
Advanced recurrent models

Martin Tutek, Petra Bevandić, Josip Šarić, Siniša Šegvić
2024.

Recap

Plain recurrent model (RNN denotes recurrent cells)

1

Basic recurrent cell

Update of the hidden state of the recurrent cell:

h(t) = tanh(Whhh
(t−1) +Wxhx

(t) + bh︸ ︷︷ ︸
a(t)

)

Output projection
o(t) = Whyh

(t) + bo (1)

The plain formulation processes the whole sequence by measn of
three weight matrices and two bias vectors:

• often insufficient for learning complex dependencies among the
sequence elements

• this can be addressed by introducing latent recurrent layers
between the input and the predictions!

2

Deep recurrent models

Deep (multi-layer) recurrent model

N layers

3

Deep recurrent model

Can you observe a problem in the precedent figure?

• x(t) and h(t) may have different dimensions
• dimensionality ofWxh ∈ Rh×h may differ across layers

Layer n = 1:

h(t)
n = tanh(Wnhhh

(t−1)
n +Wnxhx

(t) + bnh︸ ︷︷ ︸
a
(t)
n

) (2)

Layers n > 1:

h(t)
n = tanh(Wnhhh

(t−1)
n +Wnxh h

(t)
n−1 + bnh︸ ︷︷ ︸

a
(t)
n

) (3)

[!!] Recent deep learning frameworks offer recurrent cells that adapt
the matrix shapes automatically. 4

Deep recurrent model: backprop

5

Deep recurrent model: summary

Recurrent models extend through depth (vertically) and time
(horizontally):

• practical configurations involve 4 to 8 layers depending on the
quantity of training data

• more than 8 subsequent recurrent layers do not lead to
significant performance improvements (even in the case of
advanced cells)

Different layers may have different dimensionalities:

• this does not complicate the implementation
• layers are typically configured through constructor arguments of
the chosen recurrent cell.

6

Troubleshooting

What is the receptive field of a recurrent cell?

7

Troubleshooting

What is the receptive field of a recurrent cell?

8

Troubleshooting: receptive field

Each recurrent cell (in any layer, at time t) observes only x(t) ≤ t:

• prediction at time t is conditioned only by observed inputs!
• if the problem at hand does not imply hiding the future context,
we would like to allow the model to observe the whole
sequence prior to making the prediction

Idea: if the hidden state h(t) of a cell that reads from left to right
sees x(t) ≤ t, then a cell that reads in the opposite direction sees the
remaining inputs x(t) > t

• together, these two cells observe the whole sequence

9

Bidirectional recurrent models

Bidirectional recurrent model

We add an independent recurrent model (←−−−RNN) that operates in the
opposite direction with respect to the original model (−−−→RNN)

10

How to aggregate the hidden states?

11

Bidirectional recurrent model

Bidirectional recurrent cell (BiRNN) consists of two unidirectional
models that operate in opposite directions:

• −−−→RNN reads from left to right
• ←−−−RNN reads from right to left

How to combine the hidden states?

1. concatenation:
h(t) = [

−→
h (t),

←−
h (t)]

• this doubles the input dimensionality of the next layer
• default behaviour in existing implementations

2. mean pooling
3. arbitrary (parameterized) function

12

13

Bidirectional recurrent models: summary

Bidirectional models consist of two recurrent models that iterirate in
opposite directions:

• concatenation of the two states allow the next layer to receive
the state that depends on all inputs

Concatenation increases the dimensionality of the subsequent layer:

• default behaviour
• alternatives: mean pooling, pooling + projection, ...

We must consider whether the model is allowed to access all input
data (forecasting vs dense prediction).

14

Troubleshooting recurrent
models

Vanishing and exploding gradients

Recurrent models are susceptible to vanishing and exploding
gradients:

• caused by parameter sharing through subsequent operations
• more precisely: repeated multiplication byWhh

Reminder:
h(t) = tanh(Whhh

(t−1) +Wxhx
(t) + bh)

We first consider the scalar context (whh, wxh, bh, h, x ∈ R):

h(t) = tanh(whhh
(t−1) + wxhx

(t) + bh︸ ︷︷ ︸
a(t)

)

15

Vanishing and exploding gradients (scalar context)

Equation of the recurrent cell (reminder):

h(t) = tanh(whhh
(t−1) + wxhx

(t) + bh︸ ︷︷ ︸
a(t)

)

Consider the gradient between subsequent hidden states:
∂h(t)

∂h(t−1)
=

∂h(t)

∂a(t)
∂a(t)

∂h(t−1)

=
∂ tanh(a(t))

∂a(t)
whh

= (1− tanh2(a(t)))whh

Note that the tanh derivative is limited to unit interval:

tanh(x) ∈ (−1, 1)
∂tanh(x)

∂x
= (1− tanh2(x)) ∈ (0, 1)

16

Vanishing and exploding gradients (scalar context, 2)

The gradient between subsequent hidden states (reminder):
∂h(t)

∂h(t−1)
= (1− tanh2(a(t)))whh

Let us apply the following substitution:

γt = ∂ tanh(x)/∂x
∣∣
a(t) = 1− tanh2(a(t)) < 1

Consider the gradient towards the state h(t0):

∂h(T)

∂h(t0)
=

t0+1∏
t=T

∂h(t)

∂h(t−1)
=

∂ tanh(x)

∂x

∣∣
a(t)whh

=

t0+1∏
t=T

γtwhh

= (γwhh)
T−t0

17

Vanishing and exploding gradients (scalar context, 3)

Gradient towards h(t0) (reminder):
∂h(T)

∂h(t0)
= (γwhh)

T−t0

When we have long sequences, T − t0 ≫ 0, the gradients may
explode, vanish or be stable depending on γwhh:

(γwhh)
T−t0 →


∞ if γwhh > 1 (explodes)
0 if γwhh < 1 (vanishes)
1 if γwhh ≈ 1 (stable)

If we assume γ = 1, then the above conditions apply to the
parameter whh.

We proceed by repeating the analysis in the vector context.
18

Vanishing and exploding gradients: spectral norm

We consider the following properties of the spectral norm of a
square matrix A:

• norm of the product is less than or equal the product of the
norms (this holds for all matrix norms):

∥AB∥ ≤ ∥A∥ ∥B∥

• the spectral norm is equal to the largest singular value of A
• or, equivalently, square root of the largest eigenvalue of A⊤A

• the spectral norm is the natural norm induced by the L2-norm:

∥Ax∥ ≤ ∥A∥ ∥x∥

19

Vanishing and exploding gradients (vector context, 1)

Update of the hidden state of the recurrent cell (reminder):

h(t) = tanh(Whhh
(t−1) +Wxhx

(t) + bh︸ ︷︷ ︸
a(t)

)

We are looking at the gradient between two subsequent states:

∂h(t)

∂h(t−1)
=

∂h(t)

∂a(t)
Whh

We note that the gradient magnitude is bounded:∥∥∥∥ ∂h(t)

∂h(t−1)

∥∥∥∥ ≤ ∥∥∥∥∂h(t)

∂a(t)

∥∥∥∥ ∥Whh∥ ≤ γt
maxλ1

• λ1 ... the greatest singular value ofWhh

• γt
max ... the upper bound of max(∂ tanh(a(t))

∂a(t))

20

Vanishing and exploding gradients (vector context, 2)

We extend the last equation over several time-steps:
∂h(T)

∂h(t0)
≤ (γmaxλ1)

T−t0

For long sequences (T − t0 ≫ 0) the gradient may explode, vanish or
be stable depending on γmaxλ1:

(γmaxλ1)
T−t0 →


∞ if γmaxλ1 > 1 (explode)
0 if γmaxλ1 < 1 (vanish)
1 if γmaxλ1 ≈ 1 (stable)

• MatrixWhh must fulfill strict requirements in order to ensure
smooth optimization

• For a more detailed analysis refer to [pascanu13icml]:
Razvan Pascanu, Tomás Mikolov, Yoshua Bengio: On the difficulty of training recurrent neural
networks. ICML 2013.

21

Long-term dependencies

Recurrent models consistently underperform on long sequences:

• the problem occurs due to numerical unstability of the gradients
due to repeated multiplication withWhh:
Y Bengio, PY Simard, P Frasconi: Learning long-term dependencies with gradient descent is

difficult, IEEE TNN 1994.

Symptoms can be alleviated by:

• ensuring moderate singular values of the recurrent connection:
M Arjovsky, A Shah, Y Bengio: Unitary Evolution Recurrent Neural Networks. ICML 2016

A solution: express the recurrent connection without multiplication
with a learned matrix.

22

Recurrent cell with long-term
memory (LSTM)

Long short-term memory

The hidden state h(t) is repurposed: it captures short-term
dependencies towards the output and the candidate cell state.

The cell state c(t) (new!) holds the long-term information up to now.

The candidate cell state ĉ(t) (new!) holds a possible contribution to
the cell-state c(t) given the current input x(t).

Gates f (t) and i(t) (sigmoid vectors, new!) determine dimensions of
c(t):

• that should be forgotten (forget gate f)
• that should be updated with respect to x(t) (input gate i).

LSTM cell-state update eliminates arbitrary matrix multiplication
from the recurrent path:

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

[hochreiter96nips] LSTM can solve hard long time lag problems

23

Long short term memory (2)

LSTM cell-state update (reminder):

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

The f (t) gate forgets some information from the previous state:

f (t) = σ (W
fhh

h(t−1) +W
fxh

x(t) + b
fh

) = σ(a
(t)
f)

The input gate i(t) lets through only a subset of the input
information:

i(t) = σ(Wihhh
(t−1) +Wixhx

(t) + bih) = σ(a
(t)
i)

Each gate has its own set of parametersWhh,Wxh, bh.

24

Long short term memory (3)

LSTM update involves Hadamard products (⊙) with sigmoid gates:

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

Hadamard product (⊙) corresponds to element-wise multiplication:

a⊙ b =

 a0b0
. . .

aibi


The purpose of the two gates is to filter information (σ : R→ (0, 1)):

• sigmoid function has a probabilistic interpretation: the amount
information that we wish to keep.

Limiting f (t) and i(t) between (0, 1) eliminates exploding gradients

• this interval is open in theory (σ(x) < 1 ∀x)...
• ...but closed in practice due to finite precision in exp(-x). 25

Long short term memory (4)

LSTM cell state update (reminder):

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

The candidate cell state ĉ attends to to the hidden state and the
current input:

ĉ(t) = tanh(Wchhh
(t−1) +Wcxhx

(t) + bch) = tanh(a(t)c)

Note that our notation is a bit different than in the book:

• in the book: s(t) := c(t); g(t) := i(t); q(t) := o(t)

Instead of the aesthetic substitution ĉ(t), the book inlines the
corresponding expression into the cell-state equation:

s(t) = f (t)s(t−1) + g(t)
(
tanh(Wh(t−1) + Ux(t) + bs)

)
26

Long short term memory (5)

LSTM equations (reminder):

ĉ(t) = tanh(Wchhh
(t−1) +Wcxhx

(t) + bch) = tanh(a(t)c)

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

The hidden state modulates the cell state with the output gate:

h(t) = o(t) ⊙ tanh(c(t))

The output gate has an independent set of parameters:

o(t) = σ(Wohhh
(t−1) +Woxhx

(t) + boh) = σ(a(t)o)

27

Long short term memory (summary, 1)

LSTM equations encourage a moderate magnitude of the cell state,
and enforce that the hidden state is strictly finite:

ĉ(t) = tanh(Wchhh
(t−1) +Wcxhx

(t) + bch) = tanh(a(t)c)

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

h(t) = o(t) ⊙ tanh(c(t))

These properties are expressed by means of the three sigmoid gates
that operate upon the hidden state and the current input:

o(t) = σ(Wohhh
(t−1) +Woxhx

(t) + boh) = σ(a(t)o)

f (t) = σ(Wfhhh
(t−1) +Wfxhx

(t) + bfh) = σ(a
(t)
f)

i(t) = σ(Wihhh
(t−1) +Wixhx

(t) + bih) = σ(a
(t)
i)

28

Long short term memory (summary, 2)

LSTM separates the long-term memory from the output delivery:

• this unburdens h(t), which has to do both tasks in the regular
recurrent cell

The cell state c(t) keeps count of the long-term information

• we ensure it is hard to change its value)

Cell-space evolution involves four times more parameters than in a
regular RNN cell.

29

Visualizing the LSTM

We reproduce several figures from the blog by Cristopher Olah [link]

Question: What is the order of gate names in the figure?
30

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Visualizing the LSTM - cell state

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

Cell state is modified with one multiplication and one summation -
information flow is simple

• Cell state is hard to modify: the two gates have to allow the
change to “pass through”

31

Visualizing the LSTM - forget gate

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

f (t) = σ(Wfhhh
(t−1) +Wfxhx

(t) + bfh)

32

Visualizing the LSTM - input gate

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

i(t) = σ(Wihhh
(t−1) +Wixhx

(t) + bih)

ĉ(t) = tanh(Wchhh
(t−1) +Wcxhx

(t) + bch)

33

Visualizing the LSTM - input gate

ĉ(t) = tanh(Wchhh
(t−1) +Wcxhx

(t) + bch)

According to the literature, either a sigmoid or a hyperbolic tangent
can be used to activate ĉ(t)

• PyTorch and Tensorflow use tanh

34

Visualizing the LSTM - updating the cell state

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

35

Visualizing the LSTM - output gate

h(t) = o(t) ⊙ tanh(c(t))

o(t) = σ(Wohhh
(t−1) +Woxhx

(t) + boh)

36

LSTM as a better RNN

Basic RNNs are difficult to optimize:

• numerical instability due to repeated multiplication withWhh

• the cell state has to memorize information and drive the output
• these models lose performance as sample length increases

Long short term memory cell (LSTM) alleviates these problems:

ĉ(t) = tanh(Wchhh
(t−1) +Wcxhx

(t) + bch)

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

h(t) = o(t) ⊙ tanh(c(t))

• LSTM removes matrix multiplication from the recurrent
equations

• the three sigmoid gates (f (t), i(t), o(t)) filter information and
encourage moderate magnitude of the cell state

• it reduces the load on the cell state by decoupling responsibility
for short-term action and long-term memorization.

37

LSTM: backprop

LSTM cell state update (reminder):

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

Consider the gradient throught the recurrent equation:
∂c(t)

∂c(t−1)
= f (t) = σ(a

(t)
f) ∈ (0, 1)

The chain rule gives us:

∂c(T)

∂c(t0)
=

T∏
t=t0

f (t) ≤ 1

It appears that the exploding gradients are eliminated!

• Is that really so?
• LSTM cell has dual hidden state (c(t), h(t))

38

LSTM: backprop (2)

LSTM hidden state update (reminder):

h(t) = o(t) ⊙ tanh(c(t))

o(t) = σ(Wohhh
(t−1) +Woxhx

(t) + boh)

We observe a similar pattern as in the basic RNN cell:

h(t) = σ(Wohh h(t−1) +Woxhx
(t) + boh)⊙ tanh(c(t))

∂h(t)

∂h(t−1)
=

∂h(t)

∂a
(t)
o

∂a
(t)
o

∂h(t−1)
=

∂h(t)

∂a
(t)
o

Wohh = . . .

Numerical overflow and underflow are therefore still possible when
performing the backward pass through h(t):

• they are, however, relatively rare in practice

39

LSTM variants - peepholes

Include the cell state c(t−1) while calculating the gate value:

f (t) = σ(Wfchc
(t−1) +Wfhhh

(t−1) +Wfxhx
(t) + bfh︸ ︷︷ ︸

a
∗(t)
f

)

This idea can be applied to all gates!

Strength: information about the current cell state may help
[gers2000recurrent].

Weakness: it increases the number of parameters.

Weakness: it introduces a second path for the exploding gradients to
appear.

40

LSTM variants - fused gates

LSTM cell state update (reminder):

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ ĉ(t)

Idea: If some information is forgotten, it should be replaced

c(t) = f (t) ⊙ c(t−1) + (1− f (t))⊙ ĉ(t)

Strength: 25% less parameters.

Weakness: it performs worse than the standard LSTM

• more parameters help.

Weakness: it looses expressiveness

• c(t) is unable to accumulate evidence.

41

Gated recurrent unit

GRU models involve the update gate u(t) and the reset gate r(t):

u(t) = σ
(
Wuhhh

(t−1) +Wuxhx
(t) + buh

)
r(t) = σ

(
Wrhhh

(t−1) +Wrxhx
(t) + brh

)
The state update involves the candidate state ĥ(t):

ĥ(t) = σ
(
Whh (r(t) ⊙ h(t−1)) +Wxhx

(t) + bh

)
h(t) = u(t) ⊙ h(t−1) + (1− u(t))⊙ ĥ(t)

Properties of GRU in comparison with LSTM and RNN:

• single recurrent state h(t) with multiple responsibilities (as in
RNN)

• the old state and the candidate state are blended with a single
sigmoid gate (as in LSTM with fused gates)

42

Gated recurrent unit (2)

Gated recurrent unit, a simpler LSTM variant

• works great even though it does not detach the long-term
context from driving the output

• this suggests that some intutitions about LSTM may be
incomplete.

43

Recurrent variations: summary

Exploding and vanishing gradients may appear in LSTM-s as well

• however, they appear less frequent in practice

Success of LSTM led to development of other gated recurrent cells.

1. LSTM with peepholes:
• they return the state information into the update equation
• it makes sense since LSTMs do not completely circumvent
exploding and vanishing gradients

2. LSTM with gate fusion
• fused forget and input gates for improved efficiency and less
parameters

3. Gated recurrent unit (GRU)
• fused gates and changed gate semantics
• similar performance to LSTMs in spite of coupled state vector

44

Analysis: Sequence-to-sequence

Machine translation problem

We wish to generate an output sequence of words for a given input
sequence of words:

• the model targets output sequences of unknown length.
• at each output position the model outputs a categoric
distribution over the output vocabulary.

Datasets: WMT, IWSLT (regularly updated):

• https://www.statmt.org/wmt15/translation-task.html
• https://sites.google.com/site/iwsltevaluation2015/mt-track

Example of input-output pair in the WMT-14 en-de dataset:

Parliament Does Not Support Amendment Freeing Tymoshenko
Keine befreiende Novelle für Tymoshenko durch das Parlament

45

https://www.statmt.org/wmt15/translation-task.html
https://sites.google.com/site/iwsltevaluation2015/mt-track

Machine translation problem: preliminaries

Target variables:

• words in the target language: {keine, befreiende,Novelle, . . .}
• choose the size of the target vocabulary.
• convert target variables into indices: {0, . . . , Vout}

Input variables:

• we must fix the input vocabulary
• we map input words to rows of the embedding matrix.

This setup is similar to part-of-speech recognition, but:

1. we can start generation only after seeing the whole input
2. we do not know the number of output tokens
3. it is not clear which inputs determine the current output

46

Sequence-to-sequence

We start by formalizing the sequence-to-sequence problem (above).

Subsequently, we will present some concrete solutions.

47

Sequence-to-sequence: formalization

We envision a solution with two modules:

1. encoder (”reader”): reads the input sequence and builds the
best possible hidden representation

2. decoder (”writer”) generates the translation by consulting the
encoded representation.

48

Sequence-to-sequence: formalization (2)

The last state of the encoder determines the first state of the
decoder:

h
(0)
dec = f(h(T)

enc)

• in practice, we usually have h
(0)
dec = h

(T)
enc

• still, f can be any parameterized function
• this becomes necessary when dim(hdec) ̸= dim(henc)

The encoder does not receive the loss directly

• the loss propagates through the entire decoder.

Problem: what are the inputs to the decoder module?

49

Sequence-to-sequence: decoder inputs

We feed the most recent generated output to each cell of the
decoder. 50

Sequence-to-sequence: generating the output

The decoder input at timestep t > 0 contains the most likely decoder
output from the previous timestep

• what about the timestep t = 0?
• the first input to the decoder is a special symbol that represents
the start of sequence (<sos>).

How do we know that the output sequence is completed?

• the model signals the end of translation by outputting a special
symbol that represents the end of sequence (<eos>)

• the token <eos> is appended at the end of each target
sequence

• we stop the output generation when we get <eos> or when the
generated sequence exceeds the maximum length.

51

Sequence-to-sequence: generating the output (2)

Sequence-to-sequence task is very hard to learn, especially in the
early stages of optimization.

Hence, we often train with teacher forcing where the decoder inputs
are obtained stochastically as:

• groundtruth tokens of the previous step in p training samples
• generated outputs of the prevous step in 1− p training samples
• p ∈ [0, 1] is a hyper parameter that starts with p = 1 and may
decrease as the training proceeds

52

Sequence-to-sequence: inference

Denote the translation as a vector of word indices
(y(t), t = 1, 2, ...T (x)).

From the viewpoint of training, the optimal translation should
maximize the likelihood:

(y(t), t = 1, 2, ...T (x)) = argmax
∑
t

logPt(Y = y(t)|x)

Other inference criteria include linguistic tools (METEOR), evaluating
the density of the translation (G-Eval) etc.

Optimal inference may involve exponential complexity.

53

Sequence-to-sequence: inference (2)

Target sequence generation approaches during inference:

1. greedy approach: take the most probable word in each step:
• as in other greedy approaches this may be suboptimal
• it is possible that the best translation does not contain the most
probable word in each step

• moreover, this approach is not good for sampling as it generates
deterministic sequences

2. random sampling according to probability (roulette wheel
selection):

• this injects randomness into sequence generation and encourages
variability of the output

• it is not clear wheather we really desire to have more than zero
probability for choosing a bad word

3. focused sampling by beam search:
• consider k currently best scoring outputs in each set
• hyper-parameter k denotes the beam width

54

Sequence-to-sequence: beam search

55

Sequence-to-sequence: vizualizing the beam search

56

Sequence-to-sequence: vizualizing the beam search

57

Sequence-to-sequence: vizualizing the beam search

<sos>

učenje

je

super

Deep
BiLSTM

Deep
BiLSTM

Deep
BiLSTM

h(T)

learning

studying

learning

studying

is

Deep
BiLSTM

is

Deep
BiLSTM

is

is

great

Deep
BiLSTM

great

...

awesome

awesome

awesome

Deep
BiLSTM

<eos>

but

Deep
BiLSTM

great

<eos>

but

58

Sequence-to-sequence: summary

Task complexity arises from the variable length of the target
sequence:

• instead of “simple” context-based classification, the model has
to learn to generate entire sequences.

We can approach this problem by separating it into i) reading the
input sequence and ii) generating the output sequence:

• encoder and decoder have separate parameters
• they are learned together from end to end
• the same approach suitable for txt-to-img and img-to-txt
translation.

Downside: multilingual support requires a quadratic number of
models

• must train one model for each pair of languages
• some contemporaneous approaches address this task by
prompting a generative model: ”I wish to translate from English
to Croatian. If the English sentence is ’Learning is great’, then the
translation is ...”.

59

Sequence-to-sequence: summary (2)

Early training phase is problematic:

• early training can be improved with teacher forcing
(”cheat-notes”) in some percentage of training samples

Sequence generation is hard:

• it has to maximize the probability of the entire sequence instead
of probability of individual components

• this can be approached with beam search that tracks k most
probable sequences in each step of the generation process

60

Attention

Attention

Success of machine translation for different sentence lengths.
RNNsearch models use attention. Figure from [bahdanau14iclr].

Even with state-of-the-art recurrent cells, the translation success
visibly deteriorates as the length of sentence increases

• this suggests that recurrent models have a poor memory. 61

Attention

Motivation:

• ”When I’m translating a sentence, I pay special attention to the
word I’m presently translating. When I’m transcribing an audio
recording, I listen carefully to the segment I’m actively writing
down. And if you ask me to describe the room I’m sitting in, I’ll
glance around at the objects I’m describing as I do so.”

Our hidden representations are not perfect (they have a limited size).

If a cell can not remember all relevant information, could it at least
recall where to find it? This idea leads to a new module (layer):

• denote the hidden representation as a query
• denote previous hidden representations as keys (memory)
• determine similarity between the query and all keys
• aggregate representations from the encoder through weighted
pooling where the weights correspond to the similarity. 62

Attention: the baseline formulation

Assume a trainable similarity score between two vectors:

s = sim(q, k), s ∈ R, q ∈ Rq, k ∈ Rk ;

here q = h
(t)
dec and k = h

(t′)
enc correspond to the hidden states.

We assess the similarity of the query with respect to all keys:

s(t) = sim(q(t),K), s(t) ∈ RT ,K = [k(1), . . . , k(T)] .

The similarities are normalized to a probability distribution:

α(t) = softmax(s(t)) .

The attention output is a weighted pool of the hidden encoder states:

out(t)attn =
T∑
t′

α
(t)
t′ k

(t′) .

63

Attention: baseline formulation

The output is a weighted sum of encoder hidden states

• this vector is concatenated to the decoder state before a word is
generated (it is not used inside the recurrent cells)

h
∗(t)
dec = [h

(t)
dec;out

(t)
attn] .

How to formulate similarity?

1. differentiable module with parametersW1 (matrix) and w2

(vector) [bahdanau14iclr]:

s(t) = w⊤
2 · tanh(W1 · [q(t); k(t

′)]) .

2. Scalar product (condition: dim(q) = dim(k)):

s(t) =
q(t)⊤ · k(t′)√
dim(k)

.

• why do we scale with dimension size k?
64

Attention: visualization

65

Attention: graphic overview

66

Attention: visualization of similarity

Similarity between the hidden encoder and decoder states for
French to English translation.

67

Attention: extended formulation

We can decouple retreival from content generation by introducing
values:

k(t
′) = fk(h

(t′)
enc), v(t

′) = fv(h
(t′)
enc) .

• fk and fv transform a hidden vector into keys and values
• in practice, fk and fv are projections.

k(t
′) = Wkh

(t′)
enc, v(t

′) = Wvh
(t′)
enc .

Extended attention:

α(t) = softmax(sim(q(t),K)),

out(t)attn =
T∑
t′

α
(t)
t′ v

(t′) .

This formulation goes beyond sequence-to-sequence translation. 68

Attention: summary

Our best recurrent models still struggle with long sentences

Hence we introduce attention to model long-distance connections

• attention is a weighted pool of hidden states
• the weights model similarity with respect to some query

• information relevance depends on the current need

• in recurrent sequence-to-sequence approaches, query is the
current hidden state of the decoder, while we attend to the
hidden states of the encoder

• extended variants may be applied to sequence classification and
dense prediction

69

Attention: summary (2)

Ways to define similarity:

• Bahdanau attention: differentiable module operates on a
concatenation of the query and the key

• scalar-product attention: direct comparison of a (projected)
query with a (projected) key

Attention has been used with practically all RNN variants since its
introduction.

Attention is a critical component of contemporaneous deep learning
approaches.

70

Self-attention

Self-attention in sequence classification

If the query comes from the same representation as the keys, the
attention sim(ki,K) may approach one-hot vector ei:

• we can avoid this with learned queries as we show below
• note that computer vision does not appear to suffer from this
problem!

Self-attention with learned queries qϕ:

α̂ = softmax(sim(qϕ,K)),

outattn =

T∑
t

α̂tv
(t) .

Intuitively, the learned queries correspond to abstract concepts such
as formal writing, slang, football, middle east, etc.

71

Self-attention in sequence classification: visualization

72

Self-attention in computer vision

Some computer vision algorithms capture long-range dependencies
by extended self-attention without learned-queries.

[wang18cvpr]

Input: abstract representation X
• 4th-o tensor T×H×W×1024
• can be viewed as THW×1024.
• H - height, W - width, T - time

Output: representation Z with im-
proved long-distance connectivity

Input X is projected onto queries
(θ), keys (ϕ) and values (g).

Each spatio-temporal feature xi ∈ R1024 is both a query and a key.

The similarity matrix A (THW × THW) compares queries with keys. 73

Self-attention in computer vision (details)

The matrix A can be obtained through matrix multiplication:

• other formulations of similarity are easily plugged-in.

A = (WθX
⊤)⊤ · (WϕX

⊤),

= (XW⊤
θ) · (WϕX

⊤) .

The weight matrix α is obtained by activating rows of A with softmax.

• Aij reflects similarity of the queryWθxi wrt the keyWϕxj

α = softmax(A, axis = 1) .

‘ Outputs Z = {zi} are linear combinations of values V = g(xi):

• of course, the weights correspond to the elements of α

zi =
∑
j

αij · g(xj) .

74

Attention is ... all we need?

75

Models based exclusively on attention

76

Models based exclusively on attention

Annotated paper with code samples:
http://nlp.seas.harvard.edu/2018/04/03/attention.html

77

Models based exclusively on attention

78

Questions?

78

Questions? :)

78

In the book

• Relevant chapters
• 10.1, 10.2, 10.3, 10.4, 10.5, 10.7, 10.10, 10.11

	Recap
	Deep recurrent models
	Bidirectional recurrent models
	Troubleshooting recurrent models
	Recurrent cell with long-term memory (LSTM)
	Analysis: Sequence-to-sequence
	Attention
	Self-attention
	Appendix

