out that the non-convex loss does not pose a problem in practice

Deep models are best suited when the data is generated by a composition of factors, for example, the face consists of a mouth, eyes, nose......

If such factors exist, factored recognition can ensure efficient representation in the input space.

Some works suggest exponential efficiency with respect to approaches that rely on local smoothness prior [montufar14nips]

- shallow models, prototypes (k-NN), kernel functions

Deep learning (end-to-end)

Problem: learn a function that maps 2D points into RGB color

- these are the training data

Deep learning (end-to-end)

Problem: learn a function that maps 2D points into RGB color

- these are the training data
- intuitively unclear how to generalize

Deep learning (end-to-end)

Problem: learn a function that maps 2D points into RGB color

- these are the training data
- intuitively unclear how to generalize
- the problem becomes much easier if we express the model as a sum of two independent 1D functions

$$
f(x, y)=\left(f_{R}(x)+f_{B}(y)\right) / 2
$$

Example: learning the XOR function

- Consider the following function of two binary variables: $f^{*}(x)=\left(x_{0} \wedge \overline{x_{1}}\right) \vee\left(\overline{x_{0}} \wedge x_{1}\right)$.
- Let us try to learn a linear model to approximate f^{*} : $f(x, \boldsymbol{\Theta}=(w, b))=w^{\top} x+b$
- We are looking for $\boldsymbol{\Theta}^{*}=\left(w^{*}, b^{*}\right)$ such that mean square error of the predictions becomes minimal:

$$
J_{\mathrm{MSE}}(Y, f(X, \boldsymbol{\Theta}))=\frac{1}{4} \sum_{i=1}^{4}\left(f\left(x_{i}, \boldsymbol{\Theta}\right)-y_{i}\right)^{2}
$$

- Later we shall see that such loss is not a good choice for classification problems, but here it is convenient because we can get the solution in a closed form.

Example: learning the XOR function

Notation:

$$
w^{\prime}=\left[w_{1}, w_{2}, b\right]^{\top}, \quad x^{\prime}=\left[\begin{array}{l}
x_{11}=0, x_{12}=0,1 \\
x_{21}=0, x_{22}=1,1 \\
x_{31}=1, x_{32}=0,1 \\
x_{41}=1, x_{42}=1,1
\end{array}\right], \quad y=\left[\begin{array}{l}
y_{1}=0 \\
y_{2}=1 \\
y_{3}=1 \\
y_{4}=0
\end{array}\right]
$$

Let us express the loss in a convenient form:

$$
J_{\operatorname{MSE}}\left(y, X^{\prime}, w^{\prime}\right)=\frac{1}{N}\left\|X^{\prime} w^{\prime}-y\right\|_{2}^{2}=\frac{q^{\top} q}{N}, q=X^{\prime} w^{\prime}-y
$$

Now we can determine the gradient by chaining rule:

$$
\begin{aligned}
\nabla_{w^{\prime}} J_{\mathrm{MSE}}\left(y, X^{\prime}, w^{\prime}\right)^{\top} & =\frac{\partial \jmath}{\partial w}=\frac{\partial \jmath}{\partial q} \frac{\partial q}{\partial w} \\
& =\frac{2 \cdot q^{\top}}{N} \cdot X^{\prime}=\frac{2}{N}\left(X^{\prime} w^{\prime}-y\right)^{\top} X^{\prime}
\end{aligned}
$$

Example: learning the XOR function

We are looking for the minimum of the function J:

$$
\nabla_{w^{\prime} J}=0 \rightarrow w^{\prime}=\left(X^{\prime \top} X^{\prime}\right)^{-1} X^{\prime \top} y
$$

Solution: $w^{*}=0, b^{*}=0.5$ (??!)

Conclusion: linear model has insufficient capacity to solve the XOR problem.

- Minski and Papert published this in their 1969 book: Perceptrons: An Introduction to Computational Geometry
- this was viewed as a limitation of all learning approaches and contributed to the first AI winter (1974-1980)
- backprop was invented in 1970 by Seppo Linnainmaa...

Example: learning the XOR function

- Let us introduce an additional non-linear layer
- it has to be such if we wish a non-linear composite model
- The hinge function is a default non-linear function today:

$$
g(x)=\operatorname{ReLU}(x)=\max (0, x)
$$

- Non-linearity affects each vector element separately:

$$
g(x)_{i}=g\left(x_{i}\right)
$$

- Now we can formulate our composite modeli:

$$
\begin{gathered}
f(x, \Theta)=w_{2}^{\top} h+b_{2} \\
h=g\left(W_{1}^{\top} x+b_{1}\right)
\end{gathered}
$$

- h : vector of (learned) hidden features
- W_{1}, b_{1} : learned parameters for mapping data to hidden features

Example: learning the XOR function

Solution: $\quad W_{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \quad b_{1}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \quad w_{2}=\left[\begin{array}{c}1 \\ -2\end{array}\right], \quad b_{2}=0$.

$$
f(x, y)=1 \cdot \max (x+y, 0)-2 \cdot \max (x+y-1,0)+0
$$

$$
X=\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right]
$$

Example: learning the XOR function

Solution: $\quad W_{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \quad b_{1}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \quad w_{2}=\left[\begin{array}{c}1 \\ -2\end{array}\right], \quad b_{2}=0$.

$$
f(x, y)=1 \cdot \max (x+y, 0)-2 \cdot \max (x+y-1,0)+0
$$

$$
W_{1} X=\left[\begin{array}{ll}
0 & 0 \\
1 & 1 \\
1 & 1 \\
2 & 2
\end{array}\right]
$$

Example: learning the XOR function

Solution: $\quad W_{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \quad b_{1}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \quad w_{2}=\left[\begin{array}{c}1 \\ -2\end{array}\right], \quad b_{2}=0$.

$$
f(x, y)=1 \cdot \max (x+y, 0)-2 \cdot \max (x+y-1,0)+0
$$

$$
W_{1} X+b_{1}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
1 & 0 \\
2 & 1
\end{array}\right]
$$

Example: learning the XOR function

Solution: $\quad w_{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \quad b_{1}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \quad w_{2}=\left[\begin{array}{c}1 \\ -2\end{array}\right], \quad b_{2}=0$.

$$
f(x, y)=1 \cdot \max (x+y, 0)-2 \cdot \max (x+y-1,0)+0
$$

Example: learning the XOR function

- We have shown the solution without going into details of how to find it
- parameters of deep models are most often determined through gradient optimization of the loss.
- The presented solution is the global minimum of the loss
- in the general case, the gradient descent will lead to some local minimum (if we train to convergence), since the loss will typically be non-convex
- choice of the local minimum will depend on initialization

Overview

- About deep feed-forward models
- Loss function and output layers
- Activation functions in hidden layers
- Universal approximation: depth matters
- Backprop: efficient computation of the loss gradient

Learning by minimizing empirical risk

- Learning corresponds to finding Θ^{*} that minimizes the empirical risk:

$$
\begin{aligned}
J(\boldsymbol{\Theta} \mid \mathrm{X}, Y) & =\frac{1}{N} \sum_{i=1}^{N} \ell\left(\mathbf{y}_{i}, f\left(x_{i}, \boldsymbol{\Theta}\right)\right)+\lambda \Omega(\boldsymbol{\Theta}) \\
\boldsymbol{\Theta}^{*} & =\underset{\Theta}{\arg \min } \jmath(\boldsymbol{\Theta} \mid \mathbf{X}, Y)
\end{aligned}
$$

- The loss $\ell(y, \hat{y})$ reflects our " disappointment" due to model prediction \hat{y} being different than the desired value y.
- The regularizer $\Omega(\Theta)$ penalizes parameter vectors that correspond to mappings that we assume unlikely

0-1 loss

$$
\ell_{01}(y, \hat{y})= \begin{cases}0, & \text { ako } y=\hat{y} \\ 1, & \text { inače }\end{cases}
$$

- This loss is not differentiable, so that minimizing $J(X, Y, \Theta)$ requires combinatorial optimization

Probabilistic loss

- Suppose we allow probabilistic predictions in the form of a distribution: $P(\hat{Y} \mid x ; \boldsymbol{\Theta})$
- Then, a principled loss can be formulated as negative log-likelihood:

$$
\ell_{\mathrm{MLE}}(y, \hat{Y})=-\log P(\hat{Y}=y \mid x ; \Theta)
$$

- we can formulate regression by predicting a normal (Gaussian) distribution (simplest case - unit covariance)

$$
p(\hat{Y}=y \mid x ; \Theta)=\mathcal{N}(y \mid \mu=f(x, \boldsymbol{\Theta}), \Sigma=I)
$$

- we can formulate classification by predicting a categorical posterior distribution (generalized Bernoulli)

$$
P(\hat{Y} \mid x ; \Theta)=\sigma(f(x, \boldsymbol{\Theta}))
$$

- we can even formulate deterministic prediction by plugging in the Dirac δ-distribution (this leads to $0-1$ loss)

Negative log-likelihood

- Maximum likelihood estimation is versatile:
- no need for model-specific loss formulations
- the only requirement is probabilistic output: $p(\hat{Y} \mid x ; \boldsymbol{\Theta})$
- the loss function is $\ell_{\text {MLE }}(y, \hat{Y})=-\log p(\hat{Y}=y \mid x ; \boldsymbol{\Theta})$
- Gaussian predictions with unit covariance lead to mean square error:

$$
\ell_{\mathrm{MSE}}(y, \hat{Y})=(y-f(x, \Theta))^{2}
$$

- Categorical predictions lead to multinomial logistic loss:

$$
\ell_{M L L}(y, \hat{Y})=-\log \sigma_{y}(f(x, \Theta))
$$

- All these variants of negative log-likelihood are differentiable.
\Rightarrow can be learned with gradient descent

Negative log-likelihood vs cross-entropy

Sometimes we wish to treat the labels as random variables

- eg. use smooth labels instead of one-hot ones (a form of regularization)
- eg. produce the labels with another probabilistic model (distillation, semi-supervised learning)

In this case, the loss can be expressed as cross entropy:

$$
\ell_{\mathrm{CE}}(Y, \hat{Y})=-\sum_{y} p(Y=y) \log P(\hat{Y}=y \mid x ; \boldsymbol{\Theta})
$$

The following statements are easily shown (homework):

- cross entropy is related to KL divergence, a measure of "distance" between two distributions
- negative log-likelihood is a special case of cross entropy

Categoric predictions

A categoric model M must meet the following constraints:

- $M_{i}(x, \Theta) \in[0,1] \forall i$,
- $\sum_{i}^{C} M_{i}(x, \Theta)=1$

Typically, we ensure this through softmax activation:

$$
P(\hat{Y} \mid x ; \Theta)=M(x, \Theta)=\operatorname{softmax}(f(x, \Theta))
$$

Learning with softmax enforces unnormalized log-posteriors in the the last layer features $\boldsymbol{z}=f(\boldsymbol{x}, \boldsymbol{\Theta})$ (also known as logits):

$$
z_{i}=\log \text { const }+\log P(\hat{y}=i \mid x ; \Theta) .
$$

Proof:

$$
\operatorname{softmax}(z)_{y}=\frac{\exp \left(z_{y}\right)}{\sum_{j} \exp \left(z_{j}\right)}=P(\hat{Y}=y \mid x ; \Theta)
$$

Classification with softmax

Let us apply the negative log-likelihood to the softmax:

$$
\ell(y, \hat{Y})=-\log \operatorname{softmax}(z)_{y}=\log \sum_{j} \exp \left(z_{j}\right)-z_{y} \approx \max _{j} z_{j}-z_{y}
$$

We draw the following intuitive conclusions:

- when the model is correct $\left(\max _{j} z_{j}=z_{y}\right)$ the loss is ≈ 0.
- when the model is incorrect ($\max _{j} z_{j} \neq z_{y}$), the loss is mostly affected by the strongest incorrect prediction.
- such behavior is very similar to 0-1 loss: negative log-likelihood is an upper bound of the 0-1 loss.

The following relation is easily shown (homework):

$$
\frac{d \ell_{\text {MLE }}(y, \operatorname{softmax}(z))}{d z_{i}}=\operatorname{softmax}(z)_{i}-\llbracket y=i \rrbracket
$$

Softmax properties

Invariance to the addition of a constant:

$$
\operatorname{softmax}(z)=\operatorname{softmax}(z+c)=\operatorname{softmax}\left(z-\max _{j} z_{j}\right)
$$

A better name (which did not catch on): softargmax
"Real softmax" would correspond to log-sum-exp:

$$
\operatorname{LSE}(\boldsymbol{z})=\log \sum_{i} e^{z_{i}}=\max (z)+\log \sum_{i} e^{z_{i}-\max (z)}
$$

Softmax-weighted average corresponds to scalar product of softmax and input:

$$
\operatorname{softmax-mean}(z, q)=\operatorname{softmax}(z)^{\top} x
$$

Softmax parameterization

Although the softmax output is C-dimensional, there are only C

- 1 degrees of freedom (output is a distribution)

Consequently, we can fix one input (eg. to 0) without reducing the generality.

Often there is no difference between the two variants

- in these cases we choose C-dimensional inputs for simplicity

Binary classification: sigmoid-activated outputs

If $C=2$ then:

$$
\begin{aligned}
P(\hat{y}=1 \mid x)=\operatorname{softmax}(z)_{1} & =\frac{\exp \left(z_{1}\right)}{\exp \left(z_{0}\right)+\exp \left(z_{1}\right)} \\
& =\frac{1}{1+\exp \left(z_{0}-z_{1}\right)}
\end{aligned}
$$

If we set $z_{0}:=0$, we get:

$$
P(\hat{y}=1 \mid x)=\sigma\left(z_{1}\right)
$$

\Rightarrow soft-max generalizes the sigmoid activation for $C>2$
\Rightarrow categorical distribution generalizes Bernoulli distribution for $C>2$.

The following relation is easily shown (homework):

$$
\frac{d \ell_{\mathrm{CE}}(y, \sigma(z))}{d z}=\sigma(z)-y
$$

MSE as classification loss??

Why prefer negative log-likelihood to mean-square error for classification?

$$
\ell_{\text {MSE }}(y, \sigma(z))=(y-\sigma(z))^{2}
$$

Let us observe the $\ell_{\text {MSE }}$ gradient with respect to the logits:

$$
\frac{\partial \ell_{\mathrm{MSE}}(y, \sigma(z))}{\partial z}=2(\sigma(z)-y)(1-\sigma(z)) \sigma(z)
$$

When the sigmoid saturates ($z \gg 0$ ili $z \ll 0$), the loss gradient is small:

- this holds regardless of whether $\sigma(z)$ is close to y or not
- the model can not learn from such examples.

MSE as classification loss??

Main weakness: MSE ignores the intrinsic constraints of probabilistic distribution

Suppose we have data x_{1} i x_{2} that belong to the class $y=2$:
$y_{1}^{\mathrm{OH}}=\mathrm{y}_{2}^{\mathrm{OH}}=[0,0,1]$

Moreover, suppose we get the following predictions:
$P\left(\mathrm{Y} \mid \mathrm{x}_{1}\right)=[0.8,0,0.2], P\left(\mathrm{Y} \mid \mathrm{x}_{2}\right)=[0.4,0.4,0.2]$
Equally wrong predictions lead to different losses:
$L_{\text {MSE }}\left(\mathrm{x}_{1}, \mathrm{Y}_{1}^{\mathrm{OH}}\right)=1.28, L_{\text {MSE }}\left(\mathrm{x}_{2}, \mathrm{Y}_{2}^{O H}\right)=0.96$

In the classification context, MLE outperforms MSE.

Overview

- About deep feed-forward models
- Loss function and output layers
- Activation functions in hidden layers
- Universal approximation: depth matters
- Backprop: efficient computation of the loss gradient

Example: learning the XOR function

We had solved the problem by inserting a non-linear layer

- it had to be non-linear, otherwise the composite problem would be (again) linear.

The hinge function (ReLU) is the default non-linearity today:

$$
g(x)=\operatorname{ReLU}(x)=\max (0, x)
$$

Non-linearities activate each dimension separately:

$$
g(x)_{i}=g\left(x_{i}\right)
$$

ReLU activation

The hinge function (rectified linear unit):

$$
g(x)=\operatorname{ReLU}(x)=\max (0, x)
$$

Advantages:

- in the active state it admits both the signal (forward pass) and the gradients (backward pass)
- allows to propagate gradients according to output activations
"Shortcoming" 1: the gradient is undefined at $x=0$
- implementations use either the left (0) or the right (1) subgradient.

ReLU activation

Shortcoming 2: in the non-active state the hinge function stops both the signal and the gradient, but:

- there exist bijective generalizations
- Leaky ReLU: $g(x, \alpha)=\max (0, x)+\alpha \min (0, x)$.
- Soft Plus: $g(x)=\log \left(1+e^{x}\right)$.
- batch normalization ensures that ReLU inputs have zero mean and unit variance
\Rightarrow in each learning iteration we have 50% active activations for each feature

Shortcoming 3: the outputs have non-zero means

- this problem is again solved by batch normalization
- models that do not use batchnorm prefer GELU activation

sigmoid-like activations

Sigmoid: $\sigma(x)=(1+\exp (-x))^{-1}$

- supresses the gradijent when saturated
- the learning stops due to vanishing gradients
- mostly avoided in modern architectures
- they are sometimes used in specialized roles (LSTMs, flows)
hyperbolic tangent: $\tanh (x)=\frac{\exp (2 x)-1}{\exp (2 x)+1}$
- similar to the sigmoid, but better due to resembling identitety around $x=0$
- it ensures zero-mean outputs (for zero-mean inputs)
- simple backprop in case of small inputs
- it still suppresses the gradients when saturated
- relationship between tanh and σ :

$$
\tanh (x)=2 \sigma(2 x)-1
$$

Other non-linear activations

Exp.-linear function:

$$
\operatorname{ELU}(x ; \alpha)=\lambda \cdot\left\{\begin{array}{l}
\alpha\left(e^{x}-1\right) ; \text { for } x<0 \\
x ; \text { for } x \geq 0
\end{array}\right.
$$

Gaussian Error Linear Unit:

$$
\operatorname{GELU}(x)=x \cdot \Phi(x)=x \cdot \frac{1}{2}[1+\operatorname{erf}(x / \sqrt{2})]
$$

Advantages: does not saturate; zero mean and unit variance
Disadvantages: complex, non-bijective (requires caching)
Other contenders:

- maxout (see the book...)
- any non-linear function may work fine (even cosine...)

Overview

- About deep feed-forward models
- Loss function and output layers
- Activation functions in hidden layers
- Universal approximation: depth matters
- Backprop: efficient computation of the loss gradient

Universal approximation theorem

Theorem: a fully connected model with at least one hidden layer with non-polynomial activation can approximate any finite-dimensional Borel measureable function with arbitrary small error, if the model has enough hidden dimensions.

- each continuous fuction defined on a bounded closed subset of \mathbb{R}^{n} is Borel measureable.
- no need to adjust activations: it suffices that we have one hidden layer.

Universal approximation theorem (caveat 1)

The theorem only guarantees sufficient capacity:

- if the function f^{*} were known, then we could approximate it arbitrarily well
- however, the function is not known: instead we only have training data $(\mathcal{X}, \mathcal{Y})$.

The theorem says nothing about whether some algorithm can learn an f^{*} that generalizes well.

- the theorem only states that a sufficiently powerful model can overfit to training data

Universal approximation theorem (caveat 2)

The theorem does not specify the hidden dimensionality that ensures a given approximation error, but there is an upper bound

- in the worst case, we need exponentially many hidden features:

$$
\operatorname{dim}(\mathrm{h}) \sim O\left(a^{\operatorname{dim}(\mathrm{x})}\right)
$$

- each of these features corresponds to the input configuration that requires a distinctive output
- intuition: we require $O\left(2^{n}\right)$ minterms to learn an arbitrary logical function of n variables

Universal approximation theorem

Problem: design a two-level model that uses affine and Relu mappings to approximate the following function:

Rješenje:
h10 = np.maximum $(X-0,0)$
h11 = np.maximum $(X-1,0)$
h12 = np.maximum $(X-2,0)$
h13 $=$ np.maximum $(X-3,0)$
h14 = np.maximum $(X-6,0)$
h21 = 1*h10 - $1 * h 11+2 * h 12-3 * h 13+1 * h 14$

Literature: http://neuralnetworksanddeeplearning.com/chap4.html

Deep models and mapping efficiency

Deep models may require fewer hidden activations

- some functions can be very efficiently represented with composite mappings.

Deep models can be exponentially more efficient than their shallow counterparts

Consider learning the n-way XOR:

- shallow model requires $O\left(2^{n}\right)$ hidden activations
- a suitable deep model requires $O(n)$ hidden activations

Deep models and mapping efficiency

ReLU-activated models define piecewise linear functions over regions of the input space:

- the number of these regions is proportional to model flexibility (capacity)
- deep models have exponentially more regions than shallow models with the same number of activations

Figure 1: Binary classification using a shallow model with 20 hidden units (solid line) and a deep model with two layers of 10 units each (dashed line). The right panel shows a close-up of the left panel. Filled markers indicate errors made by the shallow model.
[montufar14nips]

Empirical results show that image classification models generalize better when we increase the depth

- x: model depth, y : classification accuracy

Increasing the model width leads to smaller improvements

Deep convolutional models for image classification generalize better than the shallow ones on SVHN sequence transcription

- x : number of parameters, y : classification accuracy

Increased depth introduces a bias that favors generalization

- shallow models already overfit with $2 \cdot 10^{7}$ parameters
- deep models generalize well even with $6 \cdot 10^{7}$ parameters

Overview

- About deep feed-forward models
- Loss function and output layers
- Activation functions in hidden layers
- Universal approximation: depth matters
- Backprop: efficient computation of the loss gradient

Supervised learning

Forward pass -computes the model predictions $\hat{y}=f(x, \Theta)$ and the loss $J(y, \hat{y})=J(y, f(x, \Theta))$

Backward pass -computes the loss gradient with respect to model parameters: $\nabla_{\Theta} J(y, f(x, \Theta))=\left(\frac{\partial J(y, f(x, \Theta))}{\partial \Theta}\right)^{\top}$

Optimization algorithm -typically a variant of the stochastic gradient descent:

- $\boldsymbol{\Theta}^{\prime}=\boldsymbol{\Theta}-\delta \cdot \nabla_{\Theta} J(y, f(x, \Theta))$
- more details about this some other time...

Backward propagation of errors (backprop); a simple and efficient approach to compute gradients of composite functions.

Derivatives of composite functions

Chain rule: a recipe to find derivatives of a composition of differentiable functions.

In the scalar case, $y=g(x)$ and $z=f(y)=f(g(x))$, we get:

$$
\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}=\frac{d f(y)}{d y} \frac{d g(x)}{d x}
$$

In the vector case, $y=g(x)$ and $z=f(y)=f(g(x))$, we get:

$$
\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y} \frac{\partial y}{\partial x} \quad \text { or } \quad \nabla_{x} z=\left(\frac{\partial y}{\partial x}\right)^{\top} \nabla_{y} z .
$$

- $\frac{\partial z}{\partial y}$ and $\frac{\partial y}{\partial x}$ are Jacobians $1 \times n$ and $n \times m$;
- $\frac{\partial z}{\partial x_{i}}=\sum_{j} \frac{\partial z}{\partial y_{j}} \frac{\partial y_{i}}{\partial x_{i}}$

We perform such steps to compute the gradients in each layer.

Backprop: iterative application of the chain rule

Consider a model f_{Θ} that maps a datum x into predictions \hat{y} :

$$
\hat{y}=f(x, \Theta)
$$

The loss gradient with respect to parameters of the l-th layer is:

$$
\begin{aligned}
\frac{\partial \mathcal{L}(y, \hat{y})}{\partial \boldsymbol{\Theta}^{l}} & =\frac{\partial \mathcal{L}(y, \hat{y})}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \boldsymbol{h}^{L}} \frac{\partial \boldsymbol{h}^{L}}{\partial \boldsymbol{h}^{L-1}} \cdots \frac{\partial \boldsymbol{h}^{l}}{\partial \boldsymbol{\Theta}^{l}} \\
& =\frac{\partial \mathcal{L}(y, \hat{y})}{\partial \boldsymbol{h}^{L}} \frac{\partial f^{L}\left(h^{L-1}, \boldsymbol{\Theta}^{L}\right)}{\partial \boldsymbol{h}^{L-1}} \cdots \frac{\partial f^{l+1}\left(\boldsymbol{h}^{l}, \boldsymbol{\Theta}^{l+1}\right)}{\partial \boldsymbol{h}^{l}} \frac{\partial f^{l}\left(h^{l-1}, \boldsymbol{\Theta}^{l}\right)}{\partial \boldsymbol{\Theta}^{l}}
\end{aligned}
$$

For each layer we must determine the partial derivative...

- ... with respect to parameters (if they exist) $\frac{\partial f^{l}\left(h^{l-1}, \boldsymbol{\Theta}^{l}\right)}{\partial \boldsymbol{\Theta}^{l}}$,
- and with respect to the input $\frac{\partial f^{l}\left(h^{l-1}, \boldsymbol{\Theta}^{l}\right)}{\partial h^{l-1}}$ (only if we have not computed all required gradients);
- problem: $\boldsymbol{\Theta}^{l}$ can be a matrix (fully connected layer)
- problem: h^{l} i Θ^{l} can be a 4th-order tensor (conv. layer)

Gradients with respect to higher-order tensors (>1)

We can compute the gradients with respect to tensors in the same way as for vectors:

- we first determine the gradients for a vectorized tensor...
- ... and subsequently reshape them according to the tensor shape.

Assume $X \in \mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}} \times \cdots \mathbb{R}^{m_{M}}, Y \in \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \times \cdots \mathbb{R}^{n_{N}}$

- Then $\frac{\partial \operatorname{vec}(Y)}{\partial \operatorname{vec}(X)}$ is a Jacobian with dimensions

$$
\left(n_{1} n_{2} \cdots n_{N}\right) \times\left(m_{1} m_{2} \cdots m_{M}\right) .
$$

- again, the backprop boils down to multiplication of Jacobians:

$$
\frac{\partial z}{\partial \operatorname{vec}(X)}=\frac{\partial z}{\partial \operatorname{vec}(Y)} \frac{\partial \operatorname{vec}(Y)}{\partial \operatorname{vec}(X)}
$$

Backprop for parameters of a fully connected layer

However, the default recipe is often inefficient due to ignoring the fine-grained structure of the particular layer.

We focus on the parameters of a fully connected layer.

- this is the default formulation:

$$
\frac{\partial \mathcal{L}}{\partial \operatorname{vec}\left(\mathbf{W}_{k}\right)}=\frac{\partial \mathcal{L}}{\partial \mathbf{h}_{k}} \cdot \frac{\partial \mathbf{h}_{k}}{\partial \operatorname{vec}\left(\mathbf{W}_{k}\right)}
$$

- This is the efficient recipe from the lab instructions:

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{k}}=\left(\frac{\partial \mathcal{L}}{\partial W_{k i j}}\right)_{D_{k} \times D_{k-1}}=\left[\frac{\partial \mathcal{L}}{\partial \mathbf{h}_{k}}\right]^{\top} \cdot \mathbf{h}_{k-1}^{\top}
$$

The following statements are easily shown (homework):

- the two formulations deliver the same gradients
- their complexities are $O\left(D_{k}^{2} \cdot D_{k-1}\right)$ and $O\left(D_{k} \cdot D_{k-1}\right)$

Fully connected model: forward pass

Fully connected model: forward pass

Fully connected model: forward pass

Fully connected model: forward pass

Fully connected model: backprop (=dynamic programming)

Fully connected model: backprop (=dynamic programming)

Fully connected model: backprop (=dynamic programming)

$$
\downarrow L_{i}
$$

Fully connected model: backprop (=dynamic programming)

$$
\downarrow \iota_{i}
$$

$$
\begin{aligned}
& \operatorname{ReLU}\left(\mathbf{s}_{1}\right)
\end{aligned}
$$

Fully connected model: backprop (=dynamic programming)

$$
\downarrow \iota_{i}
$$

$$
\begin{aligned}
& \operatorname{ReLU}\left(\mathbf{s}_{1}\right)
\end{aligned}
$$

Automatic differentiation

In order to compute the gradients automatically, we represent a deep model as a computational graph.

The roots of the graph represent inputs, labels, parameters and hyperparameters.

All other nodes represent differentiable functions.
All nodes have only one output (for simplicity):

- this restriction does not reduce the generality
- the output can be a scalar, vector, matrix or tensor.

Example: a classification model with two fully connected layers and L2 regularization

- for the sake of simplicity, we omit the offsets b

Representation of a deep model with computational graph

PyTorch hello world

```
import torch
step = 0.13
x = torch.tensor(2.0,
    requires_grad=True)
for i in range(100):
    y = x**4 - x**3 - 2*x**2 + 3
    y.backward()
    print(x, y, x.grad)
    x.data = x - step * x.grad
    x.grad.zero_()
```


Main ingredient: reverse-mode automatic differentiation

Homework: solve $x^{5}-x^{4}-x=-1$ with gradient descent.

Let us go back to our computational graph

The corresponding code in PyTorch

import torch, torch.nn.functional as F
\# roots: input, label, parameters, hiperparameter
$x=$ torch.tensor([1.,1.])
$y=$ torch.tensor(0.)
W1 = torch.tensor([[0.5,0], [0,1]], requires_grad=True)
W2 = torch.tensor([1.,0.], requires_grad=True)
lambda1 = torch.tensor(0.01)
\# model
h1 = torch.relu(W1 a x)
JMLE = F.binary_cross_entropy_with_logits(W2 a h1, y)
J = JMLE + lambda1 * (W1.pow(2).sum() + W2.pow(2).sum())
\# ask autograd to compute the gradients
J.backward()
print(W1.grad)

