
Advanced recurrent models

Martin Tutek
May 2022.

Recap

Plain recurrent model (RNN denotes recurrent cells)

1

Basic recurrent cell

Update of the hidden state of the recurrent cell:

h(t) = tanh(Whhh(t−1) +Wxhx(t) + bh︸ ︷︷ ︸
a(t)

)

Output projection
o(t) = Whyh(t) + bo (1)

The plain formulation processes the whole sequence with one layer

• often insufficient for learning complex dependencies among the
sequence elements

• it can be addressed by introducing latent recurrent layers
between the input and the predictions!

2

Deep recurrent models

Deep (multi-layer) recurrent model

3

Deep recurrent model

Can you observe a problem in the precedent figure?

• x(t) and h(t) may have different dimensions
• dimensionality of Wxh ∈ Rh×h may differ across layers

Layer n = 1:

h(t)n = tanh(Wnhhh(t−1)n +Wnxhx(t) + bnh︸ ︷︷ ︸
a(t)n

) (2)

Layers n > 1:

h(t)n = tanh(Wnhhh(t−1)n +Wnxh h(t)n−1 + bnh︸ ︷︷ ︸
a(t)n

) (3)

[!!] Recent deep learning frameworks offer recurrent cells that adapt
the matrix shapes automatically. 4

Deep recurrent model: backprop

5

Deep recurrent model: summary

Recurrent models extend through depth (vertically) and time
(horizontally):

• practical configurations involve 4 to 8 layers depending on the
quantity of training data

• more than 8 subsequent recurrent layers do not lead to
significant performance improvements (even in the case of
advanced cells)

Different layers may have different dimensionalities:

• this does not complicate the implementation unless we start
from scratch

Layers can be implemented by supplying constructor arguments to
the chosen recurrent cell.

6

Troubleshooting

What is the receptive field of a recurrent cell?

7

Troubleshooting

What is the receptive field of a recurrent cell?

8

Troubleshooting: receptive field

Each recurrent cell (in any layer, at time t) observes only x(t) ≤ t:

• prediction at time t is conditioned only by observed inputs!
• if the problem at hand does not imply hiding the future context,
we would like to allow the model to observe the whole
sequence prior to making the prediction

Idea: if the hidden state h(t) of a cell that reads from left to right
sees x(t) ≤ t, then a cell that reads in the opposite direction sees the
remaining inputs x(t) > t

• together, these two cells observe the whole sequence

9

Bidirectional recurrent models

Bidirectional recurrent model

We add an independent recurrent model (←−−RNN) that operates in the
opposite direction with respect to the original model (−−→RNN)

10

How to aggregate the hidden states?

11

Bidirectional recurrent model

Bidirectional recurrent cell (BiRNN) consists of two unidirectional
models that operate in opposite directions:

• −−→RNN reads from left to right
• ←−−RNN reads from right to left

How to combine the hidden states?

1. concatenation:
h(t) = [

−→
h (t),

←−
h (t)]

• this doubles the input dimensionality of the next layer
• defaul behaviour in existing implementations

2. mean pooling
3. arbitrary (parameterized) function

12

13

Bidirectional recurrent models: summary

Bidirectional models consist of two recurrent models that iterirate in
opposite directions:

• concatenation of the two states allow the next layer to receive
the state that depends on all inputs

Concatenation increases the dimensionality of the subsequent layer:

• default behaviour
• alternatives: mean pooling, pooling + projection, ...

We must consider whether the model is allowed to access all input
data (forecasting vs dense prediction).

14

Troubleshooting recurrent
models

Vanishing and exploding gradients

Recurrent models are susceptible to vanishing and exploding
gradients:

• caused by parameter sharing through subsequent operations
• more precisely: repeated multiplication by Whh

Reminder:
h(t) = tanh(Whhh(t−1) +Wxhx(t) + bh)

We first consider the scalar context:

h(t) = tanh(whhh(t−1) + wxhx(t) + bh︸ ︷︷ ︸
a(t)

)

• whh,wxh,bh,h, x ∈ R

15

Vanishing and exploding gradients (scalar context)

h(t) = tanh(whhh(t−1) + wxhx(t) + bh︸ ︷︷ ︸
a(t)

)

We consider the magnitude of the gradijent between subsequent
hidden states:

tanh = th
dth(x)
dx = 1− th2(x)

∂h(t)
∂h(t−1) =

∂h(t)
∂a(t)

∂a(t)
∂h(t−1)

= ∂th(a(t))
∂a(t) whh

= (1− th2(a(t)))whh

Tanh derivative is limited to unit interval:

tanh(x) ∈ (−1, 1)
∂tanh(x)

x = (1− tanh2(x)) ∈ (0, 1)

16

Vanishing and exploding gradients (scalar context)

∂h(t)
∂h(t−1)

= (1− th2(a(t)))whh

Let us apply the following substitution:

γt = ∂tanh(x)/∂x
∣∣
a(t) < 1

Similiarly: γσt = ∂σ(x)/∂x
∣∣
a(t) < 1/4

t→ T

γ,whh indep. t

∂h(t)
∂h(t−1) = γtwhh
∂h(T)
∂h(t0) =

∏T
t0 γtwhh

∂h(T)
∂h(t0) = (γwhh)T−t0

17

Vanishing and exploding gradients (scalar context)

∂h(T)
∂h(t0)

= (γwhh)T−t0

When we have long sequences, T− t0 ≫ 0, the gradients may
explode, vanish or be stable depending on γwhh:

(γwhh)T−t0 →

∞ if γwhh > 1 (explodes)
0 if γwhh < 1 (vanishes)
1 if γwhh ≈ 1 (stable)

If we assume γ = 1, then the above conditions apply to the
parameter whh.

We proceed by repeating the analysis in the vector context.
18

Vanishing and exploding gradients (spectral norm)

We consider the following properties of the spectral norm of a
square matrix A:

• norm of the product is less than or equal the product of the
norms (this holds for all matrix norms):

∥AB∥ ≤ ∥A∥ ∥B∥

• the spectral norm is equal to the largest singular value of A
• or, equivalently, the largest eigenvalue of A⊤A

• the spectral norm is the natural norm induced by the L2-norm:

∥Ax∥ ≤ ∥A∥ ∥x∥

19

Vanishing and exploding gradients (vector context)

Update of the hidden state of the recurrent cell (reminder):

h(t) = tanh(Whhh(t−1) +Wxhx(t) + bh︸ ︷︷ ︸
a(t)

)

We are looking at the gradient between two subsequent states:

∂h(t)
∂h(t−1)

=
∂h(t)
∂a(t)

W⊤
hh

We note that the gradient magnitude is bounded:∥∥∥∥ ∂h(t)
∂h(t−1)

∥∥∥∥ ≤ ∥∥∥∥∂h(t)∂a(t)

∥∥∥∥ ∥∥WT
hh
∥∥ ≤ γmax λ1

• λ1 ... the greatest singular value of Whh

• γmax ... the upper bound of max(∂tanh(a
(t))

∂a(t))

20

Vanishing and exploding gradients (vector context)

We extend the last equation over several time-steps:
∂h(T)
∂h(t0)

≤ (γmax λ1)
T−t0

For long sequences (T− t0 ≫ 0) the gradient may explode, vanish or
be stable depending on γmax λ1:

(γmax λ1)
T−t0 →

∞ if γmax λ1 > 1 (explode)
0 if γmax λ1 < 1 (vanish)
1 if γmax λ1 ≈ 1 (stable)

• Matrix Whh must fulfill strict requirements in order to ensure
smooth optimization

• For a more detailed analysis refer to [pascanu13icml]:
Razvan Pascanu, Tomás Mikolov, Yoshua Bengio: On the difficulty of training recurrent neural
networks. ICML 2013.

21

Long-term dependencies

Recurrent models consistently underperform on long sequences:

• The problem is widely known [bengio94tnn]: Y Bengio, PY Simard, P
Frasconi: Learning long-term dependencies with gradient descent is difficult, IEEE TNN 1994.

• Prominent cause: unstability of the gradients during backprop.

Problem: exponentiation due to repeated multipliation with Whh
causes exploding and vanishing gradient

• ensure moderate singular values of the recurrent connection
M Arjovsky, A Shah, Y Bengio: Unitary Evolution Recurrent Neural Networks. ICML 2016

• remove multiplication from the recurrent connection.

Solution: decouple functionalities of the the recurrent connection

• Whh and Wxh couple information filtering, memorizing observed
inputs, projection of new elements into the hidden state, ...

• Hidden state h couples output projection and memorization.
22

Recurrent cell with long-term
memory (LSTM)

Long short-term memory (LSTM)

Notation:

• Vector h(t) will be repurposed and used only for calculating the
output

• We introduce a cell state vector c(t) which only holds
information seen up to current point

• We introduce a new vector ĉ(t) which is used for updating the
cell state

• We introduce f(t) i i(t):
• we refer to f(t) as forget gate
• we refer to i(t) as input gate

We wish to eliminate multiplication from the recurrent path:

c(t) = c(t−1) + ĉ(t)

∂c(t)
∂c(t−1)

= I
23

Long short term memory (LSTM)

c(t) = c(t−1) + ĉ(t)

We forget some information from the previous state

f(t) = σ (W fhh h
(t−1) +W fxh x

(t) + b fh) = σ(a(t)f)

• each gate has its own set of parameters Whh,Wxh,bh.

We let through only a subset of the input information:

i(t) = σ(Wihhh(t−1) +Wixhx(t) + bih) = σ(a(t)i)

• we leverage these results in the recurrent path:

c(t) = f(t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

24

Intuition behind the gates

c(t) = f(t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

Hadamard product (⊙): element-wise matrix multiplication

a⊙ b =

 a0b0
. . .

aibi

Purpose of the gates: filtering information (σ : R→ (0, 1)).

Sigmoid function has a probabilistic interpretation - the amount
information that we wish to keep.

Limiting f(t) and i(t) between (0, 1) eliminates exploding gradients

• this interval is open in theory due to asymptotic behaviour of
the sigmoid but closed in practice due to finite precision

25

Long short term memory (LSTM)

c(t) = f(t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

ĉ: temporary result when updating cell state

ĉ(t) = tanh(Wchhh(t−1) +Wcxhx(t) + bch) = tanh(a(t)c)

• we determine ĉ(t) with respect to the hidden state and the input
• note that notation is a bit different in the book

• in the book: s(t) := c(t); g(t) := i(t); q(t) := o(t)

• the book does not use aesthetic substitution with ĉ(t)

s(t) = f(t)s(t−1) + g(t)
(
tanh(Wh(t−1) + Ux(t) + bs)

)

26

Long short term memory (LSTM)

c(t) = f(t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

The hidden state is calculated with respect to the cell state:

h(t) = o(t) ⊙ tanh(c(t))

We refer to o(t) as the output gate:

o(t) = σ(Wohhh(t−1) +Woxhx(t) + boh) = σ(a(t)o)

Summary:

• we have separated the "memory" from the hidden state, thereby
unburdening h(t), which has to do both task in the regular
recurrent cell

• we introduce the "cell state" c(t) with a purpose to remember
information (we ensure it is hard to change its value)

• there are four times more parameters than in a regular RNN cell 27

Visualizing the LSTM

We reproduce several figures from the blog by Cristopher Olah [link]

Question: What is the order of gate names in the figure?
28

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Visualizing the LSTM - cell state

c(t) = f(t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

Cell state is modified with one multiplication and one summation -
information flow is simple

• Cell state is hard to modify: the two gates have to allow the
change to ``pass through''

29

Visualizing the LSTM - forget gate

c(t) = f(t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

f(t) = σ(Wfhhh(t−1) +Wfxhx(t) + bfh)

30

Visualizing the LSTM - input gate

c(t) = f(t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

i(t) = σ(Wihhh(t−1) +Wixhx(t) + bih)

ĉ(t) = tanh(Wchhh(t−1) +Wcxhx(t) + bch)

31

Visualizing the LSTM - input gate

ĉ(t) = tanh(Wchhh(t−1) +Wcxhx(t) + bch)

According to the literature, either a sigmoid or a hyperbolic tangent
can be used to activate ĉ(t)

• PyTorch and Tensorflow use tanh

32

Visualizing the LSTM - updating the cell state

c(t) = f(t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

33

Visualizing the LSTM - output gate

h(t) = o(t) ⊙ tanh(c(t))

o(t) = σ(Wohhh(t−1) +Woxhx(t) + boh)

34

LSTM as a better RNN: summary

Basic RNNs are difficult to optimize

• we often encounter exploding and wanishing gradients due to
repeated multiplication with Whh

• cell state has to memorize information and drive the output
• these models lose performance as sample length increases

We introduce the Long short term memory cell (LSTM)

c(t) = f(t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

h(t) = o(t) ⊙ tanh(c(t))

• we remove matrix multiplication from the forward and recurrent
path

• we introduce gates to filter information
• decoupled responsibility reduces the load on the cell state

35

LSTM: exploding and vanishing gradients

c(t) = f(t) ⊙ c(t−1) + i⊙ ĉt

We consider the gradient for the recurrent link

∂c(t)
∂c(t−1)

= f(t) = σ(a(t)f) ∈ (0, 1)

The chain rule gives us:

∂c(T)
∂c(t0)

=
T∏

t=t0

f(t) ≤ 1

It appears that the exploding gradients are eliminated!

• Is that really so?
• LSTM cell has dual hidden state (c(t), h(t))

36

LSTM: exploding and wanishing gradients

h(t) = o(t) ⊙ tanh(c(t))
Let us look at the output gate:

o(t) = σ(a(t)o) = σ(Wohhh(t−1) +Woxhx(t) + boh)

There is a similar pattern as in the basic RNN cell:

h(t) = σ(Wohh h(t−1) +Woxhx(t) + boh)⊙ tanh(c(t))

∂h(t)
∂h(t−1)

=
∂h(t)

∂a(t)o

∂a(t)o
∂h(t−1)

= WT
ohh

∂h(t)

∂a(t)o
= . . .

Exploding gradient is therefore still possible when performing the
backward pass through h(t)

• it is, however, relatively rare in practice

37

LSTM variants - peepholes

Include the cell state c(t−1) while calculating the gate value:

f(t) = σ(Wfchc(t−1) +Wfhhh(t−1) +Wfxhx(t) + bfh︸ ︷︷ ︸
a∗(t)f

)

This idea can be applied to all gates

• Strength: information about the current cell state may help
[gers2000recurrent]

• Weakness: it increases the number of parameters
• Weakness: it introduces a second path for the exploding
gradients to appear

38

LSTM variants - fused gates

c(t) = f(t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

Idea: If some information is forgotten, it should be replaced

c(t) = f(t) ⊙ c(t−1) + (1− f(t))⊙ ĉ(t)

• Strength: 25% less parameters
• Weakness: it performs worse than the standard LSTM (more
parameters helps)

• Weakness: it looses expressiveness (problem of addition)

39

Gated recurrent unit

Gated recurrent unit, a simpler LSTM variant

• works great even though it does not detach the context from the
state

• this suggests that some intutitions about LSTM may be
incomplete.

40

Gated recurrent network

GRU models involve two gates: r(t) and u(t):

• u(t) is the (update gate)

u(t) = σ
(
Wuhhh(t−1) +Wuxhx(t) + buh

)
(4)

• r(t) is the reset gate

r(t) = σ
(
Wrhhh(t−1) +Wrxhx(t) + brh

)
(5)

Important intermediate tensor: temporary state ĥ(t)

ĥ(t) = σ
(
Whh (r(t) ⊙ h(t−1)) +Wxhx(t) + bh

)
(6)

The recurrent state h(t) again has multiple responsibilities:

h(t) = u(t)h(t−1) + (1− u(t))ĥ(t) (7)

41

Recurrent variations: summary

Exploding and vanishing gradients may appear in LSTM-s as well

• however, they appear less frequent in practice

Success of LSTM led to development of other gated recurrent cells.

1. LSTM with peepholes:
• they return the state information into the update equation
• it makes sense since LSTMs do not completely circumvent
exploding and vanishing gradients

2. LSTM with gate fusion
• fused forget and input gates for improved efficiency and less
parameters

3. Gated recurrent unit (GRU)
• fused gates and changed gate semantics
• similar performance to LSTMs in spite of coupled state vector

42

Analysis: Sequence-to-sequence

Machine translation problem

We wish to generate an output sequence of words for a qiven input
sequence of words:

• the model targets output sequences of unknown length.
• at each output position the model outputs a categoric
distribution over the output vocabulary

Datasets: WMT, IWSLT (regularly updated):

• https://www.statmt.org/wmt15/translation-task.html
• https://sites.google.com/site/iwsltevaluation2015/mt-track

Example of input-output pair in the WMT-14 en-de dataset:

Parliament Does Not Support Amendment Freeing Tymoshenko
Keine befreiende Novelle für Tymoshenko durch das Parlament

43

https://www.statmt.org/wmt15/translation-task.html
https://sites.google.com/site/iwsltevaluation2015/mt-track

Machine translation problem: preliminaries

Target variables:

• words in the target language: {keine,befreiende,Novelle, . . .}
• we convert target variables into indices: {0, . . . , Vout}
• we choose the size of the target sentence.

Input variables:

• we must fix the input vocabulary
• we map input words to rows of the embedding matrix,

This setup is similar to part-of-speech tagging, but:

1. we can start generation only after seeing the whole input
2. we do not know the number of output tokens
3. it is not clear whether what inputs should we use during output
generation

44

Sequence-to-sequence

We start by formalizing the sequence-to-sequence problem (above).

Subsequently, we will present some concrete solutions.

45

Sequence-to-sequence: formalizing the problem

We envision a solution with two modules:

1. encoder ("reader"): reads the input sequence and builds the
best possible hidden representation

2. decoder ("writer") uses the encoded representation to generate
the most appropriate translation

46

Sequense-to-sequence: formalizing the problem

The last state of the encoder determines the first state of the
decoder:

h(0)dec = f(h(T)enc)

• in practice, we usually have h(0)dec = h(T)enc
• still, f can be any parameterized function)
• question: when would something like this be necessary?

The encoder does not receive the loss directly

• the loss propagates through the entire decoder

Problem: what are the inputs to the decoder module?

47

Sequence-to-sequence: decoder inputs

We use the most recent generated output as input in each step of
the decoder 48

Sequence-to-sequence: generating the output

The decoder input at timestep t > 0 contains the most likely decoder
output from the previous timestep

• what about timestep t = 0?
• the first input to the decoder is a special symbol that represents
the start of sequence (<sos>)

How do we know that the output sequence is completed?

• the model signals the end of translation by outputting a special
symbol that represents the end of sequence (<eos>)

• the token <eos> is appended at the end of each target
sequence

• we stop the output generation when we get <eos> or when the
generated sequence exeeds the maximum length

49

Sequence-to-sequence: teacher forcing

Sequence-to-sequence task is very hard to learn, especially in the
early stages of optimization

Hence, we often train with teacher forcing where the decoder inputs
are obtained stochastically as:

• groundtruth tokens of the previous step in p training samples
• generated outputs of the prevous step in 1− p training samples
• p ∈ [0, 1] is a hyper parameter that starts with p = 1 and may
decrease as the training proceeds

50

Sequence-to-sequence: inference

Target sequence generation approaches.

1. greedy approach: take the most probable word in each step:
• as in other greedy approaches this may be suboptimal
• it is possible that the best translation does not contain the most
probable word in each step

• moreover, this approach is not good for sampling as it generates
deterministic sequences

2. random sampling according to probability (roulette wheel
selection):

• this injects rendomness into sequence generation and encourages
variability of the output

• it is not clear wheather we really desire to have more than zero
probability for choosing a bad word

3. focused sampling by beam search:
• consider k currently best scoring outputs in each set
• hyper-parameter k denotes the beam width

51

Sequence-to-sequence: beam search

52

Sequence-to-sequence: vizualizing the beam search

53

Sequence-to-sequence: vizualizing the beam search

54

Sequence-to-sequence: vizualizing the beam search

55

Sequence-to-sequence: summary

Complexity of sequence-to-sequence prediction arises from the
variable length of the target sequence:

• instead of ``simple'' context-based classification, the model has
to learn to generate the entire sequence.

We approach this problem by separating it into i) reading the input
sequence and ii) generating the output sequence:

• encoder and decoder have separate parameters

56

Sequence-to-sequence: summary (2)

Early training phase is problematic:

• early training can be improved with teacher forcing
("cheat-notes") in some percentage of training samples

Sequence generation is hard:

• it has to maximize sequence probability instead of probability of
individual components

• it can be approached with beam search that tracks k most
probable sequences in each step of the generation process

57

Attention

Attention

Success of machine translation for different sentence lengths.
RNNsearch models use attention. Figure from [bahdanau14iclr].

Even with state-of-the-art recurrent cells, the translation success
visibly deteriorates as the length of sentence increases

• this suggests that recurrent models have a poor memory.
58

Attention

Motivation:

• "When I’m translating a sentence, I pay special attention to the
word I’m presently translating. When I’m transcribing an audio
recording, I listen carefully to the segment I’m actively writing
down. And if you ask me to describe the room I’m sitting in, I’ll
glance around at the objects I’m describing as I do so."

Our hidden representations are not perfect (they have a limited size)

If the cell can not remember all relevant information, could it at
least recall where to find it? This idea leads to the new approach:

• denote the hidden representation as a query
• denote previous hidden representations as keys (memory)
• determine similarity between the query and all keys
• aggregate queries through weighted pooling where the weights
correspond to the above similarity. 59

Attention: the baseline formulation

Attention returns a kind of scalar similarity between two vectors

• q(t) = h(t)dec and k(t) = h(t)enc correspond to the hidden states:

a(t) = attn(q(t), k(t)), a(t) ∈ R,q ∈ Rq, k ∈ Rk .

We require similarity between the query and all keys:

a = attn(q, K), a ∈ RT, K = [k(1), . . . , k(T)] .

Similarities are normalized to a probability distribution:

α = softmax(a) .

The attention output is a weighted pool of the hidden encoder states:

outattn =
T∑
t

αtk(t) .
60

Attention: baseline formulation

Attention output is a weighted pool of encoder hidden states

• this vector is concatenated to the decoder state before a word is
generated (it is not used inside the recurrent cells)

h∗(t)dec = [h(t)dec;outattn] .

How to formulate attention?

1. Bahdanau attention: differentiable module with parameters W1
(matrix) and w2 (vector):

a(t) = w⊤
2 · tanh(W1 · [q(t); k(t)]) .

2. Scalar product (condition: dim(q) = dim(k))

a(t) = q(t)⊤ · k(t)√
dim(k)

.

• why do we scale with dimension size k?
61

Attention: visualization

62

Attention: graphic overview

63

Attention: visualization of similarity

Similarity between the hidden encoder and decoder states for
French to English translation.

64

Attention: extended formulation

We can differentiate between keys and values:

k(t) = fk(h(t)enc), v(t) = fv(h(t)enc) .

• fk and fv transform a hidden vector into keys and values
• in practice, fk and fv are projections.

k(t) = Wkh(t)enc, v(t) = Wvh(t)enc .

Extended attention:

α = softmax(attn(q, K)),

outattn =
T∑
t

αt v(t) .

This above formulation can also be useful beyond
sequence-to-sequence translation 65

Self-attention in sequence classification

If the query comes from the same representation as the keys, the
attention attn(ki, K) may approach one-hot vector ei:

• we can avoid this with learned queries as we show here;
• note that computer vision does not appear to suffer from this
problem!

Self-attention with learned queries:

α̂ = softmax(attn(w , K)),

outattn =
T∑
t

α̂tv(t) .

Intuitively, the learned queries correspond to abstract concepts such
as formal writing, slang, football, middle east, etc.

66

Self-attention in sequence classification: visualization

67

Self-attention in computer vision

Some computer vision algorithms capture long-range dependencies
by extended self-attention without learned-queries.

[wang18cvpr]

Input: abstract representation X
• 4th-o tensor T×H×W×1024
• can be viewed as THW×1024.
• H - height, W - width, T - time

Output: representation Z with im-
proved long-distance connectivity

Input X is projected onto queries
(θ), keys (ϕ) and values (g).

Each spatio-temporal feature xi ∈ R1024 is both a query and a key.

The similarity matrix A (THW × THW) compares queries with values. 68

Self-attention in computer vision (details)

The matrix A can be obtained through matrix multiplication:

• other formulations of similarity are easily plugged-in.

A = (WθX⊤)⊤ · (WϕX⊤),
= (XW⊤

θ) · (WϕX⊤) .

The weight matrix α is obtained by activating rows of A with softmax.

• Aij reflects similarity of the query Wθxi wrt the value Wgxj

α = softmax(A,axis = 1) .

` Outputs Z = {zi} are linear combinations of values V = g(xi):

• of course, the weights correspond to the elements of α

zi =
∑
j

αij · g(xj) .

69

Attention: summary

Our best recurrent models still strougle with long sentences

Hence we introduce attention to model long-distance connections

• attention is a weighted poool of hidden states
• the weights model similarity with respect to some query

• information relevance depends on the current need

• in recurrent sequence-to-sequence approaches, query is the
current hidden state of the decoder, while we attend to the
hidden states of the encoder

• extended variants may be applied to sequence classification and
part-of-speech tagging

70

Attention: summary (2)

Ways to define similarity:

• Bahdanau attention: differentiable module operates on a
concatenation of the query and the key

• scalar-product attention: direct comparison of the (projected)
query with the (projected) value

Attention has been used with practically all RNN variants since its
introduction.

Attention is a critical component of contemporaneous algorithms.

71

Attention is ... all we need?

72

Models based exclusively on attention

Annotated paper with code samples:
http://nlp.seas.harvard.edu/2018/04/03/attention.html

73

Applications, examples, SOTA

73

Weaknesses of RNN Variants

Recent work has shown:

1. recurrent model with a sigmoidal activation and infinite state
precision can simulate a Turing machine

2. more recently, this has been extended to include ReLU

However, this holds only under certain conditions:

1. the whole sequence has been input into the recurrent neural
network, and infinite inference time is available

2. precision is infinite.

Counting experiment: RNN architecture need to recognize sequences
in the form of anbn or anbncn

Paper: https://arxiv.org/pdf/1805.04908.pdf

74

75

Machine translation

Google translate https://research.googleblog.com/2016/09/
a-neural-network-for-machine.html

76

https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

Google translate network arhitecture

77

Speech generation

https://google.github.io/tacotron/

78

WaveNet - generating sound from text

Demo: https:
//deepmind.com/blog/

wavenet-generative-model-raw-audio/

79

https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Image captioning

Image captioning with attention and recurrent networks
[xu2015show]

80

Image genration based on text description

DALLE-2 https://openai.com/dall-e-2/

81

https://openai.com/dall-e-2/

Text generation

GPT-3 https://www.theguardian.com/commentisfree/2020/sep/
08/robot-wrote-this-article-gpt-3;
https://arxiv.org/abs/2005.14165

82

https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3
https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3
https://arxiv.org/abs/2005.14165

Solving textual mathematical problems

Verifiers: https://openai.com/blog/grade-school-math/

83

https://openai.com/blog/grade-school-math/

Code generation based on instructions

Demo:
https://www.youtube.com/

watch?v=SGUCcjHTmGY
Blog post: https://openai.
com/blog/openai-codex/

84

https://www.youtube.com/watch?v=SGUCcjHTmGY
https://www.youtube.com/watch?v=SGUCcjHTmGY
https://openai.com/blog/openai-codex/
https://openai.com/blog/openai-codex/

Questions?

84

Questions? :)

84

In the book

• Relevant chapters
• 10.1, 10.2, 10.3, 10.4, 10.5, 10.7, 10.10, 10.11

	Recap
	Deep recurrent models
	Bidirectional recurrent models
	Troubleshooting recurrent models
	Recurrent cell with long-term memory (LSTM)
	Analysis: Sequence-to-sequence
	Attention
	Applications, examples, SOTA
	Appendix

