
UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND

COMPUTING

MASTER THESIS no. 358

Robust point tracking for visual
navigation

Ante Trbojević

Zagreb, July 2012.

Umjesto ove stranice umetnite izvornik Vašeg rada.

Da bi ste uklonili ovu stranicu obrišite naredbu \izvornik.

I would like to thank my supervisors Siniša Segvić and François Chaumette, who

suggested the topic, for their support, technical assistance and advises. Also, special

thanks to Fabien Spindler for technical support, implementation advises and patience

during the experimenting with the developed software.

This work has been done during my research internship in Lagadic group (INRIA,

Rennes, France).

iii

iv

CONTENTS

1. Introduction 1

2. Assumptions 5

3. Point feature tracking 7

3.1. Similarity consistency check . 7

3.1.1. BRIEF descriptor . 8

3.2. Large movement elimination . 9

3.3. Translational consistency check . 10

4. Estimation of the essential matrix 11

4.1. Elimination of outliers . 11

4.2. Decomposition of essential matrix 12

5. Creation of a topological-metric environment map 15

5.1. Scale reconstruction . 15

5.2. Key-image detection . 16

6. Visual navigation 19

6.1. Initial localization . 19

6.1.1. Rough global localization 19

6.1.2. Fine local localization . 20

6.2. Projecting feature positions . 21

6.3. Tracking . 21

6.4. Visual servoing . 22

6.5. Transition . 22

6.5.1. The geometric method . 23

6.5.2. The second moment order method 24

v

7. Results 25
7.1. Mapping . 25

7.2. Navigation . 33

7.2.1. Transition . 34

7.3. A navigation experiment . 37

7.4. Testing on the robot . 40

8. Conclusion 45

Bibliography 47

vi

1. Introduction

The goal of this master thesis is to design a software that will be able to autonomously

navigate a robot from an initial location to a desired location in outdoor environment.

This task can be performed with two steps: mapping and navigation. The mapping is

a learning process where the robot tries to learn a path on which it is going to oper-

ate autonomously later during the navigation phase. The learning phase is an offline

process during which the robot is usually guided by human control. The navigation

phase has to be a real-time process, so that robot can autonomously move through the

pre-learned path.

Today, there are two main approaches how to accomplish visual navigation of the

robot using computer vision: the model-based approach and the appearance-based

approach

In the model-based approach the environment is represented by a 3D model. Sim-

ply, during the learning, geometrical information such as lines[8] or planes [7] is ex-

tracted from environment as the robot travels along desired path. Using such features a

3D model can be created describing the working environment (world) where the robot

is operating. During the navigation phase, the localization is done by matching the

learned model with the current local model reconstructed from currently acquired data

from sensors.

The appearance-based approach splits the path to the several smaller paths that are

connected in a directed chained graph. Each node in the graph represents the location

where information, i.e. description of environment, has been obtained from data sen-

sors and stored in a visual memory. So, a link between nodes gives a possibility for

the robot to navigate autonomously between these two nodes. During the navigation,

the goal is to navigate the robot from the initial node to the adjacent node. Informa-

tion stored in visual memory for those two nodes is used for localization, cf. Figure

1.1. Knowing the difference between description of environment in the current view

(acquired from camera during the navigation) and the reference view (the one stored in

the nodes during the learning) it is possible to do the localization of the robot. When a

1

reference node is reached context is switched to the next pair of adjacent nodes, i.e. the

context for visual navigation is replaced with the context stored in visual memory for

the next adjacent pair of nodes.

The concept of splitting path in several smallest is described in [18]. Using this

concept an framework for autonomous navigation of robot has been designed in [19].

The learned path in [19] is organized as a direct chained graph, where each node is

called key-image and a link between two key-images represent a local world where

visual navigation can be easily and robustly performed, cf. Figure 1.2.

Figure 1.1: Visual memory is organized as ordered set of key-images {I0, . . . , In}. Each

key-image contains features that can be used for visual navigation during the navigation phase.

Figure 1.2: Local world k is consisted of two adjacent key-images (Ik−1, Ik) with corre-

spondent set of features (marked as ’×’ in the images). Those features, presented in both key-

images, are projected in the current camera view and used for the visual navigation. Ek−1 is a

geometry between the current view and the preceding key-image view, while Ek is a geometry

between the current view and the following key-image view.

2

The developed system in this master thesis relies on the proposed system in [19].

The design concept is the same as in [19]. The tracker with the affine model is re-

placed with the tracker with the translational model, as also MLESAC with RANSAC

(RANSAC + LMedS). As well, the five point relative pose algorithm [17] is not used,

instead the simple eight point algorithm is used. The feature prediction and the smooth

transition are also avoided in this system.

This paper is organized as follows. Assumptions and information about used hard-

ware are discussed in Chapter 2. Chapter 3 provides the description of photometric

tracker for robust point tracking and description of additional improvements of tracker.

Details about geometry reconstruction from two views are described in Chapter 4. In-

formation about the learning process can be found in Chapter 5, while the navigation

phase is described in Chapter 6. Results are provided in Chapter 7 with examples,

images and videos of the learning and the navigation. Finally, the conclusion with

discussion about advantages and disadvantages of the implemented solution, possible

future improvements and applications is provided in Chapter 8.

3

4

2. Assumptions

The proposed system is designed for outdoor environment navigation. The robot used

for testing is equipped with a single perspective camera which is mounted and fixed on

the front panel of the mobile robotic car. This sensor is the only available sensor for

gathering data and captures cca. 15 fps. Therefore, the developed system relies only

on images acquired from the camera, other sensor are not used. In fact, the robot is

equipped with obstacle avoidance hardware, so that robot automatically avoids obsta-

cles. Obstacle avoidance has been implemented in low-level and access to the system,

as also to the obstacle avoidance hardware, is not available. The robot motion is con-

trolled by visual navigation, but if the obstacle avoidance system detects an obstacle

then circumvention is performed by the obstacle avoidance system and all motion com-

mands of the visual navigation are ignored.

The robot is moving forward with the approximately constant speed and only one

angle of rotation can be used for the manipulation. Therefore, the robot has only 1

DOF (degree-of-freedom), the rotation angle that enables robot to turn left or right,

i.e. the yaw angle.

In order to decrease error of input data in images, such as distortion of camera im-

age, camera calibration has been performed. Four intrinsic linear parameters, i.e. focal

length in terms of pixels (αx, αy) and principal point (u0, v0) , and one radial dis-

tortion parameter kdu are determined. The radial distortion parameter kdu is used for

correction of tracked points in image before the points are forwarded to the two-view

geometry reconstruction procedure. The parameter kud is used for opposite direction,

i.e. for transforming point from undistorted coordinates to distorted. This parameter

is also needed because of determining the positions of features from visual memory

during the navigation phase (the projection of features).

5

6

3. Point feature tracking

Several algorithms for tracking point features have been examined. All tested algo-

rithms are photometric trackers based on Kanade-Lucas-Tomasi Feature Point Tracker.

The first version of tracker is described in [16] and a more sophisticated version has

been proposed in [21]. Finally, the whole process, together with discussion which

features are the most appropriate for tracking, is explained in [20].

The OpenCV’s tracker, Birchfield’s implementation and the modification of Birch-

field’s tracker described in [9] have been evaluated during the learning (mapping)

phase.

The implementation of KLT tracker in OpenCV library is based on [20], details

about the implementation can be found in [4]. The Birchfield’s tracker 1, unlike the

OpenCV’s tracker, contains affine consistency check [2] and insensitivity to the light-

ing. The modificitation described in [9] contains isotropic scaling and affine contrast

compensation (without the lighting insensitivity component). The OpenCV imple-

mentation is cca. 30% computationally faster than the Birchfield’s tracker, while the

the modification of Birchfield’s implementation [9] is the slowest one, cca. 50% slower

than the OpenCV’s tracker.

Using the tracker with the affine consistency check a large number of bad feature

tracks can be eliminated from feature set as it’s shown in [19], it is especially useful for

detecting feature drifts. As the OpenCV does not contain the affine model of tracker,

therefore the affine consistency check can not be easily implemented. This deficiency

has been overcome with additionally filtering of tracked features like similarity con-

sistency check, translational consistency check and large movement elimination.

3.1. Similarity consistency check

Similarity consistency check compares the descriptor of feature in the current image

with the descriptor of same feature in the image where it has been detected (where
1The source code and details about the implementation: http://www.ces.clemson.edu/ stb/klt/

7

the tracking of feature has been initialized). A feature is removed from the track-

ing feature set, if similarity error between those two descriptors is large. The BRIEF

(Binary Robust Independent Elementary Features) descriptor [5] has been chosen as

feature descriptor, mainly because it can be fast computed and because of invariance

to brightness and blurring [14]. The only disadvantage is variation to scale. On the

contrary SURF descriptor [1] which is invariant to brightness, rotation and scale has

not been chosen because the computation of SURF descriptor is slightly too slow for

the navigation phase, as also the invariance to rotation is not desirable.

3.1.1. BRIEF descriptor

Binary Robust Independent Elementary Features (BRIEF) is an efficient feature point

descriptor designed for fast creation and comparison. BRIEF algorithm computes bi-

nary strings from image patches, this binary strings can be easily compared using Ham-

ming distance.

Each bit in a binary string represents a comparison between two points inside a

patch. Bit is set to value 1 if first point has a higher intensity then other point. The

comparison between two points x and y inside patch p of size S × S is defined as test

τ

τ(p;x,y) :=

{
1 if p(x) < p(y)

0 otherwise
, (3.1)

where p(x) is the pixel intensity in a smoothed version of p at x = (u, v)T . If the

binary string has n bits, then n (x,y) - locations have to be picked and tested, so

BRIEF descriptor of patch (feature) p is defined as

fn(p) :=
∑

1≤i≤n

2i−1 · τ(p;x,y). (3.2)

The selection of n pairs (x,y) depends on the Gaussian distribution, i.e. they are

sampled from an isotropic Gaussian distribution distributed at the patch center with

variance 1
25
S2.

In order to decrease noise sensitivity, the whole image is pre-smoothed with Gaus-

sian smoothing before the calculation of descriptor. Size of Gaussian kernel is 9 × 9

and variance σ is set to value 2.

Two BRIEF descriptors can be easily compared by calculating the Hamming dis-

tance between those two descriptors. Hamming distance can be easily and fast per-

formed with XOR operation on modern CPUs.

8

3.2. Large movement elimination

Features detected on moving objects like cars or persons represent another set of un-

desirable features. During the tracking those features usually are successfully tracked,

i.e. they are moving together with the object, but they should be considered as outliers

during the essential matrix calculation. Similarity consistency check can not remove

such features, because descriptors of the reference patch and patch in the current im-

age are similar. So, a simple solution named large movement elimination, has been

implemented with assumption that major number of features have similar displace-

ment (euclidean distance between position of feature in a previous frame and position

in a current frame). Features that are far from the camera have the smallest displace-

ment, as feature is closer to the camera, the displacement is larger. Features tracked

on the moving object usually have larger displacement then nearest feature to the cam-

era, although that depends on the direction, speed and distance of the moving object.

Generally, satisfactory results have been obtained with eliminating the features with

displacement much greater than the average displacement of tracked feature set. Thus,

after the new positions of features have been obtained using the tracker’s translational

model, the average displacement is calculated and for each feature is checked if its

displacement is not too far from the average. This method successfully removes fea-

tures on fast moving objects and objects that are moving orthogonal to the direction of

camera moving (cf. Figure 3.1).

(a) Without large movement elimination (b) With large movement elimination

Figure 3.1: An example of the large movement elimination method. With the large movement

elimination features are not tracked on persons who are crossing in the front of camera.

9

3.3. Translational consistency check

Translational consistency check has been also implemented. The approach is similar to

the affine consistency check [2], however the affine model of tracking is not available

in the OpenCV library, thus the translational mapping is used instead of the affine

mapping. Figure 3.2 describes the translational consistency check. A feature is tracked

Figure 3.2: Translational consistency check.

in the video sequence frame-to-frame, i.e. for each frame a tracked patch of feature in

the previous image is used as a reference template for tracking in the current image.

After this step translational consistency check is called, i.e. appearance of feature in

first image is used as a reference template and such template is searched in the current

image. If the position of feature obtained by translational mapping from the first image

is not too far from the position of feature obtained by tracking from the previous image,

then the feature is not removed from the feature set. Using this method bad tracks,

e.g. feature drifting can be easily detected and such features can be removed from the

tracker’s feature set.

10

4. Estimation of the essential matrix

The essential matrix can be easily estimated from a set of correspondences in two

camera views with the 8-point algorithm [12]. In order to successfully estimate the

essential matrix, the set of feature correspondences has to contain at least eight feature

point correspondences that are not co-planar. As it is mentioned in Chapter 2, before

any estimation all points are transformed in the calibrated context, i.e. the normaliza-

tion is performed [11]. Since all correspondences need to satisfy the condition defined

by equation:

q′Eq = 0, (4.1)

where E is the essential matrix 3 × 3, and q is a 2D point in first view and q′ is a

correspondent 2D point in second view (points are represented in homogeneous coor-

dinates). The essential matrix is calculated from the homogeneous linear system that

is formed from equations for all correspondences. The homogeneous linear system is

solved using Singular Value Decomposition [13].

4.1. Elimination of outliers

The main disadvantage of the eight point algorithm is the influence of outlier corre-

spondences and co-planar points that can produce degenerate solution. Outliers may

have a large impact on the accuracy of the estimated essential matrix. They can pro-

duce the completely failed essential matrix that does not represent the actual geometry

between two views. Outliers are produced during the tracking, usually because of a

temporary occlusion or a tracking drift (a feature gradually drifts away from the cor-

rect position). The improvements of tracker described in Chapter 3 do not guarantee

the elimination of all outliers, thus the correspondence set has to be additionally filtered

with an iterative method for parameter estimation.

Iterative methods for parameter estimation, like RANSAC and MLESAC have been

used for outliers elimination. These methods can eliminate outliers, so the essential

11

matrix can be estimated only on a set of inliers using the 8-point algorithm [12]. The

OpenCV library contains an implementation for the essential matrix estimation which

uses RANSAC for the elimination of outliers. Additionally, a custom implementa-

tion of MLESAC, based on the paper [22], has been implemented. The MLESAC

implementation uses the 7-point algorithm for calculating the hypothesis, i.e. the es-

sential matrix. To determine how feature fits to the hypothesis (the essential matrix)

the Sampson error [12] has been used as the error function. Torr and Zisserman [22]

propose the reprojection error as the error function. This error function is an overkill

for performances, since it requires recovering the camera motion (extraction of the

rotation matrix and the translation vector from the essential matrix) in each iteration.

The Sampson error (the algebraic approximation of reprojection error) is much less

computationally demanding.

A technique for outlier rejection also has been implemented based on the combi-

nation of the RANSAC and LMedS (Least Median of Squares). The correspondent set

of features in two-views is forwarded into the RANSAC algorithm. The inliers set ob-

tained using RANSAC is passed then in the LMedS algorithm. The output of LMedS

is considered as final set of inliers and the 8-point algorithm is performed on such set.

This combination showed the most robust results during the learning (mapping) phase,

cf.. Section 7.1. During the navigation it is not used because it is slightly too slow for

the real-time application.

4.2. Decomposition of essential matrix

A camera motion can be extracted from the essential matrix. Single camera provides

6 DOF of the camera motion (three rotational angles and three components of trans-

lation), but only 5 DOF can be estimated. The remaining degree is the scale of the

translation. Camera pose can be expressed using the 3 × 4 camera matrix P which

describes the mapping of a pinhole camera from 3D point Q in the world to the corre-

spondent 2D point q in a camera image [12], c. f. Eq. 4.2.

q = PQ (4.2)

If the coordinate system of the 3D world is centered at the camera coordinate sys-

tem then mapping is represented with P = [I|0], where I is a 3 × 3 identity matrix.

If camera coordinate system (x, y, z) and world coordinate system (x′, y′, z′) are not

aligned then P = [R|t] represents relation between those two coordinate systems,

12

where R is the 3× 3 rotation matrix and t the translational vector.

The camera pose in the current view relevant to coordinate system of a camera pose

in the last detected key image k can be expressed with Pc = [Rk|tk]. Rotation matrix

Rk and translational vector tk are extracted from essential matrix as it is described in

[12], [17]. The decomposition of essential matrix produces four possible solution, the

solution where points are in front of camera is a valid one. To determine if a point is

in front of camera the triangulation is performed as it is described in [17].

13

14

5. Creation of a topological-metric
environment map

Creation of a topological-metric environment map (hereinafter “mapping”) is a learn-

ing phase during which the main goal is to learn a path, so that the robot can au-

tonomously move through the learned environment. The learned path is then used as a

reference for the navigation phase.

During the mapping phase features are extracted using the Harris corner detector

[10]. In the first frame detector is called. The 2D positions of features together with

the image are saved in a visual memory as the first key-image. These features then

have been tracked through the video sequence using Lucas-Kanade tracker with the

translational model [21]. In each frame two-view geometry is reconstructed between

the camera pose in the current frame and the camera pose in the last key-image. If the

quality of reconstructed two-view geometry is not acceptable, the image in the current

frame together with the feature positions in the image are saved in the visual memory

as a new key-image.

This process is repeated in a loop. From an input, i.e. learning video sequence,

key-images are extracted. Those key-images are used as reference images during the

navigation phase, together with the extracted features in the mapping phase that are

used for visual servoing of the robot.

5.1. Scale reconstruction

Translational vector t from an essential matrix is known only up to scale, it shows only

direction of camera motion, thus without knowing the scale it’s not possible to deter-

mine the exactly camera position. Scale is estimated following the method described

in [19], i.e. by requiring that the depth of all 3D points in the previous local world 1

1A local world is space between two adjacent key-images. In this space it is possible to navigate the

robot using the correspondent set of features that are visible in both key-images.

15

and the current local world is the same. In the first local world, it is not possible to

determine the scale, obviously there is no previous local world, so scale reconstruction

is performed from the second local world.

5.2. Key-image detection

Determining when to save an image as a key-image in visual memory during the map-

ping is a crucial step. Quality of extracted information from key-images have a signif-

icant influence on the quality of the navigation and finally on the visual servoing. Dur-

ing the mapping phase, features are detected using the Harris-corners detector (maxi-

mum 850 features), then tracked in each frame. Two-view geometry is reconstructed

between the current image and the last detected key-image. If the quality of two-view

geometry between those two images is not satisfactory, the current image together with

the tracked features is saved in visual memory as a new key-image. In each frame three

values are monitored to determine the quality of the reconstructed two-view geometry.

During the tracking, at each frame, two-view geometry is estimated using feature

correspondences between the current image and the last detected key-image, i.e. the

essential matrix is estimated. Using the reconstructed geometry, the reprojection error

is calculated as it is shown in Eq. (5.1).

reprojectionError(t) =

√∑
i d(qi, q̂i)2 + d(q′i, q̂

′
i)
2

number of tracked features in frame t
, (5.1)

In Eq. (5.1) d(qi, q̂i) is euclidean distance between points qi and q̂i. Vector qi is a

2D point in the first camera view, while q′i is a correspondent 2D point in the second

camera view. Points q̂i and q̂′i are projected points with projection matrix on first view

and second view, respectively.

A new key-image is taken if less then 75% of features are tracked (live) cf. Eq.

(5.6) and if the standard deviation of reprojection error is above threshold maxStDev

(cf. Eq. (5.5)) or if the ratio between reprojection error in the current frame and the

previous frame is above threshold ratioCurrPrev (cf. Eq. (5.3)). Also if the

number of tracked features is below threshold minLiveFeatures (cf. Eq. (5.7))

key-image is detected and saved. Finally, the formulation of condition for detecting

key images is expressed with condition Eq. (5.2).

[(cond1 ∨ cond2 ∨ cond3) ∧ cond4] ∨ cond5 (5.2)

16

cond1 := [(stdev(reprojectionError(t))
stdev(reprojectionError(t−1)) > ratioCurrPrev] (5.3)

cond2 := [stdev(reprojectionError(t)) > maxStDev] (5.4)

cond3 := [scale(t)
scale(t−1) < 0.8] (5.5)

cond4 := [n(t)
N(t)

< ratioLiveFeatures] (5.6)

cond5 := [n(t) < minLiveFeatures] (5.7)

17

18

6. Visual navigation

6.1. Initial localization

When the robot is turned on it’s necessary to determine a rough location of the robot in

the global space, i.e. between which two key-images the robot is located. To perform

this task a current image in camera is compared with all key-images in the visual

memory. By finding the most similar key-image it is possible to determine between

which two key-images the robot is located. When the nearest preceding and following

key-image are found, then fine local localization is performed to determine the exact

location of robot.

6.1.1. Rough global localization

The content-based image retrieval system is used to find the most similar key-image to

the current image acquired with the camera. More information about the used image re-

trieval system can be found in [3]. During the mapping phase, after all key-images have

been extracted, a content-base image retrieval tree is constructed on all key-images.

Construction of the CBIR tree can take several minutes, even hours, i.e. the construc-

tion time depends on the number of key-images. The offline construction of the tree

enables a fast querying in the navigation phase. Thus, during the initialization in the

navigation phase, the content-based image retrieval system is queried with the current

image to find the most similar key-image in visual memory.

By knowing the most most similar key-image Ik it is still unknown in which local

world the current image is located. The current image could be in the local world

(Ik−1, Ik) or in the local world (Ik, Ik+1). To disambiguate between those two local

worlds it is checked if the current image is in front or behind of the camera view in the

key-image. The disambiguation is achieved by calculating the geometry between the

current image and the key-image. When the geometry is known, then the translation

vector is also known. This vector shows in which direction is the camera pose in

19

the current image (reference to the key-image coordinate system). So by calculating

the angle φ between the camera direction in the key-image and the translation vector

of camera motion in the current image (reference to the key-image) it is possible to

determine if the current image is in front or behind of the key-image. If the angle

φ is less or equal than 90◦ then the current image is in front of camera view in the

key-image (cf. Figure 6.1).

The geometry is estimated using feature correspondences between two images.

Feature correspodence are obtained using the wide-baseline matcher described in [3].

In both images features (DoG, MSER) are extracted, then they are matched and corre-

spodent features are used for the geometry estimation.

Whereby the image retrieval system returns a list of results for a query ordered by

likelihood. The selection of the most similar key-image is improved by simply com-

paring the reprojection error of reconstructed geometry with the predefined threshold.

The key-image obtained as result of image retrieval query is accepted only if the re-

projection error is not larger then the threshold, otherwise the process is repeated with

the next best key-image in the list. If all key-images are rejected, then the one with the

smallest reprojection error is picked as the initial key-image.

6.1.2. Fine local localization

The exact location is found by performing wide-baseline matching [3] between the

current image It, the preceding key-image Kk and the following key-image Kk+1.

Features are extracted from images using DoG and MSER extractors [3]. Matched

features are used for estimation of essential matrix between the current image and the

preceding key-image Et:k = [Rt:k|tt:k], as also between the current image and the fol-

lowing key-image Et:k+1 = [Rt:k+1|tt:k+1]. Correspondent matches in all three images

are used to estimate scales of translational vectors tt:k and tt:k+1. This is performed

by requiring that points have the same depth in the world represented with Et:k or the

world with Et:k+1. The estimated scales st:k and st:k+1 have to be adjusted with the

current local world (represented with Kk and Kk+1). If Pk+1 = [Rk+1|tk+1] is a cam-

era pose in the key-image Kk+1 reference to the camera pose in the key-image Kk,

then scale can be adjusted with a scale factor represented with Eq. (6.1).

st:k:k+1 =
|st:k · tt:k + (−1) · st:k+1 · tt:k+1|

|tk+1|
(6.1)

20

Finally, the scaled translational vectors are

tt:k := st:k:k+1 · st:k · tt:k
tt:k+1 := st:k:k+1 · st:k+1 · tt:k+1. (6.2)

6.2. Projecting feature positions

After the geometry is successfully reconstructed the features from the current local

world in visual memory need to be located in the current image It. Features saved in

visual memory are represented as 3D points in the coordinate frame of the following

key-image Kk+1. If camera pose relevant to the camera pose in the key-image Kk+1 is

known those features can be easily projected in the current image. As it is mentioned in

section 6.1.2 two two-view geometries are reconstructed, one between It and Kk and

other between It and Kk+1. The better one of those two is selected. Using the better

geometry features are projected in the current image. The next step is the refining of

feature position, since there is no guarantee that reconstructed geometry is the actually

one that represents the geometry between views. The refining step is performed with

tracker by minimizing the residual between the projected feature and the reference

appearance in key-image. References are taken from the key-image which produces a

better geometry.

Additionally, the whole refined feature set is filtered with similarity consistency

check to eliminate invisible features. This can happen if for example during the map-

ping features had been detected on a car and during the navigation phase the car is not

in that place anymore, so these features have to be eliminated. This is performed using

tracker’s similarity consistency check, i.e. by comparing BRIEF descriptor (cf. Sec-

tion 3.1.1) of the feature in the current image with BRIEF descriptor of the reference

appearance in the key-image.

6.3. Tracking

After the features from visual memory have been found, those features are tracked

frame-to-frame using the point feature tracker, cf. Section 3, with enabled large move-

ment elimination. The translational consistency check and the similarity consistency

check are disabled because they may eliminate too much inliers during the navigation.

This is not a problem for the mapping phase because new features are detected if the

number of correspondences is less than Eq. (5.6), but in the navigation if there is less

21

then eight correspondences, then the essential matrix can not be computed. Thus, the

navigation would fail.

However, the situation with too few points for the essential matrix calculation can

not be discarded, there is a possibility of occurring such exception during the navi-

gation. Thus, if the navigation fails because of too few features, the similarity error

threshold for similarity consistency check is scaled by factor two and features from

visual memory are again projected and refined on the current image, as it is described

in Section 6.2, but using the geometry from the previous frame and scaled similarity

error threshold.

After the tracking, two geometries (the geometry between the current image and

the preceding key-image and the geometry between the current image and the follow-

ing key-image) are refreshed (re-estimated) with the new positions of features obtained

by the tracker. Better geometry of those two is used as representative one for a local-

ization.

6.4. Visual servoing

Robot manipulation has been performed in a visual servoing processing loop [6] us-

ing correspondences between features in the current image acquired in real-time and

features in the following key-image from visual memory.

The steering angle is calculated as it is shown in Eq. (6.3).

φ = −λ(x̄t − ¯xi+1) (6.3)

Where (xt, yt) ∈ Xt are feature coordinates in the current image, (xi+1, yi+1) ∈ Xi+1

are coordinates of features in the following key-image and λ ∈ R+ is a predefined

gain.

6.5. Transition

For the navigation phase, decision when to switch the local world has significant in-

fluence on the quality of navigation. Two approaches are implemented and tested: the

geometric method and the second moment order method.

22

6.5.1. The geometric method

The geometric method relies on the reconstructed geometry. After the geometry is

reconstructed it is possible to determine the position of camera in the current view rel-

ative to following key-image. Transition occurs if the camera pose is in front of camera

view in the following key-image Kk+1. It is calculated by measuring the angle φ be-

tween the vector of camera direction in the following key-image Kk+1(cf. the green

vector in Figure 6.1) and the vector that connects points p(Kk+1) and p(It) (cf. the

black vector in Figure 6.1). Where p(Kk+1) is a geometric 2D position of camera

pose in current image It and p(It) is a geometric 2D position of camera pose in the

key-image Kk+1. Transition is performed only if the angle φ is not above 90◦.

φ

-

@
@
@R

-

p(Kk)

p(Kk+1)
p(It)

Figure 6.1: An example of the detection of transition. The blue vector shows the direction of

camera in the preceding key-image Kk, while the green vector shows the direction of camera

in the following key-image. Function p(·) returns the 2D position in the map from the bird’s-

eye view. The black vector connects 2D position of the camera pose in the current image with

the camera pose in the following key-image. The transition is performed, since the angle φ

between the green vector and the black vector has value of 45◦, i.e. less than or equal to 90◦.

φ

-

@
@
@R

6
p(Kk)

p(Kk+1)

p(It)

Figure 6.2: The blue vector shows the direction of camera in the preceding key-image Kk,

while the green vector shows the direction of camera in the following key-image. Function

p(·) returns the 2D position in the map from the bird’s-eye view. The black vector connects

2D position of the camera pose in the current image with the camera pose in the following

key-image. The transition is not performed, since the angle φ between the green vector and the

black vector has value of 135◦, i.e. greater than 90◦.

23

6.5.2. The second moment order method

The second moment order method does not need any information about geometry be-

tween two views. It relies only on 2D positions of features in current view and the

following key-image. Thus, the transition can be performed by measuring the error

between second moment of features in the current image and second moment of corre-

spondent features in the following key-image. The moment of feature set Sfeatures(I)

in image I is defined as Eq. 6.4, where N is the number of features |Sfeatures(I)| and

(x̄, ȳ) is the center of gravity, then the second moment is Eq. 6.5. Finally, the error is

defined as it is shown in 6.6. The transition is performed if merror(It, Kk+1) is near

zero.

Mij(Sfeatures(I)) =
N∑
k=1

(xk − x̄)i(yk − ȳ)j (6.4)

m2nd(Sfeatures(I)) = M20(Sfeatures(I)) +M02(Sfeatures(I)) (6.5)

merror(It, Kk+1) =
[m2nd(Sfeatures(It))−m2nd(Sfeatures(Kk+1))]

2

N2
(6.6)

24

7. Results

7.1. Mapping

Six test examples have been ran to compare and evaluate different outlier rejection

techniques during the mapping phase. Maps in all examples are learned on the same

video sequence garage/2011.12.02-15h/aller. The video sequence has been

chosen because of presence of three road curves, lighting changes and presence of other

urban situations. The groundtruth of the scene is depicted in Figure 7.1. It is impor-

tant to observe the behaviour of mapping algorithm in road curves, because the robot

should not have problems with turnings. For each example, a topological map of robot

position at each frame (Figures 7.2a, 7.2b, 7.2c, 7.5a, 7.5b, 7.5c), a graph that shows

the percentage of detected outliers (Figures 7.3a, 7.3b, 7.3c, 7.6a, 7.6b, 7.6c) and a

graph with number of frames between two key-images (Figures 7.4a, 7.4b, 7.4c, 7.7a,

7.7b, 7.7c) are presented.

Figure 7.1: The groundtruth topological map of the video sequence

garage/2011.12.02-15h/aller

Each example can be easily executed within the executable file. All what is needed

25

is to set the parameter -a to test and the parameter -e to the number of desired

example in the configuration file.

Thresholds ratioCurrPrev Eq. (5.3) and ratioLiveFeatures Eq. (5.6) are set to

1.25 and 0.75, respectively. In examples 1,2 and 3 threshold minLiveFeatures Eq.

(5.7) has value 400, while in examples 4,5 and 6 the threshold is set to 60.

rOutliers(t) =
number of outliers in frame t detected with algorithm for outlier elimination

number of tracked features in frame t
,

(7.1)

A topological map shows bird’s-eye view 2D position of the robot in each frame.

The green point represents the position of key-image.

In graphs (Figure 7.3a, Figure 7.3b, Figure 7.3c, Figure 7.6a, Figure 7.6b, Figure

7.6c), for each frame value of Eq. (7.1) is plotted. In the upper right corner in each

graph the number of detected key-images is noted. The x-axis in the graphs represents

the number of frame and the y-axis represents the observed value.

In Figures 7.4a, 7.4b, 7.4c, 7.7a, 7.7b and 7.7c are represented graphs that present

the number of processed frames between two adjacent key-images, i.e. how much

frames has been processed until a new key-image is detected. The blue dashed line

represents the average of processed frames until the key-image detection.

26

Examples 1, 2, 3: minLiveFeatures = 400

(a) (b)

(c)

Figure 7.2: The three subfigures show topological maps constructed during the learning on

the sequence garage/2011.12.02-15h/aller (minLiveFeatures = 400). The sub-

figure (a) shows the topological map after the learning has been performed with RANSAC,

while in the subfigure (b) MLESAC has been used. In the subfigure (c) RANSAC + LMedS

has been used for the outlier rejection. The reconstructed path in the subfigure (a) is similar to

the groundtruth depicted in Figure 7.1, but because of the path disruptions it is not good as the

reconstructed path in the subfigure (c).

27

(a) (b)

(c)

Figure 7.3: The graphs (a-c) display value of Eq. (7.1) in each frame of the learning sequence

garage/2011.12.02-15h/aller (minLiveFeatures = 400). In the subfigure (a)

RANSAC has been used for the outlier rejection, while in the subfigure (b) this task has been

done by MLESAC and in the subfigure (c) RANSAC + LMedS has been used. It can be noticed

how MLESAC (b) rejects too much features, in frames 1300 - 1400 more than 60% of features

have been rejected. Also it produces 118 key-images, while RANSAC and RANSAC + LMedS

produce 106 - 107 key-images for the same path.

28

(a) (b)

(c)

Figure 7.4: The subfigures show how many frames is processed before the new key-image is

detected (minLiveFeatures = 400). In the subfigure (a) RANSAC has been used, while in

the subfigure (b) MLESAC has been used. Finally in the subfigure (c) RANSAC + LMedS has

been used as the outlier rejection technique. In all subfigures the horizontal dashed line shows

the average number of processed frames for the key-image detection. In the subfigure (a) it is

13, in (b) 12 and in (c) 14.

29

Examples 4, 5, 6: minLiveFeatures = 60

(a) (b)

(c)

Figure 7.5: The three subfigures show topological maps constructed during the learning on

the sequence garage/2011.12.02-15h/aller. The threshold minLiveFeatures is

set to value 60. The subfigure (a) shows the topological map after the learning has been per-

formed with RANSAC, while in the subfigure (b) MLESAC has been used. In the subfigure

(c) RANSAC + LMedS has been used for the outlier rejection. The reconstructed path in the

subfigure (c) is the most similar to the groundtruth depicted in Figure 7.1. The reconstructed

paths in (a) and (b) do not represent the actual path with the satisfactory level of quality.

30

(a) (b)

(c)

Figure 7.6: The graphs (a-c) display value of Eq. (7.1) in each frame of the learning sequence

garage/2011.12.02-15h/aller. The threshold minLiveFeatures is set to value 60.

In the subfigure (a) RANSAC has been used for the outlier rejection, while in the subfigure

(b) this task has been done by MLESAC and in the subfigure (c) RANSAC + LMedS has

been used. It can be noticed how MLESAC (b) rejects too much features, in frames 1300 -

1400 more than 60% of features have been rejected. Also it produces 94 key-images, while

RANSAC and RANSAC + LMedS produce 74 and 66 key-images, respectively.

31

(a) (b)

(c)

Figure 7.7: The subfigures show how many frames is processed before the new key-image is

detected. The threshold minLiveFeatures is set to value 60. In the subfigure (a) RANSAC

has been used, while in the subfigure (b) MLESAC has been used. Finally in the subfigure

(c) RANSAC + LMedS has been used as the outlier rejection technique. In all subfigures

the horizontal dashed line shows the average number of processed frames for the key-image

detection. In the subfigure (a) it is 20, in (b) 17 and in (c) 22.

32

The graphs (Figure 7.3 and Figure 7.6) are demonstrating that the combination

of RANSAC and LMedS produces the best topological map (comparing with the

groundtruth depicted in Figure 7.1). The RANSAC simply does not eliminate all out-

liers, as can be seen from Figures 7.3a and 7.6a at average 10% of features has been

detected as outliers, while the MLESAC obviously eliminates some inliers because in

some cases, for example near frames 1300 - 1400 in Figure 7.3b and 7.6b, it elimi-

nates more than 60% of features, while the RANSAC + LMeds in the same span of

frames eliminates from 20 - 30% features. As can be seen by comparing Figure 7.2c

and 7.2b with the groundtruth depicted in Figure 7.1, as also Figure 7.5c and 7.5b,

RANSAC + LMedS produces a better topological map than MLESAC. The MLESAC

also produces more key-images, for example if minLiveFeatures is set to 400 then

it produces 118 of them, if minLiveFeatures is set to 60 then it produces 94 key-

images, while the RANSAC + LMedS in first case produces 106 and in the other case

66 of them, which is approximately the same if only RANSAC is used.

The best results are obtained when minLiveFeatures is set to 400. This can

be seen by comparing the topological maps in Figure 7.2 and Figure 7.5 with the

groundtruth depicted in Figure 7.1. It should be taken in consideration that thresh-

old minLiveFeatures = 60 produces less key-images, at average every 22nd frame

is a new key-image(cf. Figure 7.7), while with the value 400 every 14th frame is a

new key-image (cf. Figure 7.4). This difference is not too large and the quality of

the topological map is more important than number of key-images, so the threshold

minLiveFeatures = 400 has been chosen as optimal.

Also experiments with the navigation showed that setting the value of threshold

minLiveFeatures to 400 produces a way better navigation, so this threshold has been

chosen as optimal. Larger values ofminLiveFeatures produce too much key-images,

while with smaller values the navigation is not satisfactory.

7.2. Navigation

The navigation phase has been performed on the video sequence garage/2011.

12.05-14h/aller, while the mapping has been performed on the video sequence

garage/2011.12.02-15h/aller acquired three days earlier. In the navigation

sequence some cars are moved (cf. Figure 7.9), some are absent while they have been

there during the learning (cf. Figure 7.8). New cars appeared. As also significantly

changes in lighting can be noticed. These all differences between the learning and the

navigation sequence are interest dataset for testing the developed solution.

33

(a) (b)

Figure 7.8: The small white van is absent in the navigation sequence

garage/2011.12.05-14h/aller at frame #355 (b), while it is present in the

learning sequence garage/2011.12.02-15h/aller at frame #386 (a).

(a) (b)

Figure 7.9: The large white van is relocated in the navigation sequence (b). Also shadows are

different in the learning sequence garage/2011.12.02-15h/aller at frame #575 (a)

and in the navigation sequence garage/2011.12.05-14h/aller at frame #547 (b).

7.2.1. Transition

Experiments with second moment of features as tool to determine the transition showed

that this method is not adequate. Simply, it does not work in environment where few

distant points are present in the current image (points that are distant from the camera

in the 3D world), for example when a wall is in front of the camera.

Figure 7.10 shows the environment where the transition has failed. As can be seen

in Figure 7.11 the error measure muerror, cf. Eq. (6.6), converge until 14th key-image,

after which the measure diverge and never falls under 0.05 (threshold for detecting

transition). In the graph after frame #266 muerror has value much greater than one. In

the graph the red line detonates the threshold for detecting transition, the blue curve

detonates the muerror value and the green dashed vertical line detonates the frame

34

(a) The preceding key-

image

(b) Current image in the

camera

(c) The following key-

image

Figure 7.10: An example of missed transition near frame #266. The current image (b) is not

located in the current local world defined with the preceding key-image (a) and the following

key-image (c).

Figure 7.11: Graph with plotted muerror in each frame. After frame #266 muerror does not

converge and never falls under the value of threshold for detecting the transition.

where transition has been performed.

35

(a) The preceding key-

image

(b) Current image in the

camera

(c) The following key-

image

Figure 7.12: An example of missed transition near frame #1350 in the navigation sequence

garage/2011.12.05-14h/aller. The current image (b) is not located in the current

local world defined with the preceding key-image (a) and the following key-image (c).

Figure 7.13: Graph with plotted muerror. After frame #1350 muerror does not converge and

never falls under the value of threshold for detecting the transition.

The second example of failed transition can be noticed around frame #1350 (cf. Fig-

ure 7.13 and Figure 7.12). The problem is same as in previous example, simply features

are too close to the camera, so muerror diverges, cf. Figure 7.13. Note that navigation

36

has been started from the key-image #49.

As the second moment of feature set method did not produce expected behaviour,

the geometric method has been chosen for the transition determination, because such

problems have not been noticed using the topological method.

7.3. A navigation experiment

Figure 7.14: The topological map of reconstructed after the navigation. The mapping has been

performed on the video sequence garage/2011.12.02-15h/aller, while the naviga-

tion has been performed on the sequence garage/2011.12.05-14h/aller. The key-

image positions (the green dots) have been loaded from the visual memory. The black dots

show the reconstructed positions of the robot during the navigation. In the local world between

the key-image #48 and #49 (the blue rectangle), some difficulties with the navigation can be

noticed.

Figure 7.14 shows 2D positions of robot at each frame during the navigation. The

37

2D positions have been reconstructed from the calculated essential matrix and they

represent the quality of robot localization. The green points represent the location of

key-images obtained during the learning.

As can be seen in Figure 7.14, the reconstructed path is satisfactory, so navigation

is performed well. Between key-images #48 and #49 (the blue rectangle in Figure

7.14) the navigation has not been performed with the satisfactory level. Namely, just

after the transition from the local world #47 - #48 in the local world #48 - #49 the

robot has turned intensively right, so large number of features drifted from the correct

location, which had the effect on the reconstructed geometry and finally on the feature

projection and the refining step during the transition. The badly reconstructed geome-

try, later in the next frame, caused again another transition, as can been seen in Figure

7.15. However, although the transition is performed too early, large number features

are correctly projected in the current image and the navigation has been continued cor-

rectly, that can be noticed in Figure 7.14 (the final key-image has been successfully

reached).

(a) The preceding key-

image (#50) (b) The current image

(c) The following key-

image (#51)

Figure 7.15: In the local world defined with the key-images #48 and #49 the current image

(b) (frame #849 in garage/2011.12.02-15h/aller) performed the transition. This

transition produced a bad geometry, so features have been incorrectly projected, which resulted

with another transition. The result of these transitions has been the incorrect local world defined

with key-images #50 (a) and #51 (c), while they should be #48 and #49.

In the frame #1360 (Figures 7.16, 7.17 and 7.18) during the navigation 12 features

have been successfully projected in the image, but RANSAC found 5 outliers and

essential matrix could not be calculated. Two features from the orange rectangle and

three features from the green rectangle in Figure 7.17 are considered as outliers. So,

error recovery has been performed as it is described in Section 6.3. Features from the

visual memory are projected and refined again using the geometry from the previous

frame. As can be seen from Figure 7.14 the recovery has been performed successfully

and the final key-image has been reached.

38

Figure 7.16: The preceding key-image (#84)

Figure 7.17: The current image

39

Figure 7.18: The following key-image (#85)

7.4. Testing on the robot

The autonomous navigation is demonstrated in video nav-06-21.avi. The learn-

ing has been performed on the video sequence that has been acquired two hours be-

fore the navigation. As the video demonstrates, the robot successfully navigated au-

tonomously and reached the final position.

The second experiment involves more complex situations. Two learning sequences

have been acquired, one garage/2012.06.27-18h/aller and the other garage/

2012.06.27-18h/retour during the returning into the garage. They have been

acquired on 27th June 2012 at 7PM, when the parking lot was almost empty.

The topological map after the performed learning on the video sequence garage/

2012.06.27-18h/retour is showed in Figure 7.19.

Changing light conditions, cf. Figure 7.20, produced the space between key-images

#4 and #5 (the blue rectangle Figure 7.20). Namely, in frame #58 sun rays have been

hidden by trees and then in next frame #59, as the robot moves forward, the sun rays

suddenly appear on the image, cf. 7.20. Almost all features drifted from the correct

location, which had the impact on the geometry estimation. Note that the large move-

ment elimination method is not helpful in such situations, because almost all features

40

Figure 7.19: The reconstructed topological map of the learning video sequence

garage/2012.06.27-18h/retour. Between key-images #4 and #5 (the blue rectan-

gle) sunlight produced the bad reconstruction of the path.

in the image drifted.

Another problematic situation was passing of car just in front of the camera dur-

ing the mapping phase, cf. 7.21. The large movement elimination method successfully

eliminated features on the car (cf. 7.21), so this event had not influence on the geome-

try, as can be seen from Figure 7.19 (the orange rectangle).

The navigation experiments have been performed the next day around noon, when

the parking lot was full of cars. As can be seen in video nav-06-28-12h-failed.

avi the robot navigated autonomously fifty meters. Under the building, where the

lighting was bad, the emergency system for instant stopping has been used, because

the robot suddenly turned right and almost hit the parked car. Failed navigation can be

justified with excessive changes in the environment, cf. Figure 7.22 and Figure 7.23.

41

(a) Frame 58 (b) Frame 59

Figure 7.20: Intensive change of light between two successive frames (#58 (a) and #59 (b))

in the learning sequence garage/2012.06.27-18h/retour. This event produced the

space between key-images #4 and #5 depicted in the blue rectangle in Figure 7.19.

.

(a) Frame 352 (b) Frame 361

Figure 7.21: The passing of car in the learning sequence

garage/2012.06.27-18h/retour between frames #352 - #361. Features have

not been tracked on the car. As can be seen in (a) features located on the top of the car have

been rejected (b). These features have been rejected with the large movement elimination

method. The passing of car had not influence on the geometry as can be seen from the

reconstructed path in the orange rectangle in Figure 7.19. Namely, in the orange rectangle

there are not present any anomalies.

Simply, the current appearance of the environment is too different from the learned

one, so implemented solution had difficulties with the navigation.

In order to justify this thesis, the experiment has been repeated but from the other

initial location, where changes in the environment appearance have not been so inten-

sive. The robot has been turned on at location where the parking lot is not visible (near

key-image #59). As can be seen in video nav-06-28-12h-short.avi the robot

42

(a) The learning sequence (b) The navigation sequence

Figure 7.22: The environment appearance has been changed between the learning sequence

garage/2012.06.27-18h/retour at frame #694 (a) acquired on 27th June at 7PM and

the navigation nav-06-28-12h-failed.avi (b) that has been performed on 28th June at

12PM.

(a) Learning (b) Navigation

Figure 7.23: The environment appearance between the learning sequence

garage/2012.06.27-18h/retour at frame #764 (a) acquired on 27th June at

7PM and the navigation nav-06-28-12h-failed.avi (b) that has been performed on

28th June at 12PM.

has been successfully navigated.

The same day at 5PM the third experiment has been performed using the same

learned map database (learned on the video sequence garage/2012.06.27-18h/

retour). As can be seen in nav-06-28-17h-long.avi the robot has been suc-

cessfully navigated on the whole path and autonomously parked in the garage. In order

to achieve the parking in the garage, the obstacle avoidance system had to be turned

off in the key-images that represent entering in the garage, because the system does

not allow entering in the garage. Note that the navigation is performed successfully at

43

5PM, but not successfully at the noon. The reason is that the environment appearance

at 5PM has been similar to the learned environment appearance, mainly because of the

absence of the cars in the parking lot and sun orientation.

44

8. Conclusion

The implemented system for autonomous robot navigation supported autonomous nav-

igation in the real experiments with a mobile robotic car. The experiments showed that

the system is robust and able to navigate the robot even in the environment appear-

ance changed from the learned one. The improvements of tracker, such as similarity

consistency check, translational consistency check, and large movement elimination

showed how simple additions can improve the performance of translational tracker.

Thus, the affine model tracker, the 5-pt relative pose algorithm and MLESAC used in

[19] can be replaced with simpler algorithms such as the translational model tracker,

the 8-pt relative pose algorithm and RANSAC. Please note that tracker in [19] uses

the translational model of tracker for frame-to-frame tracking, but the isotropic scaling

and the affine photometry have been used for the feature refining. The implemented

solution produces twice more key-images than the solution described in [19]. That is

not commendable because with fewer key-images it is easier to find the nearest key-

image using the image retrieval during the initialization. The exact comparison with

the solution described in [19] has not been performed due to the lack of time, but it

would be an interesting direction for future work.

In future, some improvements can be implemented as well. For example in the

implemented solution only features from visual memory are tracked during the navi-

gation. Better results could be provided with periodically detecting new features in the

current image. Thus, the features from visual memory and the newly detected features

could be tracked and used for the reconstruction of geometry. This approach could

significantly improve the performance, because the geometry could be estimated more

accurately.

Also it would be interesting to completely replace the tracker with translational

model with the tracker with affine model and use it even for frame-to-frame tracking.

The CPU implementations are not interesting because they are too slow for real-time

application, but a GPGPU implementation [15] could offer a real-time execution. The

LMedS algorithm also can be easily implemented on the GPU, using such implemen-

45

tation it is expected that the combination of RANSAC and LMedS could be used in

real-time applications, such as the navigation phase.

As the implemented solution is designed for outdoor navigation, the efficacy of

the navigation depends on time of day when the navigation is performed. The light-

ing conditions around noon and evening are not at all the similar. Thus, several map

databases could be created, one map database could be created at morning, one at noon

and one at evening. During the initialization the system chooses the map database with

the maximal number of inliers in the initial image and that map database is used for

further navigation.

This solution could have application in the autonomous parking of vehicles and as

a taxi service. Simply, the driver drives himself somewhere near the garage, leave the

car and car autonomously parks itself in the garage. As a taxi service, the solution can

be used in small cars for carrying objects around a site or at a university campus.

46

BIBLIOGRAPHY

[1] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up

robust features (surf). Comput. Vis. Image Underst., 110(3):346–359, June 2008.

[2] S. Birchfield. Chapter 8: Affine consistency check of features, May 2007. URL

http://www.ces.clemson.edu/~stb/klt/user/chpt8.html.

[3] P. Bosilj. Localization of autonomous robot in visual memory. Master’s thesis,

University of Zagreb, Croatia, 2012.

[4] Jean-Yves Bouguet. Pyramidal implementation of the lucas kanade fea-

ture tracker description of the algorithm, 2000. URL http://robots.

stanford.edu/cs223b04/algo_tracking.pdf.

[5] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief:

binary robust independent elementary features. U Proceedings of the 11th Euro-

pean conference on Computer vision: Part IV, ECCV’10, pages 778–792, Berlin,

Heidelberg, 2010. Springer-Verlag. ISBN 3-642-15560-X, 978-3-642-15560-4.

[6] F. Chaumette and S. Hutchinson. Visual servo control, part i: Basic approaches.

IEEE Robotics and Automation Magazine, 13:82–90, 2006.

[7] H. Zhang D. Cobzas and M. Jagersand. Image-based localization with depth-

enhanced image map. IEEE Inter. Conf. on Robotics and Automation, 78:1570–

1575, 2003.

[8] N. X. Dao, B. J. You, S. R. Oh, and M. Hwangbo. Visual Self-localization for

indoor mobile robots using natural lines. U Intelligent Robots and Systems, pages

1252–1255, 2003.

[9] A. Diosi, S. Segvic, A. Remazeilles, and F. Chaumette. Experimental evaluation

of autonomous driving based on visual memory and image based visual servoing.

47

http://www.ces.clemson.edu/~stb/klt/user/chpt8.html
http://robots.stanford.edu/cs223b04/algo_tracking.pdf
http://robots.stanford.edu/cs223b04/algo_tracking.pdf

IEEE Trans. on Intelligent Transportation Systems, 12(3):870–883, September

2011.

[10] Chris Harris and Mike Stephens. A combined corner and edge detector,

svezak 15, pages 147–151. Manchester, UK, 1988.

[11] R. I. Hartley. In defence of the 8-point algorithm. U Proceedings of the Fifth

International Conference on Computer Vision, ICCV ’95, pages 1064–, Wash-

ington, DC, USA, 1995. IEEE Computer Society. ISBN 0-8186-7042-8.

[12] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, Cambridge, UK, second edition, 2003.

[13] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University

Press, 1990. ISBN 0521386322.

[14] I. Khvedchenia. Feature descriptor comparison report, August 2011.

URL http://computer-vision-talks.com/2011/08/

feature-descriptor-comparison-report/.

[15] Junsik Kim, Myung Hwangbo, and Takeo Kanade. Realtime affine-photometric

klt feature tracker on gpu in cuda framework. U Workshop on Embedded Com-

puter Vision (ECV), 2009 (held in conjunction with ICCV), October 2009.

[16] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique

with an application to stereo vision. U Proceedings of the 7th international joint

conference on Artificial intelligence - Volume 2, IJCAI’81, pages 674–679, San

Francisco, CA, USA, 1981. Morgan Kaufmann Publishers Inc.

[17] David Nistér. An efficient solution to the five-point relative pose problem. U

CVPR (2)’03, pages 195–202, 2003.

[18] Anthony Remazeilles and François Chaumette. Image-based robot navigation

from an image memory. Robot. Auton. Syst., 55(4):345–356, April 2007. ISSN

0921-8890.

[19] S. Segvic, A. Remazeilles, A. Diosi, and F. Chaumette. A mapping and local-

ization framework for scalable appearance-based navigation. U Computer Vision

and Image Understanding, pages 172–187, 2009.

[20] Jianbo Shi and Carlo Tomasi. Good features to track. U Book, pages 593–600,

1994.

48

http://computer-vision-talks.com/2011/08/feature-descriptor-comparison-report/
http://computer-vision-talks.com/2011/08/feature-descriptor-comparison-report/

[21] Carlo Tomasi and Takeo Kanade. Detection and tracking of point features. Tech-

nical report, International Journal of Computer Vision, 1991.

[22] P. H. S. Torr and A. Zisserman. Mlesac: A new robust estimator with application

to estimating image geometry. Computer Vision and Image Understanding, 78:

2000, 2000.

49

Robusno praćenje značajki s primjenom u vizualnoj navigaciji

Sažetak

Diplomski rad opisuje razvijeni softver koji je sposoban robusno pratiti točke od

interesa u video sekvenci. Praćene točke su korištene za rekonstukciju geometrije

dvaju pogleda i za vizualno upravljanje mobilnim robotom. Svrha razvijenog rješenja

je autonomna navigacija robota u vanjskom okolišu. Cijeli proces od faze učenja i

kreiranja vizualne memorije do faze navigacije koja koristi podatke unaprijed naučene

iz vizualne memorije objašnjen je i opisan u ovom radu. Rezultati pokazuju da imple-

mentirano rješenje ispunjava svrhu i sposobno je robusno voditi robota kroz unaprijed

naučen okoliš, čak i ako su nastupile manje promijene okoliša poslije učenja.

Ključne riječi: računalni vid, autonomna navigacija robota, vizualna navigacija, ge-

ometrija dvaju pogleda, praćenje točaka, KLT, RANSAC, MLESAC, LMedS, BRIEF,

provjera konzistencije, esencijalna matrica, outlieri

Robust point tracking for visual navigation

Abstract

This master thesis describes the developed software able to track points of interest

in a video (image) sequence. Tracked points are used for two-view geometry recon-

struction and visual servoing of the mobile robot. The purpose of the developed soft-

ware is autonomous navigation of robot in outdoor environments. The whole process

from the learning phase and the creation of visual memory to the navigation phase that

uses the data from the visual memory is explained and described. The results show

that the implemented software supports autonomous navigation and that it is robust

and resistant to the small changes in environment that may occur after the mapping.

Keywords: computer vision, autonomus robot navigation, two-view geometry, visual

navigation, point tracking, tracker, KLT, RANSAC, MLESAC, LMedS, BRIEF, con-

sistency check, outliers, essential matrix

APPENDIX

To compile the attached software to this master thesis, it’s needed to install OpenCV

2.3.1 library and ViSP library 1, also for compiling CMake is necessary. A C++ com-

piler need to have support for C++11 standard. The software is compatible with Linux

and OpenCV 2.3.1, but not with OpenCV version 2.4.1.

Instruction for compiling: in desired build folder call ccmake <path to the

source code directory>.

An example of running executable: ./arns-main-cargs.config, where the

parameter -c is the path to a configuration file.

In the configuration file, parameters are -a, -f, -m, -i, -n, -e, -k,

-o. After each parameter in a new line there is space reserved for the value of parame-

ter, e.g. the parameter -f has value: /udd/atrbojev/soft/data/ifsic1. All

relative paths are relative to the path where configuration file is located.

Figure 8.1 shows an example of configuration file, Figure 8.2 shows what file

should contain for mapping and what for navigation c. f. Figure 8.3. Additional infor-

mation about the format of configuration file can be found in README.txt which is

attached to the source code.

1The library can be downloaded from: http://www.irisa.fr/lagadic/visp/visp.html

51

-a

map

-f

/udd/atrbojev/soft/data/ifsic1

-m

./map

-e

pgm

-i

1400

-n

700

-k

camera.xml

Figure 8.1: An example of configuration file.

-a

map

-f

<path to the input video sequence>

-m

<path where the map database will be stored>

-e

<extension of images in input video sequence>

-k

<path to the camera configuration file>

Figure 8.2: An example of configuration file to perform mapping.

52

-a

nav

-f

<path to the input video sequence>

-m

<path to the map database>

-e

<extension of images in input video sequence>

-k

<path to the camera configuration file>

Figure 8.3: An example of configuration file to perform navigation.

Table 8.1: Description of parameters

-a name of algorithm

-f path to a video sequence

-m path to a folder where map will be saved or loaded if navigation is performed

-i index of first frame

-n number of frames that will be processed

-e extension of images in video sequence

-k path to camera configuration file

-o index of initial key-image (for navigation)

-ct create the image retrieval tree after the learning

53

	Introduction
	Assumptions
	Point feature tracking
	Similarity consistency check
	BRIEF descriptor

	Large movement elimination
	Translational consistency check

	Estimation of the essential matrix
	Elimination of outliers
	Decomposition of essential matrix

	Creation of a topological-metric environment map
	Scale reconstruction
	Key-image detection

	Visual navigation
	Initial localization
	Rough global localization
	Fine local localization

	Projecting feature positions
	Tracking
	Visual servoing
	Transition
	The geometric method
	The second moment order method

	Results
	Mapping
	Navigation
	Transition

	A navigation experiment
	Testing on the robot

	Conclusion
	Bibliography

