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Abstract
Reverse-mode automatic differentiation - or - backpropagation - is the backbone of any deep learning

library today. Most introductory backpropagation materials focus on two things: (1) dense calculations
of gradients of specific computational graphs and (2) application of standard linear algebra operations on
tensors of various shapes.

We claim that such introduction presents an obstacle to understanding of the essence of reverse-mode
automatic differentiation: backpropagation is a higher-order function which transforms a computational
graph of a function f into the computational graph of its derivative. Viewed through the lens of functional
programming, many of the known properties can be deduced without ever lowering the level of abstrac-
tion. Conincidentaly, functional approach it is exactly the approach one needs to take to implement a
general-purpose automatic differentiation framework, such as TensorFlow or PyTorch. Backpropagation
can be demystified further by expanding the matrix multiplication operator as the einsum operator: a
generization of many tensor contraction operations. This replacement results in less unnecessary notation,
less error-prone calculation and better generalization capabilities to higher-rank tensor manipulation.

1 Introduction
Neural networks have shown remarkable performance in information processing on a high level of ab-
straction. In this paper, we will not analyze their structure on the level of abstraction of layers, activation
functions and optimizers. We’ll raise the abstraction level and view neural networks through the lens of
functional programming. Neural networks are computational graphs, side-effect free, glued together in a
programming language of our choice. We’ll talk about how those computational graphs are defined, mod-
ified and executed. It is our hope that some high level patterns will emerge which will shed some light on
core principles of learning mechanisms. It will turn out that many seemingly complex manipulations of
such a graph are invariant to the type of nodes it is contained of.

2 Computational graphs
Every neural network can be represented by a computational graph G composed of nodes N and edges
E. Every node n ∈ N represents an operation, a function f : A0, ..., An → B, where Ai represents
the input to the function and B represents its output. Ai can be input of an arbitrary type: scalar, vector,
matrix or a tensor. B is output also of an arbitrary type, which can then represent input to another function.
Types of Ai and B need not match.

An example of such a function f : R× R→ R, f(x, y) = xy + exis given in the figure 1a. x and y
are denoted in red and represent constants: our input variables. In the blue are operations Add, Exp and
Mul. Edges of the graph only depict data flow and nothing else.

A curious thing to note is that it is also possible to represent ∂
∂y
f(x, y) and ∂

∂x
f(x, y) as a computa-

tional graph! In the figure 1b the computational graph of ∂
∂y
f(x, y) is shown. In mathematical notation, it

corresponds to ∂
∂y
f(x, y) =

∑
((
∑

1) · 1) ·
∑∏

x which can be trivially simplified to ∂
∂y
f(x, y) = x.

The reason for such a form of the derivative will be clear later, but for now, let’s just say that it does
not present any obstacle to efficient calulation of gradients; as a matter of fact, it’s exactly what enables
the whole process.

Backpropagation is an automatic way to transform any computational graph g ∈ G into another graph
h ∈ G such that the evaluation of graph h yields a partial derivative of graph g with respect to some
variable.

1



(a) f(x, y)

(b) ∂
∂y
f(x, y)

Figure 1: f(x, y) = xy + ex and ∂
∂yf(x, y) in graph form

It’s important to note that this formulation of graph transformations yields higher-order derivatives for
free! As it also turns out, the result definition actually has an extremely elegant form.

2.1 Simple rules
Nodes in our computational graph are going to be represented with the class Node. Every function,
such as f(x) = ex will need to extend the class Node and implement two methods: _eval and
_partial_derivative. Graph is evaluted lazily; outputs of functions are not known until the
method _eval is called.

class Node:
def __init__(self, children, name="Node"):

# wraps normal numbers into Variables
self.children = [child if isinstance(child, Node)

else Variable(child)
for child in children]

self.name = name
self.shape = None

def _eval(self):
raise NotImplementedError()

def _partial_derivative(self, wrt, previous_grad):
raise NotImplementedError()

class Variable(Node):
def __init__(self, value, name=None):

if name is None:
name = str(value)

super().__init__([], name)

self._value = value
self.shape = self._value.shape

@property
def value(self):

return self._value

@value.setter
def value(self, val):

self.cached = self._value = val

def _eval(self):
return self._value
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def _partial_derivative(self, wrt, previous_grad):
if self == wrt:

return previous_grad
return 0

class Exp(Node):
def __init__(self, node, name="Exp"):

super().__init__([node], name)
self.node = self.children[0]
self.shape = self.node.shape

def _eval(self):
return np.exp(self.node())

def _partial_derivative(self, wrt, previous_grad):
if self.node == wrt:

return previous_grad * self
return 0

As the docstring of _partial_derivative notes, that method if function only of instances of
Node and does not require evaluation of any of the Nodes.

The listing above represents a function f(x) = ex whose manipulation in the Python REPL might
look something like this.

>>> import autodiff as ad
>>> x = ad.Exp(3, name="x")
>>> x
<autodiff.core.ops.Exp object at 0x7f65166e6e10>
>>> x()
20.085536923187668
>>> y = x + 2
>>> y
<autodiff.core.ops.Add object at 0x7f65167bf5f8>
>>> y()
array(22.085536923187668)
>>>

2.2 Partial derivative
In the case that the Primitive represents a function Rn 7→ R, partial derivative is a correct name
for what the method partial_derivative is, but in the case of arbitrary functions Rn 7→ Rm, the
name might be a bit of a misnomer. In the arbitrary setting where Primitive represents a function
f : Rn → Rm, the partial_derivative returns the sum of the jacobian of Jf over its columns,
denoted with ψ , for the lack of a better notation:

f : Rn → Rm, Jf =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

 ψ =
∑
i

Jf
ij (1)

Note that f : Rn → R =⇒ ψy = ∂
∂y
f .

Now, why would we want to return that specific sum of the jacobian matrix? The answer: to satisfy
the “API” for computational graphs. Just as we usually sum all the contributing gradients of a node before
calculating its partial derivative w.r.t. its input, in the same way we sum the partial deriatives of all the
outputs of the jacobian for specific element of the input vector.

In the case of functions that transforms tensors of arbitrary rank

f : Rn1×n2×...ni → Rm1×m2×...mk (2)

the generalization of its jacobian would be a tensor Jf ∈ Rn1×n2×...ni × m1×m2×...mk In such a
scenario, ψ corresponds to a tensor with all the “extra” axes summed up. In other words the shape of
ψy always corresponds to the shape of y. The same approach holds for binary functions and, generally,
all functions that take more than argument. This is generally much more easier and natural to implement
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using indicial notation [4]. In standard numerical libraries this is usually implemented as a function
einsum.

2.3 Backpropagation
Backpropagation is a higher-order function which transforms any computational graph into the graph of
its gradient with respect to some node in it. Formally, it’s a function B : G → G such that B(g) =
ψyg, ∀g ∈ G, where G is the set of all computational graphs. Again, note that it does not require the
evaluation of the function at any point.

Sufficient python code is given in the figure below:

def grad(top_node, wrt_list, previous_grad=None):
"""
Transforms the computational graph of top_node into a list of
computational graphs corresponoding to partial derivatives of
top_node with respect to all variables in wrt_list.

It delegates the actual implementation of partial derivatives
to nodes in the computational graph and doesn't care
how they're implemented.
It can be elegantly implemented using foldl.
Essentially, grad is structural transformation that is
a function *only* of the topology of the computational graph.

:param top_node: node in the graph whose gradient
will be taken with respect to all variables in wrt_list

:param wrt_list: list of objects, instances of Node,
whose gradient we're looking for

:param previous_grad: incoming gradient to top node,
by default np.ones(top_node.shape)

:return: returns a list of gradients corresponding to
variables in wrt_list
"""
assert isinstance(wrt_list, list) or isinstance(wrt_list, tuple)
if previous_grad is None:

previous_grad = Variable(np.ones(top_node.shape),
name=add_sum_name(top_node))

dct = collections.defaultdict(list)
# add the incoming gradient for the top node
dct[top_node] += [previous_grad]

def add_partials(dct, node):
# sum all the incoming partial derivatives
dct[node] = Add(*dct[node], name=add_sum_name(node))
# calculate all partial derivs w.r.t. each child and
# add them to child's list
for child in set(node.children):

pd = node.partial_derivative(wrt=child, previous_grad=dct[node])
dct[child] += [pd]

return dct

# basically a foldl
dct = functools.reduce(add_partials, reverse_topo_sort(top_node), dct)

# if a node is not a part of the graph, return Variable(0) instead of []
return [dct[wrt] if dct[wrt] != [] else Variable(0) for wrt in wrt_list]

The algorithm above starts at the top node of the graph and traverses all the nodes in it in the order
of a reversed topological sort. It computes the ψyf for every of its children and adds it to the {node:
[previous_grad]} dictionary. Before a specific node is traversed using the reverse topo sort, all the
list of previous_grads is added together, using the Add operation, which is also a node.
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By defining the add_partials function, the whole process can be efficiently implemented using
the reduce function, which corresponds to foldl in functional programming.

It might be clear now why figure 1b depicts such a complicated graph: all those products and sums
are needed in the general case where we could’ve supplied the previous_grad, or where the input to
ad.Exp could’ve been a function x or many other cases.

Backpropagation does not care about the specific way partial derivatives are implemented. The algo-
rithm above incrementally creates the new graph only based on the structure of the given computational
graph. There seems to be work indicating that grad function actually preseves the structure of the given
function [1] [3].

2.4 Sufficient conditions for backpropagation
Let partial_derivative(self, wrt, previous_grad) be its method which returns ψyf ,
where y is the wrt argument, shortened of “with respect to”. In the case of a computational graph
with a valid forward pass, we claim that the following conditions are sufficient for the backpropagation
algorithm to work.

1. Method evaluate returns the value of f

2. Method partial_derivative returns the node n whose eval corresponds to ψyf

3. n.shape == wrt.shape

4. self.shape == previous_grad.shape

The first condition signifies that computational graphs are lazily evaluated. We’re abstracting the
process of computation over the actual implementation. Second condition signifies that computation of
graph of ψ doesn’t imply its evaluation. In other words, partial_derivative only deals with nodes
in the computational graph and doesn’t actually evaluate the gradients. partial_derivative simply
defines the ψyf in terms of other nodes. The last two conditions are trivially satisfied in case of scalar
functions.

2.5 Einstein summation convention
Let’s compare standard matrix multiplication operations with Einstein notation, or indicial notation. Let

C = AB (3)

where A ∈ Ri×j and B ∈ Rj×k.
In indicial notation the eq. 3 has a similar form:

Cik = AijBjk (4)

A, B and C here represent the entire matrices, not just individual elements. That form just comes
from writing out the value of a specific element cik:

cik =
∑
j

aijbjk (5)

and leaving out the summation sign, as it’s implicit in Einstein notation. Notice that all the following
equations represent the same matrix multiplication:

Cik = BjkAij , (6)

Cxz = AxyByz (7)

(8)

Here are some more common operations expressed in indicial notation:

Cbik =AbijBbjk Batch matrix multiply (9)

Bji =Aij , Matrix transpose (10)

Bi =Aii, Matrix diagonal (11)

B =Aii, Matrix trace (12)

B =AiAi Vector inner product (13)

Bij =AiAj Vector outer product (14)

. . . (15)
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The general idea behind Einstein summation is to generalize all possible ways we can compose ten-
sors: naming each one is not possible!

2.5.1 Partial derivatives using indicial notation

Calculating partial derivatives using indicial notation reduces down to just switching the operands around,
as shown in the following Python code:

a = np.random.rand(2, 3)
b = np.random.rand(3, 5)
c = np.einsum("ij,jk->ik", a, b) # equivalent to matmul

a_grad = np.einsum("ik,jk->ij", np.ones_like(c), b)

To calculate the gradient of a, we just flip the opeands and the corresponding strings. In the place of
a we put np.ones_like(c) and in the place of ij we put ik. By doing this we automatically ensure
that the gradient of a has the exact same shape as a and we enable the previous gradient, the gradient of c
to be multiplied elementwise by c (there isn’t one in this case). Notice there wasn’t a need for the use of
transpose operaton and notice there isn’t a need to define the gradients in a different way depending with
respect to which input we’re differentiating.

In indicial notation, it would look something like this:

c = a · b, Cik = AijBjk (16)

∂c

∂a
= b = 1 · b,

{
∂C

∂A

}
ij

= 1ikBij (17)

(18)

,
where 1ik represents a tensor of ones in the shape of (i, k).
Notice the structure of the operations is the same as in the scalar case: which is one of the strenghts

of indicial notation: it’s a natural generalization of multiplication operation to arbirary tensors.

2.6 Conclusion
The idea that everything is a computational graph is a powerful one and gives us a fresh perspective on
machine learning. This paper showed that efficient implementation of automatic differentiation frame-
work can be created when looking at neural networks through the lens of functional programming. There
seems to be exciting new work which takes that even further and focuses on category theory approach to
neural networks [2].

Generally, ignoring the low-level abstractions and linear algebra enables us to find high-level patterns
when dealing with neural networks use them to, hopefully, gain insight into first principes of learning
mechanisms.

References
[1] Conal Elliott. “Beautiful differentiation”. In: International Conference on Functional Pro-

gramming (ICFP). 2009. URL: http://conal.net/papers/beautiful-
differentiation.

[2] B. Fong, D. I. Spivak, and R. Tuyéras. “Backprop as Functor: A compositional per-
spective on supervised learning”. In: ArXiv e-prints (Nov. 2017). arXiv: 1711.10455
[math.CT].

[3] “http://timvieira.github.io/blog/post/2017/08/18/backprop-is-not-just-the-chain-rule/lagrange-
backprop-generalization”. In: ().

[4] “http://www.ita.uni-heidelberg.de/ dullemond/lectures/tensor/tensor.pdf”. In: ().

6


