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Abstract

In this paper we describe a novel image descriptor de-
signed for classification of traffic scene images in fleet man-
agement systems. The descriptor is computationally simple
and very compact (as short as 48 bytes). It is derived from
variations of two well known image descriptors: GIST and
spatial Fisher vectors, thus encoding both global and local
image features. Both GIST (being a global scene descrip-
tor) and spatial Fisher vectors (that relies on local image
features) are tuned to produce very short outputs (64 com-
ponents), which are then concatenated. The output is fur-
ther compressed by a lossy encoding scheme, without sac-
rificing classification performance. The encoding scheme
uses as little as 3 bits to encode each vector component.
The descriptor is evaluated on the publicly available FM?2
dataset of traffic scene images. We demonstrate very good
classification performance matching that of full-sized gen-
eral purpose image descriptors.

1. Introduction

Recognizing visual scenes while limiting the descriptor
size is a challenging problem with potential use in many
scenarios involving thin clients with limited bandwidths.
Examples include autonomous unmanned aerial vehicles
[35], driver assistance systems [ 3], fleet management sys-
tems [29], mobile robots in emergency response situations
[30], etc. We are assuming a scenario in which the server
is interested in retrieving and storing the information about
the visual surroundings of one or multiple thin clients at
regular time intervals for a prolonged period of time (rang-
ing from a week to a year), as illustrated in Figure 1. This
information is used for further processing, e.g. for cross-
checking GPS data, obtaining a semantic analysis of the
thin clients’ behavior such as ’the UAV height loss is cor-
related to the presence of birds in the scene”, etc. In such
a scenario, working with the raw image data generated by
the thin clients is prohibitively expensive both in terms of
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Figure 1: Our target application framework, where a num-
ber of thin clients send information about their surroundings
to a server via limited bandwidth.

Figure 2: Examples of scene types of interest in fleet man-
agement systems, from the FM2 dataset [29].

data transfer and in terms of storage. Hence, a reasonable
strategy is storing only the descriptors of the images, and
making these descriptors as short as possible.

This work deals with visual scene representations using
a very limited descriptor size (512 bytes and less). We are
specifically motivated by fleet management systems, where
a central server tracks the locations of a fleet of vehicles at
any given time. The vehicles are equipped with a range of
sensors measuring a number of vehicle properties, a GPS
sensor and a camera. The central server generates various
reports consisting of e.g. routes traveled, total number of
miles, fuel expenditure etc. One recurring problem in fleet
management systems is the GPS sensor precision. Due to
erroneous GPS output, it is often very hard to accurately
reconstruct the route the vehicle has traveled. GPS errors
are most common in specific and visually easily recogniz-
able places such as tunnels, toll booths or under overpasses.
Therefore, GPS ambiguity in fleet management systems
could be resolved by storing the camera image of the ve-
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Figure 3: Ambiguous route reconstruction due to poor GPS
precision. GPS readings are marked with red asterisks. It is
equally plausible that the vehicle travelled the highway (in
orange) and the local road (in white).

hicle’s surroundings and using it as a cue for both the likely
GPS failure and the correct location, e.g. by discerning lo-
cal roads from highways and identifying tunnels and over-
passes (Figure 2). Using this information, ambiguous routes
such as the one in Figure 3 could be easily resolved. How-
ever, typical volumes of information generated by the fleet
of vehicles, often involving hundreds of vehicles sending in
information every minute, make it implausible to transmit
and store entire images. The scene information should be
stored in a descriptor of a very small size that is still suffi-
ciently discriminative.

In this paper, we propose an efficient and short image
descriptor that offers the same discriminative performance
as its state-of-the-art counterparts that are one or more or-
ders of magnitude longer. We achieve this by combining
the GIST descriptor [26, 27] with bag-of-words-based spa-
tial Fisher vectors [17]. While GIST is a global descrip-
tor, spatial Fisher vectors aggregate local image features,
and we aim to capture “’the best of both worlds”. We ad-
dress the problem of descriptor length by proposing an effi-
cient encoding method, allowing some loss of data accuracy
and precision, but without affecting measurable classifica-
tion performance.

Note that beside fleet management systems, our ap-
proach could also be used to aid place recognition systems,
especially in scenarios of limited bandwidth. For example,
it could provide a prior information on the scene type. The
scene type could be used to partition the search space for
matching scenes, thus making the search process faster.

2. Related work

Our work is closely related to the following topics: (i)
generic image classification, (ii) short image descriptors,
(iii) traffic scene understanding and fleet management sys-
tems and (iv) learning invariant properties of places and in-

variant image features.

2.1. Image classification

Bosch et al. [4] categorize generic scene modeling meth-
ods for classification as either low-level or semantic. Meth-
ods categorized as low-level simply represent the image as
a collection of low-level features (e.g. color histograms) in
order to reduce the dimensionality for classification. In con-
trast, methods categorized as semantic can be thought of as
having some kind of prior understanding of what is being
represented. Examples of semantic methods include seman-
tic objects, where an object detector signals the presence or
absence of a certain object type in order to assign a label
to the image [22], bags of visual words [12, 5, 19], where a
set of meaningful visual words is retrieved from the training
data and used to classify query images, the GIST descriptor
[26, 27], where the scene is represented globally via a set of
filter responses, etc.

Bags of visual words have proven to be very successful
in the problem of image classification with a large number
of classes, as seen e.g. on the Pascal VOC dataset [11]. A
number of extensions and modifications of the original bags
of visual words have been proposed [8], including locality-
constrained linear coding (LLC) [34] and spatial Fisher vec-
tors (SFV) [17].

2.2. Traffic scene understanding

In traffic scene analysis, most researchers devise meth-
ods that are closely tailored to particular applications, given
the constrained nature of the problem. Depending on the
target application, methods range from scene segmentation
and understanding at a pixel level [10] to generic scenery
classification [32], or image-based localization [15].

Tang and Breckon [32] propose a method for road envi-
ronment classification from images based on a set of color
and texture-based features extracted at predefined regions
of interest. They manually define the regions of interest
to correspond to a sample of the road (in the center of the
image), the part of the road where it is the widest (at the
bottom of the image), and the environment at the left side
of the road. Two classification problems are considered:
either classifying images as off-road or on-road or a more
fine-grained classification into off-road, urban scenery, ma-
jor road and multilane motorway images. The work of Tang
and Breckon is extended in [24], where only Gabor features
are used, and the system is implemented using dedicated
hardware.

2.3. Short image descriptors

The volume of research on short image descriptors is rel-
atively modest. Bergamo et al. have recently introduced Pi-
CoDes [3] and mc (meta-class) [2] descriptors, which pro-
duce very short image representations for the purpose of ef-



ficient image indexing in large image databases. Although
very good classification performance can be obtained, pro-
ducing such descriptors is computationally very intensive,
which makes them unsuitable for our thin client scenario.

Sikiri¢ et al. [29] investigate the use of a number of state-
of-the-art descriptors in the problem of traffic scene classi-
fication, with an emphasis on the descriptor length. They
describe simple ways to tune each of the considered meth-
ods to produce very short descriptors (as short as 64 floating
point numbers) while still retaining very good classification
performance. Their findings show that GIST and spatial
Fisher vectors offer the best performance among the tested
descriptors when the goal is to minimize the feature vector
length.

2.4. Visual scene understanding

Visual place recognition is of special interest in the prob-
lem of simultaneous localization and mapping (SLAM) that
is actively researched in robotics [9, 23, 28]. Milford and
Wyeth [23] propose SeqSLAM, a SLAM algorithm that
uses full images instead of features such as SIFT [21]
or SURF [1], matches image sequences instead of single
images, and uses local contrast enhancement in the im-
age distance matrix with the idea of reinforcing local in-
stead of global match optimums. Input images are re-
duced to a very small size (e.g. 64 x 32 pixels) and patch-
normalized. Siinderhauf et al. [31] apply SeqSLAM on four
video sequences of a 728 km journey, one for each sea-
son of the year. They report very good performance for
sequences longer than 10 seconds, and a significant perfor-
mance drop for mild viewpoint changes. The problem of
viewpoint variance is addressed in SMART, a SeqSLAM-
inspired algorithm proposed by Pepperell et al. [28], by us-
ing variable offset image matching. SMART offers several
other improvements over SeqSLAM such as sky blacken-
ing. Siinderhauf and Protzel [3 1] introduce a descriptor for
SLAM, called BRIEF-Gist, based on the BRIEF image de-
scriptor [6], comparable to the popular FAB-Map [9], but
much more computationally efficient.

2.5. Our contributions

In this paper, we build on the work of Sikiri¢ et al. [29],
who have found that GIST and spatial Fisher vectors per-
form best in traffic scene classification when limiting the
descriptor length. We propose a way of combining these
two descriptors and efficiently encoding them in order to
obtain a short scene representation that captures both local
and global image structure.

Given the constrained nature of our target application
that involves a fleet management system serving a large
number of vehicles with low processing power and lim-
ited bandwidth, we do not consider processing-intensive
approaches such as PiCoDeS [3] and mc (meta-class) [2].

Although SeqSLAM and SMART could be suitable in our
target scenario, we do not consider them because of their
reliance on scaled-down images. When scaled-down with
the default parameters of SeqSLAM/SMART, each image
amounts to about 6 kilobytes of data, and our goal is trans-
mitting the descriptors of the size of 512 bytes and less. For
similar reasons, we do not consider BRIEF-Gist, as with
best-performing parameters it produces around 3 kilobytes
of data per image.

We now briefly review the GIST image descriptor and
spatial Fisher vectors and proceed to describe our method.

3. The GIST image descriptor

The GIST image descriptor [26, 27] is a global scene de-
scriptor that provides a rough representation of the scene
structure by coarsely representing the distribution of orien-
tations and scales in the scene. The descriptor is built by
convolving the input image with a number of Gabor filters
of varying scales and orientations. Each of the response im-
ages is then divided into a regular grid of regions, and the
responses in each region are averaged. The final GIST de-
scriptor is the concatenation of all the averaged responses.
GIST is a compact representation that is very fast to com-
pute [25], making it suitable for our target application sce-
nario.

In [29], GIST is shown to be highly discriminative in
traffic scene classification even when its size is reduced
from 512 to 64 components. The reduction in size is
achieved by using a grid of 2 x 2 regions instead of the de-
fault 4 x 4, as well as using 4 orientations per scale instead
of the default 8.

4. Spatial Fisher vectors

Spatial Fisher vectors [17] are an extension of the well-
known bag of visual words [12, 5, 19] descriptor. In bags
of visual words, each image is represented as an occurrence
histogram of a series of characteristic visual words. The vi-
sual words used for building the histogram comprise the so-
called visual vocabulary that is learned from a set of train-
ing images. To build the vocabulary, a number of patches is
extracted from each image, either through the use of an in-
terest point detector or through dense sampling. Each patch
is represented with a patch descriptor, e.g. SIFT [21]. The
descriptors of the collected patches from all images are then
clustered into K clusters, and cluster centroids represent vi-
sual words constituting a K -word vocabulary. Given an im-
age to be represented, the bag-of-visual-words descriptor is
built by extracting image patches and their descriptors from
the image in the same manner as in the training process,
finding the visual words that are nearest to the extracted
patches and building the histogram of the numbers of oc-
currences of all the words in the visual vocabulary.



A weakness of the classical bags of visual words is that
the representation does not retain any information about the
spatial layout of the image. This problem is addressed in
spatial Fisher vectors [ 7], where the spatial mean and vari-
ance of the image regions associated with individual visual
words are encoded in the descriptors. The encoding is based
on the Fisher kernel framework and Gaussian mixture mod-
els, used to represent appearance and spatial layout. The
positions of the patches that are assigned to a visual word
are modeled using a Gaussian mixture model, so their spa-
tial layout can be coded using one spatial Fisher vector per
visual word. Additionally, Fisher kernels are also used to
encode the appearance of the features, reframing the origi-
nal bag of visual words descriptors as Fisher vector repre-
sentations for a simple multinomial probabilistic model. It
has been shown [17] that spatial Fisher vectors can achieve
equal performance as the original bags of visual words us-
ing a smaller visual vocabulary, due to a more precise en-
coding of the appearance information. Hence, the computa-
tional cost of building a spatial Fisher vector representation
is lower than for the classical bags of visual words and the
representation itself is shorter, making spatial Fisher vectors
especially suitable for our thin client with a limited band-
width scenario.

5. Our method

The GIST descriptor is designed for scene recognition,
and focuses of global image features while ignoring the
small details in the scene. The spatial Fisher vectors de-
scriptor is intended for general-purpose classification, and
relies only on local image features. This distinction in
the level of captured details is reflected on the classifica-
tion performance of each descriptor in the context of traf-
fic scenes, as shown e.g. in [29], where the GIST descrip-
tor performs poorly on classes overpass and traffic, while
the spatial Fisher vectors perform poorly on classes road
and roll booth. Recognition of overpasses and dense traf-
fic in the scene is heavily dependent on modeling local fea-
tures, while recognizing roads and toll booths is easier using
global scene models.

Intuitively, by using a simple concatenation of the GIST
descriptors and the spatial Fisher vectors we would capture
both the global and local image features, and therefore im-
prove the overall classification performance. Additionally,
we expect that by combining a GIST feature vector of length
K and a spatial Fisher vector of length K, we might get bet-
ter classification performance than by using either GIST of
spatial Fisher vectors of length 2K . Therefore, as a first step
in building a short and descriptive scene representation we
propose to concatenate the GIST and the spatial Fisher vec-
tor descriptor of a scene into a single vector, as illustrated
at the top of Figure 4. Each component is then normal-
ized to have zero mean and unit variance, by subtracting the

— GIST Spatial Fisher vector :|

K 64-bit numbers K3 64-bit numbers

Zero-mean
and unit-
variance

Feature
" vector [—*

N(K;+K>) bits

. N << 64
encoding
norm.

Figure 4: Our method: after obtaining shortened GIST and
spatial Fisher vectors descriptors (of lengths K; and Ko, re-
spectively), their concatenation is normalized to zero mean,
unit variance. Each component of the result is then en-
coded using only N bits, so the total size of the output is
N(K1 + Kz) bits.
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Figure 5: The encoding scheme for N = 3 bits and the
interval width of w = 4. The closed interval [—40, 40]
is split into 2% = 8 equally wide bins. Value mapping is
illustrated for three samples (orange, red and blue). Note
that the values outside the interval (the blue asterisk) are
mapped to the nearest bin.

mean and dividing by variance, which are calculated from
the training dataset.

To additionally reduce the memory footprint of the im-
age feature vectors (and therefore also the bandwidth con-
sumption), we propose a non-standard feature vector repre-
sentation. The standard and straightforward representation
of an image feature vector is an array of floating point num-
bers of single or double precision, which uses 4 or 8 bytes
per vector component, respectively. Our goal is to reduce
the memory consumption to a maximum of 1 byte per com-
ponent.

Instead of trying to encode the sign, exponent and man-
tissa parts of a floating point number in 8 bits or less, we en-
code each vector component in a fixed point representation,
thus losing some accuracy and precision. More precisely, to
encode a vector component using only N bits, we first map
its value to a closed interval [L, R], which is split into 2V
discrete bins. The index of a bin the value falls into is the
encoded value of the component. Mapping into an interval
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Figure 6: Examples of classes from the FM2 dataset

is done in such a way that a value outside the interval is set
to the appropriate upper or lower interval limit, while other
values remain unchanged. An illustration of this process is
shown in Figure 5. The illustrated example assumes normal
data distribution, with zero mean. The width of the map-
ping interval is set to include 4 standard deviations from
the mean, thus including almost all observable values. This
interval is split into 2 = 8 equally wide bins, and the in-
dex of the bin serves as the encoded value. If a value falls
outside of the mapping interval, it is assigned to its nearest
bin. So in this example, each component can be encoded
using only 3 bits. Decoding process is straightforward, we
simply replace each bin index with the coordinate of the bin
center. In the example in Figure 5 the decoded values for
the orange, red and blue samples would be —3.50, —3.50
and 1.50, respectively. Using a simple experimental setup
we can easily find the most appropriate interval width and
number of bins for a given dataset and feature vector length.

6. Experiments

To experimentally validate the proposed descriptor, we
evaluate it on a dataset of traffic scenes while varying the
parameters of the underlying GIST and spatial Fisher vector
descriptors, as well as the parameters of the feature vector
encoding. We now give more details on the dataset we used,
describe our experimental setup, and present the results.

6.1. The FM2 dataset

The FM2 dataset [29] is a dataset of road scenes con-
taining 6237 images categorized into eight classes: high-
way, road, tunnel, tunnel exit, settlement, overpass, toll
booth and dense traffic. The images were recorded on roads
in Europe via a cellphone camera mounted inside a vehi-

Class label \ Images ‘

highway 4337
road 516
tunnel 601

tunnel exit 64
settlement 464
overpass 86
toll booth 75
dense traffic | 94

Table 1: Image distributions per class, the FM2 dataset.

cle, mainly at daytime and during sunny weather, using
a fairly constant viewpoint. The class labels are specifi-
cally intended to be useful in a fleet management scenario,
i.e. cover possible situations in which the loss of GPS pre-
cision, traffic jams and slowdowns are likely. Example im-
ages of all classes in the dataset are shown in Figure 2. The
class balance is skewed in favor of highway images, as il-
lustrated in Table 1.

The FM2 dataset comes with a publicly available pre-
made train/validation/test splits, a 25/25/50 split for each
class. In our experiments we use these splits to ensure com-
parability of our results with previous work [29].

We note one weakness of the FM2 dataset labeling: only
one class label is assigned per image, although there are im-
ages that could be assigned to multiple classes. Examples
include e.g. toll booths and overpasses on a highway, dense
traffic in a settlement etc. In this work, we retain the original
class labels to remain comparable to [29]; however, assign-
ing multiple labels to a single image should be considered
in future work.



6.2. Experimental setup

To evaluate the classification performance of the pro-
posed descriptor combination, we use the method proposed
in [29] to obtain GIST feature vectors and the spatial Fisher
vectors of lengths 64 and 128. From now on, we refer to
the spatial Fisher vectors of lengths 64, 128, etc. as SFV64
and SFV 128, etc. Similarly for GIST, we refer to the GIST
descriptors of lengths 64, 128, etc. as GIST64, GIST128,
etc.

We measure the classification performance of three
different descriptor concatenations:  GIST64+SFV64,
GIST64+SFV 128 and GIST128+SFV64. The classification
is performed with SVM (RBF kernel) and Random forest
classifiers, and we use mAP (mean of per-class average pre-
cision) as a measure of performance. We will now describe
each experimental component in more detail.

6.2.1 The descriptors

For spatial Fisher vectors we use the dense SIFT imple-
mentation from the VLFeat library [33] as a patch de-
scriptor. The code for producing the spatial Fisher vectors
themselves is based on code of Krapac et al. [17]. The
Gaussian mixture model parameters are learned using the
expectation-maximization algorithm, and the diagonal ap-
proximation of covariance matrix is used both for local de-
scriptors and position features. We use the first 6 principal
components of the SIFT descriptors, and only one Gaussian
per visual word, which means we use K visual words to
obtain a vector of length 16 K.

For the GIST descriptor we use the MATLAB implemen-
tation provided by the authors [26, 27]. The implementation
was modified to reduce the grid size to 2 x 2 in order to
produce the 128-dimensional GIST descriptors. By further
reducing the number of orientations per scale from 8 to 4,
we obtain the 64-dimensional GIST descriptors.

6.2.2 The classification

As a preprocessing step for SVM classification, we trans-
form all the feature vectors to zero mean and unit variance.
The classification is then performed using the LibSVM li-
brary [7], using the RBF kernel. For Random forest classi-
fication we employ the code of Liaw et al. [20].

We use the default train/validation/test splits of the FM2
dataset (25/25/50 split for each class). The classifier is
trained on the training set, while the validation set is used to
optimize the parameters. Finally, the classifier is trained on
the union of training and validation sets using the optimized
parameters, and the final score is evaluated on the test set.
In each step the mean average precision (mAP) is used as a
performance measure.

6.2.3 Feature vector encoding

We will now describe the experimental setup used to
explore the proposed memory-efficient vector encoding
scheme. Let us briefly review the method: for each vector
component, its value is mapped to a closed interval [L, R],
which is split into 2% bins, thus encoding each component
using only N bits. Values outside the interval are mapped
to the nearest bin. Since we got very good results using
a GIST64+SFV64 concatenation with SVM classifier, we
choose this combination as our baseline. These feature vec-
tors were transformed to have zero mean and unit variance,
so the appropriate interval is of the form [—w, +w]. By
setting the upper limit of the interval to three standard de-
viations (w = 3), most of the observed values would be
included in it (even without assuming normal distribution).
However, the extreme values (falling outside of range of
three standard deviations) could prove to be beneficial in
successful class discrimination. To explore this, we run the
experiments with w set to 3, 3.5, 4, 4.5 and 5. We split these
intervals into 2%V bins, with N set to 1, 2, 3, 4 and 8. For
simplicity, we use the bins of equal size. We measure the
classification performance using the same instance of SVM
classifier which produced the optimal results for the unen-
coded (full-size) GIST64+SFV 64 combination. The vectors
from the testing dataset split are encoded and then decoded
(thus introducing errors), and the classification performance
is then measured.

6.3. Experimental results

Classification results for the concatenated descriptors are
presented in Table 2 for the SVM classifier, and in Table 3
for Random forest. The original results for the plain SFV
and GIST descriptors from [29] are presented for conve-
nience. There are several things we can note. Firstly, our
combined descriptor GIST64+SFV64 indeed outperforms
both plain GIST128 and SFV128 descriptors, in case of
both SVM and Random forest classifiers. In fact, better per-
formance is only achieved using the spatial Fisher vectors of
length 2656 with an SVM classifier. We can also see that the
SVM shows much better performance than the Random for-
est classifier for all three combinations of our descriptors.
Next, we note that slightly better performance is achieved
with GIST64+SFV 128 than with GIST128+SFV64 descrip-
tor. This implies that we should put more emphasis on local
image features to enable optimal class discrimination.

Graphical display of per-class performance for the best-
performing setups with lengths of 128 is shown in Figure 7.
The graph implies that the class fraffic, containing images
of dense traffic is the one that most benefits from combining
global and local image features.

The results of our feature vector encoding experiments
are shown in Table 4. The table shows dependency of mean
average precision on two factors: number of bits per compo-



Descriptor Highway Road Tunnel Exit Settlement Overpass Booth Traffic \ Mean \
GIST 128 + SFV 64 9991 96.17 99.88 97.68 96.61 8729 86.77  92.05 | 94.55
GIST 64 + SFV 128 99.90 9398 9995 98.78 97.06 87.38 88.84  94.70 | 95.08
GIST 64 + SFV 64 99.90 96.05 99.83 95.27 96.99 88.03 86.14  92.80 | 94.38
GIST 512 [29] 99.84 9372  99.76 98.11 97.05 8331 9440 80.21 | 93.30
GIST 128 [29] 99.66 90.28  99.51 96.61 94.86 82.15 89.87 68.60 | 90.19
SFV 2656 [29] 99.94 9630  99.87 95.79 97.03 92.51 90.74  88.57 | 95.09
SFV 128 [29] 99.19 77774  98.83 82.68 86.29 80.96 7874  69.79 | 84.28
Table 2: Per-class average precision (percentage), SVM classifier

| Descriptor Highway Road Tunnel  Exit Settlement Overpass Booth Traffic | Mean |
GIST 128 + SFV 64 99.72  94.00  99.88 96.76 92.48 76.52 8349  87.43 | 91.28
GIST 64 + SFV 128 99.76 9379  99.90 97.62 92.66 82.50 80.47 90.84 | 92.19
GIST 64 + SFV 64 99.74 93.08 99.89 97.14 92.43 82.77 81.72  88.43 | 91.90
GIST 512 [29] 99.57 8833  99.53 94.76 94.17 79.56  91.61  80.23 | 90.97
GIST 128 [29] 99.16 81.63  99.26 94.73 89.59 78.78 90.16  69.00 | 87.79
SFV 2656 [29] 99.83 91.27  99.56 85.37 95.64 89.66 9198  79.48 | 91.60
SFV 128 [29] 99.76  90.78  99.10 87.17 95.46 82.86 90.22  73.22 | 89.82

Table 3: Per-class average precision (percentage), Random Forest classifier
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Figure 7: Per-class average precision for best performing

setups with feature vectors of length 128

[w [ 3 35 4 45 5
8bits | 9426 9433 9437 9439 9441
4bits | 94.05 94.53 9448 9442  94.40
3bits | 93.68 9416 94.06 9353 93.66
2bits | 91.05 9127 90.68 90.00 89.75
1bit | 7530 77.84 78.62 7895 7881

Table 4: Classification performance (mAP) for several en-
coding schemes of the GIST64+SFV64 descriptor, SVM
classifier

nent, and width of the mapping interval (expressed in terms
of number of standard deviations from the mean). The opti-
mal width of the interval seems to be, in most cases, 3.5 to 4
standard deviations from the mean. The classification per-
formance does not seem to decrease at all for 8 and 4 bits
per component. By using only 3 bits to encode each vec-
tor component, we sacrifice very little classification perfor-
mance compared to the baseline. For 2 bits per component
we do see a significant drop in classification performance,
mean average precision drops from 94% to 91%. Finally,
using just 1 bit per component is clearly not enough, as the
mean average precision drops to less than 80%. For FM2
dataset, we would recommend using 3 bits per component
with width set to 3.5 standard deviations, as this will sacri-
fice very little class discrimination for a significant memory
footprint reduction (10.7 times less than baseline).

7. Conclusion and outlook

We have confirmed that by combining global and local
image features we significantly improve classification per-
formance while not increasing feature vector length. On the
FM2 dataset of traffic scene images, our combined descrip-
tor of length 128 performs better than most other descrip-
tors, regardless of their length. It is slightly outperformed
only by a spatial Fisher vector descriptor of length 2656.
According to Gehler and Nowozin [14], even greater im-
provements should be expected if we employ their LP-/3,
or any other advanced feature combination method, such as



MKL (multiple kernel learning) [18]. Our results indicate
that a greater part of the feature vector components should
be derived from local, rather than global image features, so
this should be explored in future work.

Additionally, we have also presented a memory-efficient
way of encoding the feature vectors, using as little as 3 bits
per vector component. This way we have reduced the mem-
ory footprint of our combined descriptor of length 128 from
512 to 48 bytes, while measuring a drop of mean average
precision of only 0.22%. Our method is simple and relies
on small reduction of data accuracy and great reduction of
data precision. The method does not require any modifica-
tion in the training process, as the classifier can be trained
on regular data and it will successfully classify the vectors
with reduced precision. This is in itself an interesting re-
sult, and we invite other researchers interested in short im-
age representation to try out our method on their datasets
and descriptors. In our future work we will explore if addi-
tional improvements are possible using some method which
compresses combined vector components, such as product
quantization (PQ) [16].

References

[1] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-
up robust features (SURF). Comput. Vis. Image Underst.,
110(3):346-359, June 2008. 3

[2] A.Bergamo and L. Torresani. Meta-class features for large-
scale object categorization on a budget. In Proc. CVPR,
2012. 2,3

[3] A. Bergamo, L. Torresani, and A. W. Fitzgibbon. PiCoDes:
Learning a compact code for novel-category recognition. In
Proc. NIPS, pages 2088-2096, 2011. 2, 3

[4] A. Bosch, X. Mufoz, and R. Marti. Review: Which is the
best way to organize/classify images by content? Image Vi-
sion Comput., 25(6):778-791, June 2007. 2

[5] A.Bosch, A. Zisserman, and X. Mufioz. Scene classification
via pLSA. In Proc. ECCV, pages 517-530, Berlin, Heidel-
berg, 2006. Springer-Verlag. 2, 3

[6] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary
robust independent elementary features. In Proc. ECCV,
pages 778-792, Berlin, Heidelberg, 2010. Springer-Verlag.
3

[7]1 C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM Transactions on Intelli-
gent Systems and Technology, 2:27:1-27:27, 2011. Soft-
ware available at http://www.csie.ntu.edu.tw/
~cjlin/libsvm. 6

[8] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman.
The devil is in the details: an evaluation of recent feature
encoding methods. In Proc. BMVC, 2011. 2

[9] M. Cummins and P. Newman. FAB-MAP: Probabilistic lo-
calization and mapping in the space of appearance. Int. J.
Robot. Res., 27(6):647-665, 2008. 3

(10]

(1]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

(26]

A. Ess, T. Mueller, H. Grabner, and L. v. Gool.
Segmentation-based urban traffic scene understanding. In
Proc. BMVC, pages 84.1-84.11. BMVA Press, 2009. 2

M. Everingham, L. Gool, C. K. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. Int. J. Comput. Vision, 88(2):303-338, June 2010. 2
L. Fei-Fei and P. Perona. A Bayesian hierarchical model
for learning natural scene categories. In Proc. CVPR, pages
524-531, Washington, DC, USA, 2005. IEEE Computer So-
ciety. 2,3

M. Forster, R. Frank, M. Gerla, and T. Engel. A coopera-
tive advanced driver assistance system to mitigate vehicular
traffic shock waves. In Proc. INFOCOM, pages 1968-1976,
April 2014. 1

P. Gehler and S. Nowozin. On feature combination for mul-
ticlass object classification. In Proc. ICCV, pages 221-228,
Sept 2009. 7

N. Ho and P. Chakravarty. Localization on freeways using
the horizon line signature. In Proc. of Workshop on Visual
Place Recognition in Changing Environments at Int. Conf.
on Rob. Autom. (ICRA), 2014. 2

H. Jegou, M. Douze, and C. Schmid. Product quantiza-
tion for nearest neighbor search. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 33(1):117-128,
Jan 2011. 8

J. Krapac, J. J. Verbeek, and F. Jurie. Modeling spatial layout
with Fisher vectors for image categorization. In Proc. ICCV,
2011. 2,3,4,6

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui,
and M. L. Jordan. Learning the kernel matrix with semidef-
inite programming. The Journal of Machine Learning Re-
search, 5:27-72, Dec. 2004. 8

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In Proc. CVPR, pages 2169-2178, Wash-
ington, DC, USA, 2006. IEEE Computer Society. 2, 3

A. Liaw and M. Wiener. Classification and regression by
randomForest. R News, 2(3):18-22, 2002. 6

D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision, 60(2):91-110, Nov. 2004.
3

J. Luo, A. E. Savakis, and A. Singhal. A Bayesian network-
based framework for semantic image understanding. Pattern
Recogn., 38(6):919-934, June 2005. 2

M. Milford and G. Wyeth. SeqSLAM: visual route-based
navigation for sunny summer days and stormy winter nights.
In N. Papanikolopoulos, editor, Proc. ICRA, pages 1643—
1649, River Centre, Saint Paul, Minnesota, 2012. IEEE. 3
L. Mioulet, T. Breckon, A. Mouton, H. Liang, and T. Morie.
Gabor features for real-time road environment classification.
In Proc. ICIT, pages 1117-1121. IEEE, February 2013. 2
A. Murillo, G. Singh, J. Kosecka, and J. Guerrero. Localiza-
tion in urban environments using a panoramic gist descriptor.
Robotics, IEEE Transactions on, 29(1):146-160, Feb 2013.
3

A. Oliva and A. Torralba. Modeling the shape of the scene: A
holistic representation of the spatial envelope. Int. J. Comput.
Vision, 42(3):145-175, May 2001. 2, 3, 6


http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

A. Oliva and A. B. Torralba. Scene-centered description
from spatial envelope properties. In Proc. BMCV, pages
263-272, London, UK, UK, 2002. Springer-Verlag. 2, 3,
6

E. Pepperell, P. Corke, and M. Milford. All-environment
visual place recognition with SMART. In Proc. ICRA, pages
1612-1618, May 2014. 3

I. Sikiri¢, K. Brki¢, J. Krapac, and S. Segvi¢. Image repre-
sentations on a budget: Traffic scene classification in a re-
stricted bandwidth scenario. Proc. IEEE Intelligent Vehicles
Symposium, 2014. 1, 3,4,5,6,7

D. Summers-Stay, T. Cassidy, and C. Voss. Joint navi-
gation in commander/robot teams: Dialog & task perfor-
mance when vision is bandwidth-limited. In Proceedings
of the Third Workshop on Vision and Language, pages 9—16,
Dublin, Ireland, August 2014. Dublin City University and
the Association for Computational Linguistics. 1

N. Siinderhauf, P. Neubert, and P. Protzel. Are we there yet?
Challenging SeqSLAM on a 3000 km journey across all four
seasons. In Proc. of Workshop on Long-Term Autonomy at
Int. Conf. on Rob. Autom. (ICRA), May 2014. 3

I. Tang and T. Breckon. Automatic road environment classi-
fication. IEEE Trans. Int. Transp. Sys., 12(2):476-484, June
2011. 2

A. Vedaldi and B. Fulkerson. VLFeat: An open and portable
library of computer vision algorithms. http://www.
vlfeat.org/,2008. 6

J. Wang, J. Yang, K. Yu, F. Lv, T. S. Huang, and Y. Gong.
Locality-constrained linear coding for image classification.
In Proc. CVPR, pages 3360-3367, 2010. 2

S. Wei, L. Ge, W. Yu, G. Chen, K. Pham, E. Blasch, D. Shen,
and C. Lu. Simulation study of unmanned aerial vehicle
communication networks addressing bandwidth disruptions.
In Proc. SPIE, volume 9085, pages 908500-908500-10,
2014. 1


http://www.vlfeat.org/
http://www.vlfeat.org/

