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University of Zagreb Faculty of

Transport and Traffic Engineering
Zagreb, HR-10000, Croatia

Email: sevrovic@unizg.fpz.hr
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Abstract—In this work, we present a novel dataset for as-
sessing the accuracy of stereo visual odometry. The dataset
has been acquired by a small-baseline stereo rig mounted on
the top of a moving car. The groundtruth is supplied by a
consumer grade GPS device without IMU. Synchronization and
alignment between GPS readings and stereo frames are recovered
after the acquisition. We show that the attained groundtruth
accuracy allows to draw useful conclusions in practice. The
presented experiments address influence of camera calibration,
baseline distance and zero-disparity features to the achieved
reconstruction performance.

I. INTRODUCTION

Visual odometry [1] is a technique for estimating ego-
motion [2] of a monocular or multiple camera system from
a sequence of acquired images. The technique is interesting
due to many interesting applications such as autonomous
navigation or driver assistance, but also because it forms the
basis for more involved approaches which rely on partial or full
3D reconstruction of the scene. The term was coined as such
due to similarity with classic wheel odometry which is a widely
used localization technique in robotics [3]. Both techniques
estimate the current location by integrating incremental motion
along the path, and are therefore subject to cumulative errors
along the way. However, while the classic odometry relies
on rotary wheel encoders, the visual odometry recovers incre-
mental motion by employing correspondences between pairs
of images acquired along the path. Thus the visual odometry
is not affected by wheel slippage in uneven terrain or other
poor terrain conditions. Additionally, its usage is not limited
to wheeled vehicles. On the other hand, the visual odometry
can not be used in environments lacking enough textured
static objects such as in some tight indoor corridors and at
sea. Visual odometry is especially important in places with
poor coverage of GNSS (Global Navigation Satellite System).
signal, such as in tunnels, garages or in space. For example,
NASA space agency uses visual odometry in Mars Exploration
Rovers missions for precise rover navigation on Martian terrain
[4], [5].

We consider a specific setup where a stereo camera system
is mounted on top of the car in the forward driving direction.
Our goal is to develop a testbed for assessing the accuracy of
various visual odometry implementations, which shall further
be employed in higher level modules such as lane detection,
lane departure or traffic sign detection and recognition. We
decided to acquire our own GPS-registered stereo vision

dataset since, to our best knowledge, none of the existing
freely available datasets [6], [7] features a stereo-rig with inter-
camera distance less than 20 cm (this distance is usually termed
baseline). Additionally, we would like to be able to evaluate
the impact of our camera calibration to the accuracy of the
obtained results. Thus in this work we present a novel GPS-
registered dataset acquired with a small-baseline stereo-rig (12
cm), the setup employed for its acquisition, as well as the
results of some preliminary research.

In comparison with other similar work in this field [7],
[8], we rely on low budget equipment for data acquisition.
The groundtruth motion for our dataset is provided by a
consumer grade GPS receiver which does not have an in-
ertial measurement unit. Therefore, we do not have access
to groundtruth rotation and instead record only the WGS84
position in discrete time units. Additionally, the GPS receiver
does not provide output strobe signal, which means that hard-
ware synchronization of the two sensors can not be performed.
Because of that, the reconstructed camera motion becomes
harder to align with respect to WGS84, as will be explained
later in the article. Thus our acquisition setup is much more
easily assembled at the expense of more post-processing effort.
However we shall see that the attained groundtruth accuracy
is quite enough for drawing useful conclusions about several
implementation details of visual odometry.

II. SENSOR SETUP

Our sensor setup consists of a stereo rig and a GPS
receiver. The stereo rig has been mounted on top of the car,
as shown in Fig. 1. The stereo rig (PointGrey Bumblebee2)

Fig. 1. The stereo system Bumblebee2 mounted on the car roof.



features a Sony ICX424 sensor (1/3”), 12 cm baseline and
global shutter. It is able to acquire two greyscale images
640×480 pixels each. The shutters of the two cameras are
synchronized, which means that the two images of the stereo
pair are acquired during the exactly same time interval (this
is very important for stereo analysis of dynamic scenes). Both
images of the stereo pair are transferred over one IEEE 1394A
(FireWire) connection. The firewire connector is plugged into
a PC express card connected to a laptop computer. The camera
requires 12V power over the firewire cable. The PC express
card is unable to draw enough power from the notebook and
therefore features an external 12V power connector which we
attach to the cigarette lighter power plug by a custom cable. In
order to avoid overloading of the laptop bus, we set the frame
rate of the camera to 25 Hz. The acquired stereo pairs are in
the form of 640×480 pairs of interleaved pixels (16 bit), which
means that upon acquisition the images need to be detached by
placing each odd byte into the left image and each even byte
into the right image. The camera firmware places timestamps
in first four pixels of each stereo frame. These timestamps
contain the value of a highly accurate internal counter at the
time when the camera shutter was closed.

The employed GPS receiver (GeoChron SD logger) deliv-
ers location readings at 1 Hz. It is a consumer-grade device
with a basic capability for multipath detection and mitigation.
The GPS antenna was mounted on the car roof in close prox-
imity to the camera. The GPS coordinates are converted from
WGS84 to local ENU (East North Up) Cartesian coordinates
in meters. The offset between the camera time and the GPS
time is recovered in the postprocessing phase (cf. V) since the
camera and GPS are not synchronized.

III. DATASET ACQUISITION

The dataset has been recorded along a circular path
throughout the urban road network in the city of Zagreb,
Croatia. The path length was 688 m, the recording time was
111.4 s, while the top speed of the car was about 50 km/h. The
dataset consists of 111 GPS readings and 2786 recorded frames
with timestamps. The scenery is not completely static, since
the video contains occasional moving cars in both directions,
as well as pedestrians and cyclists.

The acquisition was conducted at the time of day with the
largest number of theoretically visible satellites (14). For com-
parison, the least number of theoretically visible satellites on
that day was 8. In practice, our receiver established connection
to 9.5 satellites along the track, on average. Thus, at 99.1%
locations we had HDOP (horizontal dilution of precision)
below 1.3 while HDOP was less than 0.9 at 57.1% locations.

The obtained GPS accuracy has been qualitatively evalu-
ated by plotting the recorded track over a rectified digital aerial
image of the site, as shown in Fig. 2. The figure shows that
the GPS track follows the right side of the road accurately
and consistently, except at the bottom right where our car
had to avoid parked cars and pedestrians. Thus, the recorded
GPS points appears to be in close correlation with the global
coordinates of the real path. Furthermore, the relative motions
between the neighbouring points (which we use in quantitative
experiments) are much more accurate than the global positions
due to cancellation of the systematic error.

Fig. 2. Projection of the acquired GPS track onto rectified aerial imagery.

The aerial orthophoto from the figure has been provided
by the Croatian Geodetic Administration and it uses Croatian
coordinates HTRS96. The conversion of coordinates and visu-
alization have been carried out in Quantum GIS. As a sanity
check, we have also overlayed the recorded GPS track over
a satellite image from Google Earth, which produced a very
similar result to Fig. 2.

IV. VISUAL ODOMETRY

As stated in the introduction, the visual odometry recovers
incremental motion between subsequent images of a video
sequence by exclusively relying on image correspondences.
We shall briefly review the main steps of the technique in the
case of a calibrated and rectified stereo system. Calibration of
the stereo system consists of recovering internal parameters of
the two cameras such as the field of view, as well as exact
position and orientation of the second camera with respect to
the first one. Rectification consists in transforming the two
acquired images so they correspond to images which would
be obtained by a system in which the viewing directions of
the two cameras are mutually parallel and orthogonal to the
baseline. Calibration and rectification significantly simplify the
procedure of recovering inter-frame-motion as we outline in
the following text.

One typically starts by finding and matching the corre-
sponding features in the two images. Because our system
is rectified the search for correspondences can be limited to
the same row of the other image. Since the stereo system is
calibrated, these correspondences can be easily triangulated
and subsequently expressed in metric 3D coordinates. Then
the established correspondences are tracked throughout the
subsequent images. In order to save time, tracking and stereo
matching typically use lightweight point features such as
corners or blobs [9]–[11]. The new positions of previously
triangulated points provide constraints for recovering the new
location of the camera system. The new location can be recov-
ered either analytically, by recovering pose from projections of
known 3D points [12], [13], or by optimization [11], [14],
[15]. The location estimation is usually performed only in
some images of the acquired video sequence, which are often
referred to as key-images.



Thus, we have seen that the visual odometry is able to
provide the camera motion between the neighboring key-
images. This motion has 6 degrees of freedom (3 rotation
and 3 translation), and we represent this motion by a 4×4
transformation matrix which we denote by [Rt]. This matrix
contains parameter of the rotation matrix R and the translation
vector t, as shown in equation (1).

[Rt] =

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

 (1)

From a series of [Rt] matrices we can calculate the full
path trajectory by cumulative matrix multiplication. This is
shown in equation (2) where the camera location pvo(tCAM)
is determined by multiplying matrices from the key-image 1
to the key-image t.

pvo(tCAM) =

t∏
i=1

[Rt]i (2)

At this moment we must observe that the recovered camera
locations pvo(tCAM) are expressed in the temporal and spatial
coordinates of the 0th key-image which is therefore acquired
at time tCAM = 0 s. The coordinate axes x and y of the
trajectory pvo(tCAM) are aligned with the corresponding axes
of the 0th key-image, while the z axis is perpendicular to
that image. The locations estimated by visual odometry will
be represented in this coordinate system by accumulating all
estimated transformations from the 0th frame. If we wish to
relate these locations with GPS readings, we shall need to
somehow recover the translation and rotation of the 0th key-
frame with respect to the GPS coordinates. We shall achieve
that by aligning the first few incremental motions with the
corresponding GPS motions. However, before we do that, we
first need to achieve the temporal synchronization between the
two sensors.

V. SENSOR SYNCHRONIZATION

As stated in section II, the camera and GPS receiver are
not synchronized. Thus, we need to recover the time interval
t0vo between the 0th video frame and the 0th GPS location,
such that the camera time tCAM corresponds to t + t0vo in
GPS time (t = 0 corresponds to the 0th GPS location). We
estimate t0vo by comparing absolute incremental displacements
of trajectories pgps(t) and pvo(tCAM) obtained by GPS and
visual odometry, respectively. In order to do that, we first
define ∆p(t,∆t) as the incremental translation at time t:

∆p(t,∆t) = p(t)− p(t−∆t) . (3)

We also define ∆s(t) as the absolute travelled distance during
the previous interval of ∆tGPS=1 s (GPS frequency is 1 Hz):

∆s(t) = ‖∆p(t,∆tGPS)‖, t ∈ N . (4)

Now, if we consider the time instants in which the GPS
positions are defined (that is, integral time in seconds), we
can pose the following optimization problem:

t̂0vo = argmin
t0vo

Tlast−1∑
t=1

(∆svo(t+ t0vo)−∆sgps(t))
2 . (5)

The problem is well-posed since the absolute incremental
displacements ∆svo and ∆sGPS are agnostic with respect
to the fact that the camera and GPS coordinate systems are
still misaligned. We see that in order to solve this problem by
optimization, we need to interpolate all locations obtained by
visual odometry at times of GPS points for each considered
time offset t0vo. However, that does not pose a computational
problem due to very low frequency of the GPS readings (there
are only 111 GPS locations in our dataset). Thus the problem
can be easily solved by any optimization algorithm, and so we
can express visual odometry locations in GPS time pvo′ as:

pvo′(t) = pvo(t+ t0vo) . (6)

The interpolation is needed due to the fact that we capture
images at approximately 25 Hz and GPS data with 1 Hz (cf.
section II). The time intervals between two subsequent images
often differ from expected 40 ms due to unpredictable bus
congestions within the laptop computer (this is the reason why
camera records timestamps in the first place). We recover the
locations of visual odometry ”in-between” the acquired frames
by the following procedure. We first accumulate timestamps
in the frame sequence until we reach the two frames which
are temporally closest to the desired GPS time. Finally we
determine the desired location between these two frames using
linear interpolation.

We also can relate the two trajectories by the absolute
incremental rotation angle ∆φ between the corresponding two
time instants. We can recover this angle by looking at three
consecutive locations as follows:

∆φ(t) = arccos
〈∆p(t,∆tGPS),∆p(t+ 1,∆tGPS), 〉
‖∆p(t,∆tGPS)‖‖∆p(t+ 1,∆tGPS)‖

(7)

This procedure is illustrated in Fig. 3. Thus we propose two
metrics suitable for relating the trajectories obtained by GPS
and visual odometry: ∆s(t) and ∆φ(t). Note that in order to
be able to determine these metrics for visual odometry at GPS
times, one needs to apply the previously recovered offset t0vo
and employ interpolation between the closest image frames.

Fig. 3. The absolute incremental rotation angle ∆φ can be determined from
incremental translation vectors.

VI. ALIGNING THE SENSOR COORDINATES

Now that we have synchronized data between camera and
GPS, we need to estimate the 3D alignment of the reference
coordinate system of the visual odometry with respect to the
GPS coordinate system. In other words we need to find a rigid
transformation between the 0th GPS location and the location
of the 0th camera frame. After this is completed, we shall be
able to illustrate the overall accuracy of the visual odometry
results with respect to the GPS readings.



The translation between the two coordinate systems can be
simply expressed as:

TGPS
vo = pGPS(0 s)− pvo′(0 s) . (8)

In order to recover rotation alignment, we consider incremental
translation vectors for visual odometry (∆pvo′(t)) and GPS
(∆pgps(t)) between two consecutive GPS times, as determined
in (3). We find the optimal rotation alignment of the visual
odometry coordinate system RGPS

vo by minimizing the follow-
ing error function:

R̂GPS
vo = argmin

R

N∑
t=1

[
arccos

〈R ·∆pvo′(t),∆pgps(t)〉
‖∆pvo′(t)‖‖∆pgps(t)‖

]2
(9)

In order to bypass the accumulated noise which grows over
time, we choose N = 4. This problem is easily solved by
any nonlinear optimization algorithm, and so we can express
visual odometry locations in GPS Cartesian coordinates and
GPS time pvo′′ as:

pvo′′(t) = RGPS
vo · pvo′(t) + TGPS

vo . (10)

We note that this approach would be underdetermined if
we had only straight car motion at the beginning of video,
and to avoid that we arranged that our dataset begins on the
road turn. Experiments showed that this approach works well
in practice. Better accuracy could be obtained by employing a
GPS sensor capable of producing rotational readings, however
that would be out of the scope of this work.

VII. EXPERIMENTS AND RESULTS

In our experiments we employ the library Libviso2 which
recovers the 6 DOF motion of a moving stereo rig by minimiz-
ing reprojection error of sparse feature matches [11]. Libviso2
requires rectified images on input. Currently, we consider each
third frame from the dataset because, with 25 fps, camera
movement between two consecutive frames is very small with
urban driving speeds and such small camera movements often
add more noise than useful data. We calibrated our stereo
rig on two different calibration datasets by means of the
OpenCV module calib3d. In the first case the calibration
pattern was printed on A4 paper, while in the second the
calibration pattern was displayed on 21” LCD screen with
HD resolution (1920x1080). In both cases, the raw calibration
parameters have been employed to rectify the input images
and to produce rectified calibration parameters which are
supplied to Libviso2. The resulting dataset and calibration
parameters is freely downloadable for research purposes from
http://www.zemris.fer.hr/∼ssegvic/datasets/fer-bumble.tar.gz.

A. A4 calibration

We first present the results obtained with the A4 calibration
dataset. The resulting trajectories pvo′′(t) and pgps(t) are
compared in Fig. 4. We note that the shape of the trajectory
is mostly preserved, however there is a large deviation in
scale. We compare the corresponding incremental absolute
displacements ∆sgps(t) and ∆svo′′(t), and the scale error
∆sgps(t)/∆svo′′(t) In Fig. 5. We observe that the two graphs
are well aligned, and that the visual odometry generally under-
shoots in translation motion compared to the GPS groundtruth.
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Fig. 4. Comparison between the GPS trajectory and the recovered visual
odometry trajectory with the A4 calibration.
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Fig. 5. Comparison of incremental translations (left) and the resulting scale
error (right) as obtained with GPS and visual odometry with the A4 calibration.

Note that the scale error is not constant. Thus the results could
not be improved by simply fixing the baseline recovered by
the calibration procedure.

B. LCD calibration

We now present the results obtained with the LCD cali-
bration dataset. The GPS trajectory pgps(t) and the resulting
visual odometry trajectory pvo′′(t) are shown in Fig. 6. By
comparing this figure with Fig. 4, we see that a larger calibra-
tion pattern produced a huge impact on final results.
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Fig. 6. Comparison between the GPS trajectory and the recovered visual
odometry trajectory with the LCD calibration.

C. Influence of distant features

While analyzing Libviso2 source code, we noticed that
it rounds all zero disparities to 1.0. This is necessary since
otherwise there would be a division by zero in the triangulation

http://www.zemris.fer.hr/~ssegvic/datasets/fer-bumble.tar.gz


procedure. However, this means that all features with zero
disparity are triangulated on a plane which is much closer
to the camera than the infinity where it should be (note that
the distance of that plane depends on the baseline). In order
to investigate the influence of that decision to the recovered
trajectory, we changed the magic number from 1.0 to 0.01.
The effects of that change are shown in Fig. 7, where we note
a significant improvement with respect to Fig. 6.
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Fig. 7. Comparison between the GPS trajectory and the recovered visual
odometry trajectory with the LCD calibration and library correction.

The absolute incremental translations and the resulting
scale errors for this case are shown in Fig. 8. The correspond-
ing absolute incremental rotations are shown in Fig. 9. We
note a very nice alignment for incremental translation, and
somewhat less successful alignment for incremental rotation.
Note that large discrepancies in absolute incremental rotation
at times 35 s and 97 s occur at low speeds (cf. Fig. 8 (left)),
when the equation (7) becomes less well-conditioned.
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Fig. 8. Comparison of incremental translations (left) and the resulting
scale error (right) as obtained with GPS and visual odometry with the LCD
calibration and library correction.

Note that this issue could also have been solved by simply
neglecting features with zero disparity. However, that would
be wasteful since the features at infinity provide valuable
constraints for recovering the rotational part of inter-frame
motion. We believe that this has been overlooked in the original
library since Libviso was originally tested on a stereo setup
with 4× larger baseline and 2× larger resolution [11]. Thus
the original setup entails much less features with zero disparity,
while the effect of these features to the reconstruction accuracy
is not easily noticeable.

D. Quantitative comparison of the achieved accuracy

We assess the overall achieved accuracy of the recovered
trajectory pvo′′(t) by relying on previously introduced incre-
mental metrics ∆φ and ∆s. These metrics shall now be used
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Fig. 9. Comparison of incremental rotations as obtained with GPS and visual
odometry with the LCD calibration and library correction.

to define mean square error (MSE) and mean absolute errors
(MAE) for quantitative assessment of the achieved accuracy.

MSEtrans =
1

N

N∑
t=1

(∆svo′′(t)−∆sgps(t))
2 (11)

MAEtrans =
1

N

N∑
t=1

|∆svo′′(t)−∆sgps(t)| (12)

MSErot =
1

N

N∑
t=1

(∆φvo′′(t)−∆φgps(t))
2 (13)

MAErot =
1

N

N∑
t=1

|∆φvo′′(t)−∆φgps(t)| (14)

The obtained results are presented in Table I. The rows
of the table correspond to the metrics MSErot, MAErot,
MSEtrans and MAEtrans. The columns correspond to the
original library with the A4 calibration (A4), the original
library with the LCD calibration (LCD1), and the corrected
library with the LCD calibration (LCD2). A considerable
improvement is observed between A4 and LCD1, while the
difference between LCD1 and LCD2 is still significant.

TABLE I. MSE AND MAE ERRORS IN DEPENDENCE OF CAMERA
CALIBRATION AND DISTANT FEATURES TRIANGULATION.

cases: A4 LCD1 LCD2

MSEtrans(m
2) 2.912 0.111 0.101

MAEtrans(m) 1.512 0.260 0.249

MSErot(deg
2) 24.914 24.856 24.053

MAErot(deg) 2.967 2.897 2.882

E. Experiments on the artificial dataset

The previous results show that, alongside camera calibra-
tion, the feature triangulation accuracy has a large impact on
the accuracy of visual odometry. In this section we explore
that finding on different baselines of the stereo rig. To do
this, we develop an artificial model of a rectified stereo
camera system. On input, the model takes camera intrinsic



and extrinsic parameters as well as some parameters of the
camera motion. Then it generates an artificial 3D point cloud
and projects it to the image plane in every frame of camera
motion. The point cloud is generated in a way so that its
projections resemble features we encounter in real world while
analysing imagery acquired from a driving car. On output,
the model produces the feature tracks which are supplied as
input to the library for visual odometry. Fig. 10 shows the
comparison of reconstructed straight trajectories in relation to
different camera baseline setups. As one would expect, the
obtained accuracy significantly drops as the camera baseline
is decreased. Furthermore, Fig. 11 shows the results on the
same dataset after correcting the improper treatment of zero-
disparity features inside the library (cf. VII-C). The figure
shows that for small baselines the modified library performs
better than the original, since the green and blue trajectories
are closer to groundtruth in Fig. 11 than in Fig. 10. This im-
provement occurs since the number of zero-disparity features
increases as the baseline becomes smaller.
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Fig. 10. Reconstructed trajectories with the original Libviso2.
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Fig. 11. Reconstructed trajectories with the modified Libviso2.

VIII. CONCLUSION AND FUTURE WORK

We have proposed a testbed for assessing the accuracy of
visual odometry with respect to the readings of an unsynchro-
nized consumer-grade GPS sensor. The testbed allowed us to
acquire an experimental GPS-registered dataset suitable for
evaluating existing implementations in combination with our
own stereo system. The acquired dataset has been employed to
assess the influence of calibration dataset and some implemen-
tation details to the accuracy of the reconstructed trajectories.

The obtained experimental results show that a consumer
grade GPS system is able to provide useful groundtruth for
assessing performance of visual odometry. This still holds even
if the synchronization and alignment with the camera system
is performed at the postprocessing stage. The experiments also

show that the size and the quality of the calibration target may
significantly affect the reconstruction accuracy. Additionally,
we have seen that features with zero disparity should be treated
with care, especially in small-baseline setups. Finally, the most
important conclusion is that small-baseline stereo systems can
be employed as useful tools in SfM analysis of video from the
driver’s perspective.

Future research shall explore influence of other imple-
mentation details to the reconstruction accuracy. The resulting
implementations shall be employed as a tool for improving
the performance of several computer vision applications for
driver assistance, including lane recognition, lane departure
warning and traffic sign recognition. We also plan to collect
a larger dataset corpus which would contain georeferenced
videos acquired by stereo rigs with different geometries.
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