
Convolutional models

Josip Krapac and Siniša Šegvić

1

Motivation: distinguish bison from oxen

f1(x,Θ1)

x
Θ1

f2(h1,Θ2)

h1

f3(h2,Θ3)

h2

f4(h3,Θ4)

h3

p(govedo|x)

Θ2

Θ3

Θ4

p(bizon|x)

A deep model has a chance to learn features that respond to
parts, e.g.: [hump?, small horns?, wilderness?, ...]
• bison: [YES, YES, YES, ...], cattle: [NO, NO, NO, ...]

Fully connected models are at risk of learning noise because:
• the translated image is completely different from the
original

• key features determined by local neighborhoods
• the model needs to learn each translation separately

2

Overview

• What are convolutional models?

• What is convolution?

• Why convolution?

• Pooling and padding

3

What are convolutional models?

Models specialized for compound data with lattice topology
• topology: the structure of the neighborhood relation

Typical examples:
• time sequences (1 axis), images (2 axes), volumes (3 axes)

A simple definition: a convolutional model has at least one
convolutional layer
• convolutional layers are often accompanied by pooling
layers, non-linear activations (ReLU) and fully connected
layers

Let’s look at the meaning of convoluted (nomen est omen):
• extremely complex and difficult to follow
• intricately folded, twisted, or coiled

4

What are convolutional models?

Classic convolutional architecture (LeNet-5):

SAŽIMANJE

[lecun89nc,vukotic14ms]

• convolutional layers transform tensors of the third order:
• two spatial, one ”semantic” axis
• we will first assume that we have only one semantic
dimension

• all mapings are local: output activations (”pixels”) depend
on the local neighborhood of the input tensor

• weights are tensors of the fourth order (!)
5

What is convolution?

We define convolution as a scalar product of a function w with
a shifted and reflected function x:

h(t) = (w ∗ x)(t) =
∫
D(w)

w(τ)x(t− τ)dτ

In machine learning, convolutions are often implemented as
cross-correlation:

h(t) = (w ⋆ x)(t) =
∫
D(w)

w(τ)x(t+ τ)dτ

Convolutions and cross-correlations are interesting as
differentiable operations with free parameters

The equations suggest that kernel w extracts local
translation-equivariant features from the input signal x

6

What is convolution?

0 20 40 60 80 100
1

0

1

x = sin(t/10) +

0 20 40 60 80 100
0.0

0.2
w

0 20 40 60 80 100
1

0

1

h = x * w

h(t) = (w ⋆ x)(t) =
∫
D(w)

w(τ)x(t+ τ)dτ

7

What is convolution?

We have smoothed the input signal x(t) by cross-correlating it
with a suitable function w(t):

h(t) = w(t) ⋆ x(t)

In the context of a ”convolutional” layer:
• function x (argument) is input,

• function w (argument) is kernel (free parameters),

• function h (result) is called a feature map.

8

What is convolution?

In the discrete case, we replace the integral with the sum:

h(t) = (w ⋆ x)(t) =
∞∑

τ=−∞
w(τ)x(t+ τ)

We assume that the kernel domain is finite, i.e. that the
function W(τ) equals zero for τ < τmin and τ > τmax:

h(t) = (w ⋆ x)(t) =
τmax∑

τ=τmin

w(τ)x(t+ τ)

In most applications, x and w are multivariate functions:
x(t),w(t) ∈ Rd.

9

What is convolution?

Correlation can be applied across multiple axes. In case of
images, we typiclly apply 2D convolution:

S(i, j) = (K ⋆ I)(i, j) =
mmax∑

m=mmin

nmax∑
n=nmin

K(m,n) · I(i+m, j+ n)

.
• the summation ranges are defined by the kernel domain
(i.e. where K ̸= 0).

• kernels are usually smaller than images (3x3 - 7x7 vs MPx)

10

What is convolution?

11

What is convolution?

12

What is convolution?

12

What is convolution?

12

What is convolution?

12

What is convolution?

12

What is convolution?

12

What is convolution?

12

What is convolution?

12

What is convolution?

12

What is convolution?

Convolutions share parameters and model local interactions:

The reationship between input and output is linear, but:
• elements of the output Ml depend on the corresponding
local neighbourhood of the input Ml−1

• all outputs use the same (shared) set of parameters

13

Why convolution?

Convolution is similar to a fully connected layer, but there are
important differences:
• they can model only local interactions

• parameter sharing⇒ output representation is equivariant
with respect to translation.

14

Fully connected layer (linear part)

+
σ

σ()

f(x,Θ = (W,b)) = Wx+ b

15

Convolutional layer (1D, linear part)

16

Convolutional layer (1D, linear part)

16

Convolutional layer (1D, linear part)

16

Convolutional layer (1D, linear part)

16

Convolutional layer (1D, linear part)

16

Convolutional layer (1D, linear part)

16

Convolutional layer (1D, linear part)

16

Convolutional layer (1D, linear part)

b b

f(x,Θ = (w,b)) = w ∗ x+ b

16

Local interactions

Comparison of convolution with affine transformation:
• convolutional activations (above) ”see” only a few inputs
• affine activations (below) ”see” all inputs
• convolutions induce fewer connections and parameters.

[goodfellow17book] 17

Local interactions (2)

Comparison of convolution with affine transformation (2):
• the convolution inputs (above) affect only few outputs
• this suggests that the backward pass (back-propagation of
gradients) will also be expressed by convolution

[goodfellow17book] 18

Local interactions (3)

Advantages of convolution over affine transformation:
• faster inference O(m · n) vs O(k · n)

• k kernel size

• m input dimension

• k≪ m.

• less capacity: k · n vs m · n parametars
• fewer parameters to learn with the same amount of labels.

• here we only consider locality and ignore parameter
sharing!.

19

Local interactions (4)

Features of a deep convolutional model can indirectly interact
with a large input region:
• receptive field: the set of all input elements that affect the
particular feature

• receptive field of convolutional activations increases with
depth.

[goodfellow17book]
20

Parameter sharing (or weight-tying)

All outputs are computed with respect to the same set of
weights:
• the weights for computing the output s00 are the same as
the weights for skl ∀k, l

Instead of learning separate sets of parameters, each output
activation uses the same parameters:
• more learning signal

• less susceptible to overfitting

21

Parameter sharing (2)

Advantages over affine transformation (2):
• even fewer parameters: m · n vs k (superior statistical
efficiency)

• computational complexity: the same as for the model that
has only local interactions but does not share weights:
O(n · k).

22

Equivariance to translation

f(x) is equivariant with respect to g if:

f(g(x)) = g(f(x))

Convolution (f) is equivariant with respect to translation (g):
• the convolution output is a spatial map of dense latent
features of the input tensor (time sequence, matrix,
volume)

• if we translate the input, the feature map will translate
accordingly.

• convolutional models are suitable for images, speech,
language, bioinformatics, ...

Convolution is not equivariant with respect to some other
transformations such as scaling or rotation.

23

Pooling layers

Pooling layers compress input neighbourhoods into a single
vector.

Usually, the output is a statistical indicator of the input
neighbourhood, e.g. mean or maximum.

We apply pooling when the model converts the input tensor
(image, sentence) into a scalar prediction:
• we need to re-knead a pizza dough into a baguette shape
• this is not the only notivation for pooling layers

224×224×3

55×55×96 27×27×256 13×13×384 13×13×384 13×13×256

1×1×4096 1×1×4096 1×1×C

bison: 80%
ox: 10%
bear: 5%
...

24

Pooling functions

Mean-pooling with kernel size 2

25

Pooling functions

Max-pooling with kernel size 2

25

Pooling motivation

Increase translation invariance:
• f(x) is invariant with respect to g if: f(g(x)) = f(x)
• especially useful if the model has to detect presence of
the concept rather than the location:

• eg. in face detection, displacement of the eyes in relation
to the nose varies from person to person

• size of the pooling region regulates the amount of
invariance:
larger region→ invariance to larger displacements

• eg. in image categorization, the object that defines the
class can be anywhere in the image

26

Pooling motivation (2)

Pooling layers allow to aggregate evidence across input
regions:

[goodfellow17book]

27

Pooling motivation (3)

Decrease computational complexity:
• most contemporaneous archiectures reduce the input
resolution to H/4×W/4 after the first convolutional layer

• this reduces the latency both during training and inference
• furthermore, this decreases the memory footprint of the
model (this is often more important than speed)

28

Pooling motivation (4)

Pooling can be carried out not only over adjacent features, but
also across different feature maps.

In this case the model can learn invariance with respect to
different transformations.

[goodfellow17book]

29

Pooling usage

Pooling layers typically involve an output stride k > 1:
• the feature map is divided into regular spatial regions
• each region pools into one feature with unchanged
semantic dimensionality

• the output feature map is k× subsampled
• most often: k = 2, (kh, kw)=(H/q,W/q) or (kh, kw)=(H,W).

• regions may overlap (cf. figure below) although this is
seldom used

[goodfellow17book]
30

Pooling usage (2)

The size of pooling regions may be adaptive
• this allows to process inputs of different sizes

[goodfellow17book]

31

Pooling usage (3)

Questions:
• what happens with the receptive field of the convolutional
features that operate on pooled features (assume output
stride k)?

• how does the pooling affect the number of model
parameters?

224×224×3

55×55×96 27×27×256 13×13×384 13×13×384 13×13×256

1×1×4096 1×1×4096 1×1×C

bison: 80%
ox: 10%
bear: 5%
...

32

Receptive field

Effect of convolution with the kernel size k (disregard pooling):
• increase the receptive field of the output for k− 1

[goodfellow17book]

Effect of subsampling (eg after pooling) with output stride k:
• increase the receptive field of the output for k− 1

• multiply the receptive contribution of all successors k×! 33

Receptive field (2)

We can measure the receptive field by forward analysis:
• the red color indicates the receptive field of the
bottom-most red activation (same for orange, violet and
white)

• we must keep count of the total subsampling factor (eg.
p2 · p1) that multiplies the receptive contribution (eg.
k4 − 1)

r(f1)=r(x)+(p1-1)

r(h2)=r(f1)+(k2-1)*p1

r(f3)=r(h2)+(p2-1)*p1

r(h4)=r(f3)+(k4-1)*p2*p1

x

f1=pool(x,p1=2)

h2=conv(f1,k2=3)

f3=pool(h2,p2=2)

h4=conv(f3,k4=3)

x

f1=pool(x,p1=2)

h2=conv(f1,k2=3)

f3=pool(h2,p2=2)

h4=conv(f3,k4=3)

r(x)=1

34

Receptive field (3)

We can also measure the receptive field by backward analysis:
• we assume that the model grows towards early layers
• grey activtions denote the increase of the receptive field
with respect to the earlier layer

• advantage: we do not have to keep count of the total
subsampling factor (harder to make a mistake)

x

f1=pool(x,p1=2)

h2=conv(f1,k2=3)

r(h4,f1) =r(h4,h2)+(k2-1)

r(h4,h2)=r(h4,f3)·p2

f3=pool(h2,p2=2)

h4=conv(f3,k4=3)

r(h4,f3) =r(h4,h4)+(k4-1)

r(h4,h4)=1

r(h4,x)=r(h4,f1)*p1

35

Bias of convolution and pooling

Convolutions and poolings introduce the following pieces of
bias:
• convolution: all interactions are local→ the model will
gneralize well on data with lattice topology

• convolution: predictions are translation-equivariant
• pooling ×k: predictions are invariant to small translations
• global pooling: predictions are translation-invariant

These assumptions increase bias and decrease variance:
• theory: this can lead both to good generalization and
under-fitting

• practice: no under-fitting, convolutional models
generalize better than fully connected ones

36

Bias of convolution and pooling (2)

Convolution can be viewed as a fully connected layer which
zeros all weights outside the kernel domain:
• this intervention will enlarge the loss on training data

If a convolutional layer leads to underfitting:
• the local interactions may be insufficient→ increase the
receptive field

If a pooling layer leads to underfitting:
• the desired functionality requires accurate feature
locations→ reduce the pooling region

37

Convolutions with padding

Default convolution: latent representations shrink with depth
• if input size is m, than the output is m− k+ 1 (k denotes
the kernel size)

• shortcoming: borders have less effect to the predictions
• shortcoming: the depth is limited by m and k
• some software frameworks denote such convolution as
"VALID".

Convolution with zero-padded input: model depth is unlimited
• if we pad the input with k− 1 zeros the output will have
the same shape as the input

• example for k = 5: we pad two zeros to all input borders
• frameworks denote such convolutions as "SAME"

38

Convolutions with padding (2)

39

Multi-channel 2d-convolution

We overload the ⋆ operator so we can
keep the same syntax as before:

q = w ⋆ p

The output q(g) convolves the corre-
sponding slices of the input and the
r-th kernel, and aggregates the results:

q(g) =
∑
f

w(g,f) ⋆ p(f) [vukotić14ms]

The same formulation in scalar algebra:

q(g)ij =
∑
fuv

p(f)i−ok+u,j−ok+v · w
(g,f)
uv

Convolutions often include the bias: q = p ⋆ w + broadcast(b)
• we require one bias component per output map: b = [bg]

40

Convolution: problem 1

We consider a convolutional model for classifying grayscale
images of shape 28×28 with the following components:
• two processing blocks: 5×5 convolution with bias and no
padding; ReLU activation; max-pooling 2×2 stride 2;

• conv1: 16 channels, conv2: 32 channels;

• flatten
• fully connected layer with bias, 512D output, ReLU;
• fully connected layer with bias, 10D output, softmax.

Tasks:
1. determine dimensions of latent tensors, the number of
parameters and the size of the receptive field in all layers;

2. propose a PyTorch implementation with methods
__init__, fwd, and loss.

41

Convolution: problem 2

Propose your own implementation of 1D convolution under
Numpy (one for-loop, only forward pass).

import numpy as np

def conv1d_my(vector, kernel):
n = vector.shape[0]
k = kernel.shape[0]
out = np.zeros((n-k+1,), dtype=np.float32)
kernel = np.flip(kernel)
for i in range(n-k+1):
out[i] = np.sum(vector[i:i+k] * kernel)

return out

42

Convolution: problem 3

Compare the functionality of your implementation with the
corresponding implementations from torch and scipy.

import torch
from torch.nn.functional import conv1d as conv1d_torch
from scipy.ndimage import convolve1d as conv1d_scipy

x = np.array([2.0]*3 + [6.0]*4)
w = np.array([-1.0, 1.0])
print(conv1d_my(x,w))
print(conv1d_scipy(x, w, mode='nearest'))
print(conv1d_torch(torch.tensor(x).reshape([1,1,-1]),

torch.tensor(w).reshape([1,1,-1])).numpy().squeeze())

[0. 0. -4. 0. 0. 0.]
[0. 0. -4. 0. 0. 0. 0.]
[0. 0. 4. 0. 0. 0.] 43

