Deep feed-forward models

Josip Krapac and Sinia Segvic

Overview

- About deep feed-forward models

- Loss function and output layers

- Activation functions in hidden layers

- Universal approximation: depth matters

- Backprop: efficient computation of the loss gradient

Overview

- About deep feed-forward models

- Loss function and output layers

- Activation functions in hidden layers

- Universal approximation: depth matters

- Backprop: efficient computation of the loss gradient

About deep feed-forward models

Deep feed-forward network

- the simplest formulation of a deep model

- network: consists of a number of interconnected
processing elements

- implemented as a sequence of fully connected layers i.e.
affine transformations with non-linear activation

Goal:

- approximate the desired function y = f*(x) with a
parametric model y = f(x, ®).

- the model f maps the input x into predictive output y

- we jointly learn the parameters © from end to end

About deep feed-forward models

Details:

- the function y = f*(x) corresponds to the exact
relationship between input x and output y

- our model y = f(x, ®) aproximates the exact function

- we want to find the set of parameters ®* that provides
the "best" approximation

- problem: we do not know what the function f*(x) looks
like in most x; we only know f*(x) in a finite training set
{(xi,)Ly

- hence, we care about the ability to generalize

- the choice of the model will depend on the data (cf. no
free lunch theorem)

About deep feed-forward models

Basic properties of deep models:

- information flows from input to output (feed-forward),
there are no loops

- can be represented as a composition of simpler functions:
f(%,©) = o(fu(fr—(- - - (f1(%, ©1)),- - -), OL—1), OL)),

- we refer to f; as layers

- each layer includes exactly one non-linear activation

- the model depth (L): the number of layers f;

About deep feed-forward models

We express the model in terms of auxiliary variables {h}:

h'l :ﬁ(xv 61)

hi—1 =fi—i(hi—2,© 1)
hy = fi(h.—1,©))
f(x,©)=o(hy)

We denote the auxiliary variables as hidden or latent features

Layer width (D;): dimension of its feature vector, h! € RP,

The supervision involves only the input x and the output y:
model has a freedom to arrange hidden features in a manner
that ensures the best approaximation.

About deep feed-forward models

The basic form: sequence of fully-connected layers

- each f; models an elementary non-linear transformation:
parametric afine mapping with non-linear activation o

fe(hp—1) = o(Wrhp_1 + by)

- We must get to know the fully-connected layers well:
- basis for more complex layers (eg. convolutional)
- building blocks of more complex architectures (eg.
attention)

Other names:

- (feed-forward, deep) fully-connected model (with affine
transformations)

- multi-layer perceptron (MLP)

- (feed-forward) (artificial) neural network

Fully connected layer

:c W Wz +b o(W x + b)

f(x;W,b) =0 (W-x+Db)

a(s)i=oa(s) 9

Fully connected model

Problem: determine the struc-
ture, equations and total number
of parameters of a fully connected
model for 2D data. if we know that
the layer widths are: 5, 10, 5, 2..

10

Fully connected model

Problem: determine the struc- lx
ture, equations and total number o,
—>
of parameters of a fully connected f,(x,0,)
model for 2D data. if we know that h,
. (o) v
the layer widths are: 5,10, 5, 2.. 2
e S ™ 1h.0)
h2
o, Y
T fi(h0,)
h3
o, y
- f1(h30,)

10

About deep feed-forward models

Relation to artificial neural networks:

- artificial neural networks study machine learning
algorithms that are inspired by early models of the human
brain

- on the other hand, deep learning is concerned with good
generalization on real data

n

Linear and nonlinear models

Question: how deep should a fully connected model be?

Seductive idea: L=1!

f(x,® = (w,b)) = a(w'x+ b)

- strength: usual loss functions lead to convex optimization
- strength: guaranteed convergence

- weakness: our world is non-linear.

12

Linear and nonlinear models

If a single layer is not an option, what solutions remain?

- Solution: use a nonlinear solution ¢ in order to map the
data into linearly separable features:

f(x, ®,0 = (w,b)) = d(x)'w+b

- Three dominant ways to construct &:

- design a generic function @ (suitable for all algorithms)
- hand-craft an algortihm-specific function &,
- learn the function on the data ¢(x|@q¢).

13

Generic feature mappings

Example: kernel functions
- eg. RBF function R(x, -) implicitly maps the data into the
infinite-dimensional feature vector ®(x)
Problem: such functions assume local smoothness

- unfortunately, local smoothness is not good enough when
dim(x)=10°

14

Hand-crafted features

Examples: SIFT descriptor (vision), word normalization
(language), MFCC descriptors (speech).

Problem: requires domain knowledge, time-consuming process

Problem: (today we know) limited generalization power

0 %l |

Image gradients Keypoint descriptor
15

Learning features

The only approach left: learn the function ®(x|®s), by
optimizing parameters G¢

We can try to learn the layers separately: first learn the
features ®¢ (eg. unsupervised), and only then learn the
classifier w, b

- that would work better than linear model
- but nobody succeeded by learning more than two layers
that way

Only one approach remains: learn a deep model from end to
end:

- joint learning ® = (w, b) U ®¢

Deep learning (end-to-end)

Advantages with respect to generic and hand-crafted
mappings:

- we specify a class of functions ®(x|®4) except of a
specific function ®(x)
- class of functions is determined by the model structure

- we can have arbitrarily many layers (there is a sweet spot
in practice)

Disadvantage with respect to generic and hand-crafted design:

- the optimization problem is no longer convex

- global convergence is not guaranteed

Deep learning (end-to-end)

However, it turns out that the non-convex loss does not pose a
problem in practice

Deep models are best suited when the data is generated by a
composition of factors, for example, the face consists of a
mouth, eyes, nose......

If such factors exist, factored recognition can ensure efficient
representation in the input space.

Some works suggest exponential efficiency with respect to
approaches that rely on local smoothness prior
[montufari4nips]

- shallow models, prototypes (k-NN), kernel functions

Deep learning (end-to-end)

Problem: learn a function that maps 2D points into RGB color

e these are the training data

Deep learning (end-to-end)

Problem: learn a function that maps 2D points into RGB color

e these are the training data

e intuitively unclear how to generalize

19

Deep learning (end-to-end)

Problem: learn a function that maps 2D points into RGB color

e these are the training data
e intuitively unclear how to generalize

e the problem becomes much easier if we express the
model as a sum of two independent 1D functions

f,y) = (fr(x) + fs(v))/2

19

Example: learning the XOR function

- Consider the following function of two binary variables:
fX(x) = (Xo AX7) V (Xo A X1).

- Let us try to learn a linear model to approximate f*:
f(x,© = (w,b)) =w'x+b

- We are looking for ®* = (w*, b*) such that mean square
error of the predictions becomes minimal:

4

st (YoF (X, ©)) = 5 3 (7%, ©) —)

=1

- Later we shall see that such loss is not a good choice for
classification problems, but here it is convenient because
we can get the solution in a closed form.

20

Example: learning the XOR function

Notation:
X171 =0,X1p =0,1 v =20
T X :O,X :1,1 =
W, - [W'|7W27b:| 3 X, = ! ”) y: 2
x31=1,X32 = 0,1 y3 =1
Xo1 =1, X2 = 1,1 =0

Let us express the loss in a convenient form:
q'q

T,q:X'W’—y

1

jMSE(y7X/7 W/) - N HX/W, _y”% =
Now we can determine the gradient by chaining rule:
_ 0 _ 9o

ow 0qow

2-q

2
= -X/:—
N N

VW’jMSE(ya Xla W/

(X,W/ . y)TX/ 1

Example: learning the XOR function

We are looking for the minimum of the function J:

V) =0 = w' = (x/Tx') Ty

Solution: w* = 0,b* = 0.5 (??!)

Conclusion: linear model has insufficient capacity to solve the
XOR problem.

- Minski and Papert published this in their 1969 book:
Perceptrons: An Introduction to Computational Geometry

- this was viewed as a limitation of all learning approaches
and contributed to the first Al winter (1974-1980)

- backprop was invented in 1970 by Seppo Linnainmaa...

22

Example: learning the XOR function

- Let us introduce an additional non-linear layer
- it has to be such if we wish a non-linear composite model

- The hinge function is a default non-linear function today:
g(x) = ReLU(x) = max(0, x).
- Non-linearity affects each vector element separately:
g(x); = g(x)
- Now we can formulate our composite modeli:
f(X7 ®) - W;h + b27
h = g(W{ x + bq)

- h: vector of (learned) hidden features

- W4, bq: learned parameters for mapping data to hidden
features

23

Example: learning the XOR function
0 1
) b1:[_1], W2:[_2], b, = 0.

f(x,y) =1-max(x+y,0) —2-max(x+y—1,0)+0

11

Solution: Wq; = [
11

33

_ O - O

2%

Example: learning the XOR function
0 1
) b1:[_1], W2:[_2], b, = 0.

f(x,y) =1-max(x+y,0) —2-max(x+y—1,0)+0

11

Solution: Wq; = [
11

N O
N O

2%

Example: learning the XOR function

0 1
b, = = b, = 0.
y 1 [—1] , W2 [_2]) 2

f(x,y) =1-max(x+y,0) —2-max(x+y—1,0)+0

11
11

Solution: Wq; = [

WiX + by =

2%

Example: learning the XOR function
0 1
) b1:[_1], W2:[_2], b, = 0.

f(x,y) =1-max(x+y,0) —2-max(x+y—1,0)+0

11
11

Solution: Wq; = [

ReLU(W1X + b1) =

N =~ =~ O
- O O O

2%

Example: learning the XOR function

- We have shown the solution without going into details of
how to find it

- parameters of deep models are most often determined
through gradient optimization of the loss.
- The presented solution is the global minimum of the loss

- in the general case, the gradient descent will lead to some
local minimum (if we train to convergence), since the loss
will typically be non-convex

- choice of the local minimum will depend on initialization

25

Overview

- About deep feed-forward models

- Loss function and output layers

- Activation functions in hidden layers

- Universal approximation: depth matters

- Backprop: efficient computation of the loss gradient

26

Learning by minimizing empirical risk

- Learning corresponds to finding ®* that minimizes the
empirical risk:
1
J(OIX,V) = & DUy f(x, ©)) + AQ(®)
i=1
O* = argmin J(O|X,Y)
e

- The loss £(y, §) reflects our ~disappointment" due to
model prediction § being different than the desired value
y.

- The regularizer Q(®) penalizes parameter vectors that
correspond to mappings that we assume unlikely

27

- This loss is not differentiable, so that minimizing J(X, Y, ©®)
requires combinatorial optimization

28

Probabilistic loss

- Suppose we allow probabilistic predictions in the form of
a distribution: P(Y|x; ©)

- Then, a principled loss can be formulated as negative
log-likelihood:

(. ¥) = —log P(Y = y|x; ©)

- we can formulate regression by predicting a normal
(Gaussian) distribution (simplest case - unit covariance)

p(Y =ylx; ®) = N(ylp = f(x,©),% = 1)
- we can formulate classification by predicting a categorical
posterior distribution (generalized Bernoulli)
P(7lx; ©) = o(f(x, ©))

- we can even formulate deterministic prediction by

plugging in the Dirac §-distribution (this leads to 0 —1loss) %

Negative log-likelihood

- Maximum likelihood estimation is versatile:
- no need for model-specific loss formulations
- the only requirement is probabilistic output: p(¥|x; ®)
- the loss function is fyre(y, ¥) = —log p(Y = y|x; ©)
- Gaussian predictions with unit covariance lead to mean
square error:

use(y, Y) = (v - f(x, ©))’
- Categorical predictions lead to multinomial logistic loss:
tuiL(y, ¥) = —log oy (f(x, ©))

- All these variants of negative log-likelihood are
differentiable.
= can be learned with gradient descent

30

Negative log-likelihood vs cross-entropy

Sometimes we wish to treat the labels as random variables

- eg. use smooth labels instead of one-hot ones (a form of
regularization)

- eg. produce the labels with another probabilistic model
(distillation, semi-supervised learning)

In this case, the loss can be expressed as cross entropy:

Cep(Y, V) ==Y p(Y=y)log P(V = y|x; ©)
y

The following statements are easily shown (homework):

- cross entropy is related to KL divergence, a measure of
"distance" between two distributions
- negative log-likelihood is a special case of cross entropy 3

Categoric predictions

A categoric model M must meet the following constraints:

- Mi(x,©) € [0,1] Vi,
- Y EMi(x, ©) =1

Typically, we ensure this through softmax activation:

P(Y|x; ©) = M(x, ®) = softmax(f(x, ®))

Learning with softmax enforces unnormalized log-posteriors in
the the last layer features z = f(x, ®) (also known as logits):

zj = logconst + log P(y = i|x; ®) .

Proof:
softmax(z), = exp(Z))

= 72] o) = P(Y =y|x; ©)

32

Classification with softmax

Let us apply the negative log-likelihood to the softmax:

Uy, ¥) = —logsoftmax(z), = log » _exp(z)) — z, = max2) — 2
J

We draw the following intuitive conclusions:

- when the model is correct (max; z; = z,) the loss is ~ 0.

- when the model is incorrect (max; z; # zy), the loss is
mostly affected by the strongest incorrect prediction.

- such behavior is very similar to 0-1 loss: negative
log-likelihood is an upper bound of the 0-1 loss.

The following relation is easily shown (homework):

dlwie(y, sdc;ftmaX(Z)) = softmax(2); — [y =1]
|

33

Softmax properties

Invariance to the addition of a constant:

softmax(z) = softmax(z + ¢) = softmax(z — maxz;)
J

A better name (which did not catch on): softargmax

"Real softmax" would correspond to log-sum-exp:
LSE(z) = log Z e’ = max(z) + log Z pZi—max(2)
i i

Softmax-weighted average corresponds to scalar product of
softmax and input:

softmax-mean(z, q) = softmax(z) "x

34

Softmax parameterization

Although the softmax output is C-dimensional, there are only C
- 1 degrees of freedom (output is a distribution)

Consequently, we can fix one input (eg. to 0) without reducing
the generality.

Often there is no difference between the two variants

- in these cases we choose C-dimensional inputs for
simplicity

35

Binary classification: sigmoid-activated outputs

If C =2 then:
exp(z1)

exp(20) + exp(z1)
1

1+ exp(z0 — 21)

P(y = 1|x) = softmax(z), =

If we set zg := 0, we get:
Py = 1Ix) = o(21)
= soft-max generalizes the sigmoid activation for C > 2

= categorical distribution generalizes Bernoulli distribution
for C>2.

The following relation is easily shown (homework):

CWE(Z;‘(Z)):J(Z)—V *

MSE as classification loss??

Why prefer negative log-likelihood to mean-square error for
classification?

luse(y; 0(2)) = (v = o(2))*

Let us observe the fysg gradient with respect to the logits:

Muse(y,0(2)) _
MSET =2(0(2) = y)(1 = 0(2))0(2)

When the sigmoid saturates (z >> 0 ili z << 0), the loss
gradient is small:

- this holds regardless of whether o(2) is close to y or not
- the model can not learn from such examples.
37

MSE as classification loss??

Main weakness: MSE ignores the intrinsic constraints of
probabilistic distribution

Suppose we have data x; | x; that belong to the class y=2:

yoH = y9H =0, 0,1]

Moreover, suppose we get the following predictions:

P(Y|x;) = [0.8,0,0.2], P(Y|x;) = [0.4,0.4,0.2]

Equally wrong predictions lead to different losses:

Lmse(X1, Y§7) = 1.28, Luse(x2, YS7) = 0.96

In the classification context, MLE outperforms MSE.
38

Overview

- About deep feed-forward models

- Loss function and output layers

- Activation functions in hidden layers

- Universal approximation: depth matters

- Backprop: efficient computation of the loss gradient

39

Example: learning the XOR function

We had solved the problem by inserting a non-linear layer

- it had to be non-linear, otherwise the composite problem
would be (again) linear.

The hinge function (ReLU) is the default non-linearity today:
g(x) = ReLU(x) = max(0, x)
Non-linearities activate each dimension separately:
g(x)i = g(x)

40

ReLU activation

The hinge function (rectified linear unit):

g(x) = ReLU(x) = max(0,x)

Advantages:

- in the active state it admits both the signal (forward pass)
and the gradients (backward pass)

- allows to propagate gradients according to output
activations

"Shortcoming" 1: the gradient is undefined at x =0

- implementations use either the left (0) or the right (1)
subgradient. y

ReLU activation

Shortcoming 2: in the non-active state the hinge function
stops both the signal and the gradient, but:

- there exist bijective generalizations
- Leaky RelLU: g(x, a) = max(0, x) + amin(0,).
- Soft Plus: g(x) = log(1 + €).
- batch normalization ensures that ReLU inputs have zero
mean and unit variance
= in each learning iteration we have 50% active
activations for each feature

Shortcoming 3: the outputs have non-zero means

- this problem is again solved by batch normalization
- models that do not use batchnorm prefer GELU activation

42

sigmoid-like activations

Sigmoid: o(x) = (1 + exp(—x))™"

- supresses the gradijent when saturated
- the learning stops due to vanishing gradients
- mostly avoided in modern architectures
- they are sometimes used in specialized roles (LSTMs, flows)

exp(2x)—1

hyperbolic tangent: tanh(x) = xp(20)F1

- similar to the sigmoid, but better due to resembling
identitety around x =0
- it ensures zero-mean outputs (for zero-mean inputs)
- simple backprop in case of small inputs
- it still suppresses the gradients when saturated
- relationship between tanh and o:
tanh(x) = 20(2x) — 1
43

Other non-linear activations

Exp.-linear function:

a(eX—1);forx <0

ELU(X;) = A -
x;forx>0

Gaussian Error Linear Unit:
1
GELU(Q) =X ®(x) =x- = |1+ erf(x/v'2)
Advantages: does not saturate; zero mean and unit variance
Disadvantages: complex, non-bijective (requires caching)

Other contenders:

- maxout (see the book...)
- any non-linear function may work fine (even cosine...) 4is

Overview

- About deep feed-forward models

- Loss function and output layers

- Activation functions in hidden layers

- Universal approximation: depth matters

- Backprop: efficient computation of the loss gradient

45

Universal approximation theorem

Theorem: a fully connected model with at least one hidden
layer with non-polynomial activation can approximate any
finite-dimensional Borel measureable function with arbitrary
small error, if the model has enough hidden dimensions.

- each continuous fuction defined on a bounded closed
subset of R" is Borel measureable.

- no need to adjust activations: it suffices that we have one
hidden layer.

46

Universal approximation theorem (caveat 1)

The theorem only guarantees sufficient capacity:

- if the function f* were known, then we could approximate
it arbitrarily well

- however, the function is not known: instead we only have
training data (X,)).

The theorem says nothing about whether some algorithm can
learn an f* that generalizes well.

- the theorem only states that a sufficiently powerful model
can overfit to training data

47

Universal approximation theorem (caveat 2)

The theorem does not specify the hidden dimensionality that
ensures a given approximation error, but there is an upper
bound

- in the worst case, we need exponentially many hidden
features:

dim(h) ~ O(a%m®)y

- each of these features corresponds to the input
configuration that requires a distinctive output

- Intuition: we require O(2") minterms to learn an arbitrary
logical function of n variables

48

Universal approximation theorem

Problem: design a two-level model that uses affine and Relu
mappings to approximate the following function:

AN\

~15 -10 -5 0 5 10 15

Rjesenje:

h10 = np.maximum(X-0,0)

h1l = np.maximum(X-1,0)

h12 = np.maximum(X-2,0)

h13 = np.maximum(X-3,0)

h14 = np.maximum(X-6,0)

h21 = 1xh10 - 1xh11 + 2*h12 - 3xh13 + 1%hl4

49
Literature: http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Deep models and mapping efficiency

Deep models may require fewer hidden activations

- some functions can be very efficiently represented with
composite mappings.

Deep models can be exponentially more efficient than their
shallow counterparts

Consider learning the n-way XOR:

- shallow model requires O(2") hidden activations

- a suitable deep model requires O(n) hidden activations

50

Deep models and mapping efficiency

RelLU-activated models define piecewise linear functions over
regions of the input space:

- the number of these regions is proportional to model
flexibility (capacity)

- deep models have exponentially more regions than
shallow models with the same number of activations

Figure 1: Binary classification using a shallow model with 20 hidden units (solid line) and a deep
model with two layers of 10 units each (dashed line). The right panel shows a close-up of the left
panel. Filled markers indicate errors made by the shallow model.

[montufari4nips]
51

96.5 : : :
96.0 |-
95.5 |-
95.0 |-
945 |
94.0 |-
93.5 |-
93.0 | .
92.5 i

92.0] !] !] I !
3 4 5 6 7 3 9 10 11

SVHN sequence transcription [goodfellow17]

Test accuracy (percent)

Empirical results show that image classification models
generalize better when we increase the depth

- x: model depth, y: classification accuracy

Increasing the model width leads to smaller improvements

97 T T T 1 !
— e—e 3, convolutional
= 96} |
g +—+ 3, fully connected
\% 95 - V¥ 11, convolutional []
g oal i
g
S o3l — i
[~]
g 92 i
91 1 L 1 1 |
0.0 0.2 0.4 0.6 0.8 1.0
[gOOdfe[[OW17] Number of parameters x10%

Deep convolutional models for image classification generalize
better than the shallow ones on SVHN sequence transcription

- X: number of parameters, y: classification accuracy

Increased depth introduces a bias that favors generalization

- shallow models already overfit with 2 - 10’ parameters
- deep models generalize well even with 6 - 10’ parameters

53

Overview

- About deep feed-forward models

- Loss function and output layers

- Activation functions in hidden layers

- Universal approximation: depth matters

- Backprop: efficient computation of the loss gradient

54

Supervised learning

Forward pass —computes the model predictions y = f(x, ®)
and the loss J(y, V) = J(v,f(x, ©))

Backward pass —computes the loss gradient with respect to
AN.f(x,©
model parameters: Ve/(y,f(x, ®)) = (W)T

Optimization algorithm —typically a variant of the stochastic
gradient descent:

O =0-4- v@j(y7f(x7®))
- more details about this some other time...

Backward propagation of errors (backprop); a simple and
efficient approach to compute gradients of composite

functions.
55

Derivatives of composite functions

Chain rule: a recipe to find derivatives of a composition of
differentiable functions.

In the scalar case, y = g(x) and z = f(y) = f(g(x)), we get:
dz _dzdy _ df(y)dg(x)
dx — dydx ~ dy dx

In the vector case, y = g(x) and z = f(y) = f(g(x)), we get:

0z 0z0y ~(oy\"

. 8y 2 and ay are Jacobians 1 x nand n x m;
. az ay;
dx, Z dy; Ox;

We perform such steps to compute the gradients in each layer. °0

Backprop: iterative application of the chain rule

Consider a model fg that maps a datum x into predictions ¥
y=1x.®)

The loss gradient with respect to parameters of the [-th layer is:
AL(y,9) _ OL(y,9) 9y oht oh

00! 9y OhLohl—1"" el
_0L(y.9) of(ht1, @4 artt(h @) or!(hT, @)
~ oht OhL=1 oh! 90!

For each layer we must determine the partial derivative...

- ... with respect to parameters (if they exist) %,

- and with respect to the input W (only if we have
not computed all required gradients);
- problem: ®! can be a matrix (fully connected layer)

- problem: h'i ®! can be a 4th-order tensor (conv. layer) >

Gradients with respect to higher-order tensors (>1)

We can compute the gradients with respect to tensors in the
same way as for vectors:

- we first determine the gradients for a vectorized tensor...
- ... and subsequently reshape them according to the tensor
shape.

Assume X e R™M x RM x ...R™ Y ¢ RM x R x ...R™W

- Then gzgggg is a Jacobian with dimensions
(nny---ny) x (Mmy---mp).
- again, the backprop boils down to multiplication of
Jacobians:
0z 0z ovec(Y)

ovec(X) - ovec(Y) ovec(X)

58

Backprop for parameters of a fully connected layer

However, the default recipe is often inefficient due to ignoring
the fine-grained structure of the particular layer.

We focus on the parameters of a fully connected layer.

- this is the default formulation:
oc oL ohyp
avec(W,) — ohy, dvec(Wy)
- This is the efficient recipe from the lab instructions:

aﬁ_<8£> _[f’%f.m
oW, 8Wm‘j Dy XDy ohy Ll

The following statements are easily shown (homework):

- the two formulations deliver the same gradients
+ their complexities are O(D3 - Dr_1) and O(Dy, - Dy,_+) 59

Fully connected model: forward pass

X
Wb, '
—™ W, -x+b,

ls1

60

Fully connected model: forward pass

X
Wb, '
—™ W, -x+b,
s1
\
RelLU(s,)

60

Fully connected model: forward pass

X
Wb, |
—™ W, -x+b,
s1
v
ReLU(s,)
h1
W2,b2 J
—> W,-h,+b,

60

Fully connected model: forward pass

X
W1:b1 l
— W, -x+b,
S,
L]
RelLU(s,)
h,
W25b2 Y
—p W2'h1+b2
S,
L]
- log softmax(s,)[yi]

l L; 60

Fully connected model: backprop (=dynamic programming)

S: Y or /0s,

- log softmax(s,)[yi]

l L; 61

Fully connected model: backprop (=dynamic programming)

W.,,b, \i
— .
or, /W, W,-h,+b,

=[dL,/0s,]T- h,T S: % ar,/0s,

A
- log softmax(s,)[yi]

l L; 61

Fully connected model: backprop (=dynamic programming)

h, t9r,/0h,=0z,/ds, - 3s,/0h,

W.,,b, \i
— .
or, /W, W,-h,+b,

=[dL,/0s,]T- h,T S: % ar,/0s,

A
- log softmax(s,)[yi]

l L; 61

Fully connected model: backprop (=dynamic programming)

S Y 09r,/0s,=0~,/0h, - oh,/0s,

ReLU(s,)
h A) =) .
W, b, I dz,/0h,=dL,/0s, - 0s,/dh,
—» .
oz, /AW W,-h,+b,
=[0£,/98,]T- h,T S: Y or /0s,

\ i

- log softmax(s,)[yi]

l L; 61

Fully connected model: backprop (=dynamic programming)

X
Wb, '
— > W, -x+b,
9L, /oW, <+
=[0z,/0s,]T - xT Si % 0r,/9s,=0,/0h, - oh,/0s,
\J
RelLU(s,)
h, ¥ 5, /oh,=ar. /9s, -
W,.b, M dL;/0h,=dL,/0s, - 0s,/0h,
4> .
o, W Warhith,

=[dL,/0s,]T- h,T S: % ar,/0s,

A
- log softmax(s,)[yi]

l L; 61

Automatic differentiation

In order to compute the gradients automatically, we represent
a deep model as a computational graph.

The roots of the graph represent inputs, labels, parameters
and hyperparameters.

All other nodes represent differentiable functions.

All nodes have only one output (for simplicity):

- this restriction does not reduce the generality
- the output can be a scalar, vector, matrix or tensor.

Example: a classification model with two fully connected layers
and L2 regularization

- for the sake of simplicity, we omit the offsets b o

Representation of a deep model with computational graph

63

PyTorch hello world

import torch 7

step = 0.13

X = torch.tensor(2.0,
requires_grad=True)

for i in range(100): 5
y = X**%h4 - X**3 - 2*X**x2 + 3
y.backward() 2

print(x, y, x.grad)

x.data = x - step * x.grad
X. grad o ZeI‘O_() 15 -10 -05 00 05 10 15 20

Main ingredient: reverse-mode automatic differentiation

. : 64
Homework: solve x> — x* — x = —1 with gradient descent.

Let us go back to our computational graph

65

The corresponding code in PyTorch

import torch, torch.nn.functional as F

roots: input, label, parameters, hiperparameter

x = torch.tensor([1.,1.])

y torch.tensor(0.)

W1l = torch.tensor([[0.5,0], [0,1]], requires_grad=True)
W2 = torch.tensor([1.,0.], requires_grad=True)

lambdal = torch.tensor(0.01)

model

hl = torch.relu(Wl @ x)

IMLE = F.binary_cross_entropy_with_logits(W2 @ h1, vy)

J = JMLE + lambdal » (Wl.pow(2).sum() + W2.pow(2).sum())

ask autograd to compute the gradients
J.backward()

print(wi.grad)
66

