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1. Introduction

The field of deep learning has been rapidly growing in the last decade. Aside from

fulfilling researchers’ curiosity, created programs have been widely used in real-life

examples. With the improvement of computational power and increase in data, meth-

ods have increasingly better results. Supervised methods have been dominating the

scene because of the great results they have been producing. Besides the increase in

accuracy due to the development of better approaches, these methods also have the ex-

citing property of increasing accuracy by increasing the amount of data on which they

are trained. Sadly this increase has its limitations. Mainly the data must be annotated,

which can be a long and expensive process. Because of this, supervised methods are

not limited by available data, which is growing rapidly, but rather by annotated data.

Self-supervised methods bring a solution to this problem. For these methods, we

design pretext tasks on which we can learn useful representation. Pretext tasks are

designed to use labels that can be programmatically created from the data. Unlike

supervised methods, they require only a small amount of labeled data and are a lot

more scalable because of this. Even though supervised methods still outperform self-

supervised ones, the gap between them is closing. In computer vision, self-supervised

methods have had great results in image recognition but, more importantly, in image

segmentation, where labeling data is even more expensive. Since these methods also

improve with more data and better resources, performance will only increase over time.

Recently proposed solutions with promising results perform instance prediction in

pretext tasks and are forms of Siamese network [9]. Those methods are contrastive and

non-contrastive. Contrastive methods use positive samples, augmentations of the same

image, and negative samples, augmentations of different images, while non-contrastive

methods use only positive samples.

This thesis analyse contrastive and non-contrastive methods on small datasets and

compares their performance. It also tries to explain how non-contrastive methods avoid

representation collapse, even though they only use positive samples.
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2. Self-supervised learning

The main difference between supervised and unsupervised methods is the availability

of annotated data. Supervised methods usually try to learn useful representations from

data D =
{
xi, yi

}N

i=1
by estimating label ŷ for every data point and then comparing

those estimates to actual data and minimizing the loss function.

Because unsupervised methods lack information about the correct label, those methods

are based on extracting information from a distribution. Some examples are density

estimation, clustering, learning to draw samples from a distribution, learning to denoise

data from some distribution, and so on [8].

Like supervised methods, self-supervised methods also estimate ŷ and compare it with

the actual label, but because data isn’t annotated, pseudo-labels must be generated.

There are multiple methods for generating pseudo-labels. The most common methods

will be explained in sections 2.2 and 2.3. After generating pseudo-labels, our data,

D =
{
t(xi), ygi

}N

i=1
, where t is a transformation used and ygi is generated pseudo-

label, can be used to solve a described supervised task. Because of this, we can think

of self-supervised learning as a combination of unsupervised and supervised learning.

2.1. Problem definition

Self-supervised methods require labeled and unlabeled data sources. We can denote

the labeled one as Dl =
{
xi, yi

}N

i=1
and unlabeled one as Du =

{
xi

}M

i=1
, where

M >> N . To learn useful representations, we design a pretext task which we train on

unlabeled data by generating labels based on knowledge about the data.

The general steps of self-supervised methods are very similar to supervised methods

after we generate pseudo-labels. These general steps are:
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1. Firstly, we have to generate pseudo-labels for the pretext task by using random

transformation from transformation family T .

2. The pretext task defines the model as

H =
{
g(h(x; θ))

}
θ

Here g(·) represents the prediction head, and h(·) represents the feature extractor.

In this step, we try to minimize the empirical error by finding the best hypothesis,

h∗.

3. After we have trained our model and obtained useful representation on a pretext

task, we usually discard the prediction head and use fine-tuning or linear readout

to prepare the model for a downstream task. This training is done on labeled data,

but the amount is way smaller than what is needed to train standard supervised

methods.

2.2. Pretext tasks

Pretext tasks are used to create supervised-like learning on unlabeled data. They are

designed to learn useful representation by introducing some bias about data. Pre-

text tasks can further be divided into four subcategories: transformation prediction,

instance discrimination, masked prediction, and clustering. Transformation predic-

tion and instance discrimination are methods that perform very well on representation

learning tasks. On the other hand, masked prediction methods have had more success

in NLP.

Some examples of transformation prediction tasks that gave competitive results

when they came out are rotation prediction [10], image colorization [11], and solving

the jigsaw puzzle [12]. Each task tries to learn useful representation by learning a func-

tion f : X → Y , where X are augmented data points and Y discrete labels representing

one of the predefined augmentations used. In listed tasks, augmentations are rotation,

image grayscaling, and shuffling of the cropped tiles. Labels for these tasks are: n

(usually 4) classes denoting the angle of rotation performed on an image, the color of

the center pixel, index of permutation used chosen from n predefined permutations.

These tasks learn useful representation because it takes an excellent semantic under-

standing of an image to perform the task successfully. The validity of these methods

can be empirically shown by training the networks on a large dataset, like ImageNet,

and then evaluating them on some downstream task after fine-tuning.
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One downside of these methods is that they introduce specific properties in represen-

tation. Because of this, there is no single task that outperforms others. Somewhat the

success is heavily influenced by the downstream task that they are trying to solve. E.g.

suppose we want representation to vary with orientation. In that case, we might use

image rotation prediction, but if we are dealing with a dataset for which all orientations

should produce the same result, then it might not be the best choice [13]. In Instance

Figure 2.1: Example of the transformation prediction task. The first image is the original data

point, the second image is permutated data point used as an input for the pretext task, and the

third image is the solution to the pretext task. The image was taken from [12].

discrimination methods, each data point can be observed as a different class. To create

a pretext task, we must choose n data points acting as surrogate classes. Next, we sam-

ple m data points from each surrogate class using data augmentation t ∈ Ti, and train

it as an N-classes classification problem. Popular method that uses this approach is Ex-

emplar CNN [14]. Even though this method achieved good results when it came out,

it has several drawbacks. The main drawback is that the performance stagnates after

a certain number of surrogate classes. This stagnation happens because some classes

will tend to be too similar to discriminate. In the original paper, the optimum number

of surrogate classes was 8000 [14]. This limits one of the most significant advantages

of unsupervised methods: learning on large amounts of unlabeled data.

This method’s problem lies in the loss function. It uses standard cross-entropy loss,

with loss function l:

L(Xu) =
∑

xi∈Xu

∑
t∈Ti

l(i, t(xi))

l(i, t(xi)) = −
∑
k

[[k = i]] log(fk(t(xi)))

where Xu are n data points chosen as surrogate classes, fk(·) denotes softmax output,

and t is the transformation used.
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We can improve on this by using contrastive loss instead of cross-entropy loss and by

using a variation of the Siamese network [9]. Using this loss, we reduce the number

of classes to two. Instead of augmenting each data point once, we do it twice and

then predict if two augmented images were generated from the same data point or not.

The class is considered positive if augmented images are generated from the same data

point and negative otherwise.

Similar to transformation prediction methods, augmentations used in instance dis-

crimination methods introduce some invariances and influence performance on down-

stream tasks. E.g., if downstream tasks differentiate examples based on color informa-

tion, using the Exemplar method will produce poor results [14].

2.3. Contrastive learning

In the contrastive method, we sample each point once, then try to maximize the agree-

ment of positive pairs and minimize it for negative pairs. The basic framework of these

methods can be seen in figure 2.2. Firstly, we use data augmentation t ∈ T to generate

two differently augmented data points. These augmented images are fed to the back-

bone, f(·), which calculates representations. The backbone is a ResNet [24] model

whose depth depends on input data and network complexity. The backbone contains

the most useful information and is used for downstream tasks. Representations are fed

to the non-linear projection head, h(·), which calculates predictions. The backbone and

projection head together form the encoder. Loss is calculated on predictions and tries

to maximize the agreement between positive pairs and minimize it between negative

ones in order to pull positive pairs closer together and push the negative pairs away.

Figure 2.2: Framework for contrastive learning of visual representation. The image was taken

from [15].
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2.3.1. Loss function

The loss function used in contrastive learning is a form of InfoNCE loss [20]. The loss

is used to infer which data point is positive in a batch of one positive data point and

N − 1 negative data points. This turns the N-class classification problem into a binary

problem, where loss is a categorical cross-entropy of correctly classifying the positive

data points. The loss function is:

LN = −EX

[
log

s(x̃j, c)∑
x̃k∈X s(x̃k, c)

]
(2.1)

X is a set of data points. Context, c, is a data point obtained from the same original

point, x, as x̃j using different augmentation. Scoring function, s(·, ·), is a ratio between

the probability of a data point being drawn from the distribution of positive samples

and a data point being drawn from a distribution of negative samples.

The scoring function used in contrastive SSL methods is:

s(x̃j, c) = exp

(
sim(zi, zj)

τ

)
(2.2)

where context c is equal to the other augmented image fed to siamese sub-network x̃i,

(i, j) is a positive pair of samples, sim(·, ·) is any function that calculates the similarity

between two vectors, and τ is temperature parameter regulating how much similarity

affects scoring function. Simple and popular choice for similarity function is the cosine

similarity.

It can be shown that mutual information I(x̃j, c) is an upper bound of negative loss

[20]. Because of this, minimizing loss function maximizes the mutual information

between context and positive sample.

I(x̃j, c) ≥ log(N)− LN (2.3)

Increasing batch size in contrastive methods has two benefits. Firstly, it reduces the

noise during loss calculation and improves gradient approximation; secondly, it in-

creases mutual information between positive pairs. Even though using large batch

sizes is very beneficial for contrastive methods, it significantly increases training time

or memory footprint. Figure 2.3 shows how contrastive methods learn the best repre-

sentations on large batch sizes. The difference in the quality of learned representations

is decreased with more training epochs because more negative samples are provided.
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Figure 2.3: Linear evaluation models trained with different batch sizes and epochs. The image

was taken from [15].

Issue of large batch sizes can be solved by using a dictionary as a queue of data

samples. This dictionary contains representations from multiple batches. It is built as a

queue by removing the oldest batch and adding the calculated representations from the

latest batch. By doing this, we decouple batch size from negative examples and reduce

memory footprint. Because we keep a lot of negative examples in the queue, it would

be very inefficient to update the key encoder using back-prop. To avoid this query en-

coder is updated with back-prop and the key encoder uses momentum update. Finally,

we can use large momentum m to reduce the difference among encoders used to cal-

culate representations for different batches. The formula for updating query encoder

parameters is:

θk ← mθk + (1−m)θq (2.4)

This method of building a moving dictionary of negative sample representations is

used in MoCo method [16]. Figure 2.4 shows how this method calculates representa-

tions. On the left side, we calculate representation of first augmented sample xq using

encoder, and on the right side we calculate representation of second augmented sample

xk using momentum encoder. Representations from the right side are then added to the

dictionary.
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Figure 2.4: MoCo representation calculation. The image was taken from [16].

2.3.2. Backbone

Models for image classification have to be very deep to be expressive enough and

learn useful representation. Although deeper networks can learn better representations

they suffer from vanishing/exploding gradients.1 Using normalization layers can solve

this problem. However, deeper networks can still hurt performance during training,

which should only be increased in theory. ResNet architecture solves this problem by

implementing residual blocks. Residual blocks consist of layers with skip connections

which can be seen in figure 2.5. These skip connections ensure that adding more layers

can only increase the performance because it is trivial for the network to learn identity

mapping and indirectly reduce the depth.

There are several variations of this architecture. They all have the same building

blocks called residual blocks, and differ in the number of layers in each block. Vari-

ations with: 18, 34, 50, 101 and 152 layers were presented in the original paper [24].

The simplest architecture, ResNet-18, can be seen in figure 2.6.

1This problem occurs during back-propagation, where the gradient either constantly decreases or

increases by multiplying the gradient components of each layer. When this happens, model performance

either stagnates or deteriorates.
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Figure 2.5: Skip connection. The image was taken from [24].

Figure 2.6: ResNet-18 architecture.

2.3.3. Data augmentation

In supervised classification problems, data augmentations are used to improve general-

ization. Applying different transformations to the input data increases the invariance to

those transformations during prediction. Some of the transformations used are transla-

tion, rotation, color jittering, and gaussian noise.

Contrastive self-supervised methods also improve performance by applying augmen-

tations on input data, but it is only partly due to improvement caused by generaliza-

tion. Since contrastive methods aim to maximize the agreement between positive pairs,

the method might compare pixel intensity histograms or some other non-generalizable

feature and easily solve the contrastive task without learning useful features. To pre-

vent this, we use very strong augmentations in contrastive learning to increase tasks’s

difficulty. These methods usually benefit from much stronger augmentations than su-

pervised methods. SimCLR [15] finds that image cropping and color jittering transfor-

mations work exceptionally well when applied together. The base pipeline used in all

the methods described in this work is composed of these transformations: cropping,

resizing, horizontal flipping, color jittering, converting to grayscale, gaussian blurring
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and solarization. The first two transformations are always applied, and other transfor-

mations are applied with some probability. Pipeline is shown in figure 2.7.

Figure 2.7: Example of an image passed through the data augmentation pipeline.

2.4. Non-contrastive learning

As pointed out in the previous section, although contrastive methods are a significant

improvement over other instance discrimination methods, they still have drawbacks.

Mainly the large amount of negative samples required to train them. This imposes one

of two problems. Methods either require large batch sizes or increase the implementa-

tion complexity and memory overhead.

Non-contrastive methods try to solve this problem by training only on positive samples.

Removing negative samples from the loss function, makes the method more robust to

batch size and augmentation choice. Because the method does not use negative sam-

ples, batch size and the ability to avoid representational collapse are uncorrelated.

Batch size in non-contrastive methods has a similar effect on the network as in super-

vised methods. Because of this, methods are still slightly improved by using a larger

batch size.
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2.4.1. Architecture

Since negative samples are essential for avoiding representational collapse in con-

trastive methods, a natural question arises regarding how non-contrastive methods

avoid representation collapse.

Collapse is avoided by creating asymmetry in the network and introducing a stop-

gradient operation2 to one of the Siamese [9] sub-networks. Asymmetry is achieved

by adding prediction MLP to one sub-network (online network), and then the stop-

gradient operation is added to the other sub-network (target network). Both of these

modifications are needed to avoid representation collapse. Described architecture can

be seen in figure 2.8.

Figure 2.8: Non-contrastive method architecture. Image was taken from [21].

The encoder in figure 2.8 has the same architecture as the encoder in contrastive

methods seen in figure 2.2. It consists of augmentation t ∈ T , backbone f(·), and

projection MLP g(·). Like in contrastive learning, the backbone contains the most use-

ful information and is used in downstream tasks. The difference between contrastive

and non-contrastive models lies in the extra prediction head and stop-gradient opera-

2First non-contrastive method proposed was BYOL [18] which uses a momentum encoder in the tar-

get network and implicitly adds stop-gradient operation to that sub-network. SimSiam [21] later showed

that the momentum encoder improves performance by stabilizing the representation calculation step but

is not necessary for avoiding representation collapse. Since SimSiam [21] only removes momentum

encoder from BYOL [18], it can be seen as an ablation study of that method.
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tion seen in figure 2.8. Due to this asymmetry, the loss is not calculated on projection

heads’ output z1 and z2 but instead on projection head’s output z1 and one prediction

head’s output p2. Stop-gradient operation in the target network causes gradients to be

calculated only for the target network, while the online network is updated using EMA.

To describe a general case, we can view the target network as a momentum encoder.3

BYOL method uses a high momentum value (between 0.9 and 0.999) [18]. Because

of this encoder in the target network is calculated as an exponential moving average of

the encoder in the online network. SimSiam, on the other hand, uses a 0 momentum

value, which means that the encoder in the target network has the same weights as the

encoder in the online network.

It is essential to distinguish the duty of the momentum encoder in contrastive meth-

ods and non-contrastive methods. In contrastive methods, it is used to decouple batch

size from the number of negative samples used. In non-contrastive methods, these two

are naturally decoupled. Instead, it is used to introduce stop-gradient operation and to

stabilize the representation calculation step.

2.4.2. Loss function

Loss function used in non-contrastive learning method SimSiam [21] is a cosine sim-

ilarity between l2-normalized predictions from online network and l2-normalized pro-

jections from target network.4 l2-normalized cosine similarity is shown in the follow-

ing equation:

D(p, z) =
p

∥p∥2
· z

∥z∥2
Online predictions, p1 and p2, and target projections, z1 and z2, are calculated from

augmented data points, t1(x) and t2(x), respectively. This makes the loss function

L =
1

2
D(p1, sg(z2)) +

1

2
D(p2, sg(z1))

symmetric and improves performance because it makes two times more predictions for

each image. Not using symmetric loss can be compensated by calculating the loss on

two pairs of samples at each step [21]. Non-contrastive loss function introduces one

more subtle improvement. Since we do not use negative samples during loss calcula-

tion, these methods are more robust to augmentation choice.

3Since the momentum encoder naturally implements stop-gradient operation to the target network,

we can obtain both methods by changing the momentum update value.
4Because targets are l2-normalized using cosine similarity is the same as using MSE [18].
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2.5. Barlow twins

Barlow twins is another SSL method that is very similar to contrastive methods but

can not be categorized as such because of its unique loss function. The model uses a

very similar architecture for encoder with ResNet backbone and MLP projection head.

However, the projection head is slightly different with three layers, and the output

dimension is significantly larger compared to contrastive methods like [15; 16].

2.5.1. Loss function

In this section loss function of Barlow twins [22] will be analyzed because all differ-

ences from contrastive methods stem from its loss function.

Loss function consists of two terms:

– Invariance: minimizes the difference between embeddings of the same data

point augmented with augmentation pipeline from 2.3.3. By doing this, the

model learns useful representation invariant to the distortions. This term has

the same effect as the numerator in equation 2.1.

– Covariance: minimizes correlation between embeddings of different data points.

By doing this, it stops the model from learning trivial solutions. This term has

the same effect as the denominator in equation 2.1.

Described loss function is:

LBT =
∑
i

(1− Cii)
2 + λ

∑
i

∑
j ̸=i

C2
ij (2.5)

The cross-correlation matrix C is computed between embeddings (along the batch di-

mension) calculated from the same data points with different augmentations. Regular-

ization hyperparameter λ balances invariance and covariance term. The loss function

is minimal when the correlation matrix is an identity matrix.

This function connects with the Information Bottleneck principle, which states that

representation should be informative about the sample and non-informative about the

augmentations used [22]. This is precisely what we are trying to accomplish to obtain

useful representations. The principle is given with the following equation:

IBθ = I(Zθ, Y )− βI(Zθ, X) (2.6)

IBθ = H(Zθ|X) +
1− β

β
H(Zθ) (2.7)

I(·, ·) represents mutual information and β is a positive number and has a similar task

as λ in equation 2.5 but is inversely proportional to it. The equation 2.6 should be
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minimized because the first term is the mutual information between embeddings and

augmentations, and the second term is the mutual information between embeddings

and represented sample.

Unfortunately, we can not use this equation directly because measuring the entropy of

a large dimensional signal would also require large amounts of data. This would lead

to the same need for large batch sizes as in contrastive loss. To avoid this, we could

assume that the representation Zθ is distributed as Gaussian. With this assumption, we

would have to calculate the logarithm of the determinant of its covariance function.

Because we do not have to estimate the entropy of Zθ there is no need for large batch

sizes [22]. This is the central assumption that allows this loss function to be minimized

and the model to learn useful representations without large batches.

A few more assumptions must be made to fully connect the loss used in the paper and

the Information Bottleneck principle. However, they will not be stated here because

they are not responsible for minimizing batch size.

The loss function can also be reduced by decreasing the value of embeddings. This

results in a very sparse embedding matrix, and because of this method benefits from the

high dimensional output space of the projection head. E.g., Barlow twins paper [22]

reports the best performance on ImageNet with 16384 output dimension of projection

head.

2.6. Downstream task

The downstream task is the actual task we are trying to solve. This task is solved

using some variation of gradient descent optimization. Since the starting point of gra-

dient descent optimization affects convergence, an excellent way to initialize weights

is with an already pre-trained model. This method is called transfer learning, which

was shown to speed up the training process of the target task. One drawback of transfer

learning is that learned representations on source labels generalize less well on target

labels [17]. Self-supervised learning improves on this because it does not use source

labels. Rather than optimizing representation for source labels, it learns representation

based on bias exploited by pretext tasks. Because of this, it is less likely to overfit on

source tasks. Even though it is harder to overfit using SSL, we still need to pick the

correct pretext task based on the downstream task to learn useful representations.

Data augmentations used in pretext tasks also greatly influence the quality of represen-

tations [15]. Some augmentations can also hurt the accuracy of the downstream model,
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as described in section 2.2.

The backbone of the encoder is kept as the feature extractor for the downstream task,

and the projection head is dropped and changed with the more suitable one for the

downstream task. At this step, we train the network using labeled data. It is important

to emphasize that the amount of labeled data needed is much smaller than we would

typically use in standard supervised learning. Therefore, we can use linear readout

or fine-tuning to adapt the network for the downstream task. Linear readout freezes

the feature extractor and updates only the weights of a new projection head while fine-

tuning updates all the weights. The choice is based on the similarity between the source

and target tasks and the amount of available labeled data.

15



3. How do non-contrastive methods
avoid collapse?

This chapter will analyze the stop-gradient’s and predictor’s contribution to avoiding

representation collapse more thoroughly. This model for obtaining a better understand-

ing of non-contrastive methods was proposed in [23]. All mathematical proofs can be

found in the cited paper.

3.1. Simple linear model

To gain a better insight into how non-contrastive methods avoid representation col-

lapse, we can observe a simple linear BYOL model. Architecture of this model can be

seen in figure 3.1. In the experiments chapter, it will be shown that conclusions drawn

from this simple model generalize to real-world examples.

Figure 3.1: The simple linear architecture of the BYOL model. We can compare it to figure

2.8. In the online network, the first FC layer with weights W is the encoder, and the second FC

layer with weights Wp is the predictor. In the target network, FC layer with weights Wa is the

momentum encoder. The image was taken from [23].

16



Loss used is the same as in BYOL [18]:

J(W,WP ) =
1

2
Ex1,x2

[
||Wpf1 − sg(f2a)||22

]
(3.1)

where f1 and f2a are encoder outputs from online network and target network, respec-

tively. Due to the simple architecture, we can analytically calculate gradient updates

for weights and analyze how stop-gradient and predictor affect learning. By remov-

ing the stop-gradient operation from the target network, gradient update for matrix W

becomes:

d

dt
vec(W ) = − ∂J

∂ vec(W )

= −H(t) vec(W )

where t represents a single training step and derivation over the training step is an

update of a matrix after each training step.1 Matrix H is constucted as follows:

H(t) = X ′ ⊗ (W T
p Wp + In2) +X ⊗ W̃ T

p W̃p + ηIn1n2

W̃p = Wp − In2

where X is a covariance matrix of input data, X ′ is a covariance matrix of augmen-

tations used on input data, Ix is an identity matrix, and n1 and n2 are dimensions of

input data and encoder output, respectively.

Since all elements of matrix H are PSD matrices and both summing and applying the

Kronecker product on two PSD matrices result in a PSD matrix, matrix H is a PSD

matrix. Because of this, we can prove that weights will collapse to 0 if eigenvalues

of H have a lower bound greater than 0. We do this by constructing the Lyapunov

function

V (vec(W )) =
1

2
||vec(W )||22

and derivating it. We get the update −vec(W )TH(t)vec(W ) which is by definition

always equal or greater than 0. Because of this l2-norm will deteriorate to 0 and so will

the weights.

This proves that removing the stop-gradient operation from the target network, under

this assumption, causes representations to collapse. Removing predictor2 and making

the network symmetric will cause stop-grad to only reduce the update of weights by the

number of two. Update, in this case, would be the same as just using half the loss from
1This notation will help us prove that weights will collapse.
2Adding the extra predictor to the target network would yield the same effect. We would just have a

deeper projector.
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the equation 2.4.2 without stop gradient. We analytically proved that non-contrastive

methods could not work without these two additions.

To further simplify the model and show why stop-gradient operation helps avoid col-

lapse, we will introduce three assumptions [23]:

1. Firstly, we assume that the weights of target network Wa, which are updated

by EMA, are always linearly proportional to the online network with relation

Wa(t) = τ(t)W (t). E.g. τ is always 1 in SimSiam [21].

2. Second assumption, which helps simplify the model, is that the data distribution

p(x) has 0 mean and identity covariance matrix and that augmentation distribu-

tion paug(·|x) has x mean and σ2I covariance matrix.

3. The last assumption is that predictor is symmetric. This is a valid assumption

since the predictor becomes more symmetric during training progress.

By incorporating these assumptions to gradient updates of weights, we can calculate

gradient update of:

[F,Wp] = FWp −WpF (3.2)

where F is a covariance matrix of online representation and Wp are weights of the pre-

diction head. This relation has the dynamics of negative semi-definite system. Using

the same proof, as for the weights W in the absence of stop-gradient operation, it can

be shown that the relation will collapse to 0, which is equivalent to eigenvector align-

ment.

When eigenvectors align, we can prove that diagonal decomposition vector U , where

F (t) = U(t)diag(sj)U(t)T , will not change over time. Because of this, we can re-

place weight matrices update for eigenvalues update. This turns original equations for

updating weights to scalar updates of eigenvalues pj , of matrix Wp, and eigenvalues

sj , of matrix F . Eigenvalue updates are given with following equations:

ṗj = αpsj[τ − (1 + σ2)pj]− ηpj

ṡj = 2pjsj[τ − (1 + σ2)pj]− 2ηsj

sj τ̇ = β(1− τ)sj −
τ ṡj
2

where αp is the predictor’s learning rate, η is weight decay, and σ2 is the variance

of augmentation distribution. From these equations we can obtain the dynamics of

eigenvalues:

sj(t) = α−1
p p2j(t) + e−2ηtcj (3.3)
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which largely depends on weight decay. There are three interesting cases that we will

observe.

1. With no weight decay, initial conditions are never forgotten, and representa-

tions will collapse if the eigenvalues of matrix F become 0. In order to avoid

the collapse initial conditions should be sj(0) > pj(0)
2/αp. This condition ex-

plains findings in [18], that updating the predictor more frequently increases

performance. It also supports findings in [21] stating that updating predictor too

frequently hurts it. This is due to the eigenvalues of matrix F being minimally af-

fected by the growth of the predictor’s eigenvalues. This also proves that having

a prediction head and stop-gradient operation in the same sub-network wouldn’t

work because αp would be 0 and we would always fall into trivial stable point.

Case with no weight decay is shown in figure 3.2a. There are two stable points,

saddle which leads to trivial solutions and p∗j+ = τ
1+σ2 which doesn’t.

2. With weight decay initial conditions are forgotten with time and equation 3.3 be-

comes parabola. When this happens, we can calculate three fixed points where

ṗj is 0. Two of those points are stable, and one is not. Increasing τ and de-

creasing η decreases unstable points, shown in figure 3.2b with green color, and

makes it harder for representation to collapse. However, it also increases the

non-collapsed stable point p∗j+ and slows the training.

3. By setting weight decay to be too high, only one stable point remains, and rep-

resentations are bound to collapse. This case is shown in figure 3.2c.

Figure 3.2: Fixed points for 3 different values of weight decay. Stable points are depicted with

red and unstable with green color. The image was taken from [23].

This simple linear model shows how weights update collapses to 0 in the absence

of prediction head or stop-gradient operation. It also shows how other hyperparameters
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affect representation collapse and learning stability. Weight decay, predictor’s learning

rate, and EMA weight need to be carefully chosen to avoid representation collapse and

allow the model to learn useful representation in a reasonable time.

3.2. DirectPred

DirectPred [23] is a non-contrastive model derived from observations presented in pre-

vious section. On a simple linear model, it was shown that the eigenvectors of the

prediction matrix and covariance matrix of online representations gradually align.3

Instead of updating predictor with back-prop, this method sets it. The predictor is

calculated with the following equation:

pj =
√
sj + ϵmax

j
sj, Wp = Ûdiag(pj)Û

T (3.4)

Here Û and sj are values obtained by computing eigendecomposition of F̂ . Estimated

correlation matrix F̂ is computed using a moving average. The correlation matrix is

not zero-centered because this deteriorates the performance. Regularization hyperpa-

rameter ϵ helps by increasing small eigenvalues. Before calculating eigenvalues of

predictor, eigenvalues sj are normalized so that the highest eigenvalue is set to one

[23].

For this implementation to work, the predictor needs to be a one-layer MLP. With-

out this, we could not set its weights. Interestingly, even with single layer prediction

head constraint, DirectPred [23] can perform equally well as BYOL [18] with a three-

layer MLP prediction head.

3It will also be shown later in experiments that this happens during training of BYOL model.

20



4. Experiments

4.1. Google Colab

Google colab [1] is a Jupyter notebook environment that runs in the cloud. The main

benefit of this service is that programs can be run on various GPUs. Some of the

available GPUs are K80, T3 P100, and V100. These GPUs have between 12 and 16

GB of RAM, which allows complex networks to be trained on large datasets. Another

benefit is a seamless connection to google drive. All the experiments done in this thesis

were run on Google Colab.

4.2. Dataset

CIFAR-10 dataset [7] consists of 60,000 32x32 images in 10 classes. There are 50,000

images in the training set and 10,000 in the test set. The classes are completely mutu-

ally exclusive. Classes and examples can be seen in figure 4.1. This dataset was chosen

because of its size. The training time of one epoch for the experiments was between

one and three minutes.

Training images are augmented according to the pipeline described in subsection 2.3.3.

Since CIFAR-10 is a low-resolution dataset, and described pipeline was designed for

ImageNet, in these experiments, gaussian blur is omitted from the pipeline. Images

used for validation are normalized.

The batch size is 512 in all experiments.

4.3. Encoder

All the models used in experiments contain an encoder network. The encoder consists

of a backbone and projection head. Backbone contains the most useful representa-

tions and is later used for the downstream task. The ResNet [24] model was used for

21



Figure 4.1: Random images from each class of CIFAR-10 dataset.

the backbone, and the number of layers is based on the dataset on which the model

is trained. Because we are using a very small dataset in experiments ResNet-18 ar-

chitecture is deep enough to learn useful representations. Even though ResNet-18 is

sufficiently deep, we could boost the performance by using some deeper variations like

Resnet-34 or ResNet-50. Learning time is the main reason for using 18-layer architec-

ture over 34 or 50 layers. Resnet-34 has two times more parameters; hence the learning

is way slower.

ResNet model was loaded using Lightly framework [2].1 Projection head used in ex-

periments is a 2 layer MLP consisting of:

1. Fully connected layer with ReLU activation.

2. Fully connected layer.

It is essential to use the outputs of the projection head and not the backbone during

loss calculation. Representations learned this way are better, and the backbone will
1Complete implementation of ResNet models can be found on https://github.com/lightly-

ai/lightly/blob/master/lightly/models/resnet.py
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perform better on downstream tasks.

The problem with using outputs of backbone for loss calculation is that it becomes

invariant to some transformations used, which are inevitable for making the SSL task

challenging but hurt the model when classifying images. By using a nonlinear projec-

tion head, more information can be stored in the backbone, and the projection head can

model some invariances.

The difference in representation quality between MoCo models with and without pro-

jection head can be seen in figure 4.2. In the case of the encoder without a projection

head, it can be seen that the training loss keeps decreasing while the validation accu-

racy stagnates. This means that the backbone overfits to the training set. On the other

hand, it can also be seen that the encoder with a projection head does not overfit to the

training set.

Figure 4.2: MoCo model performance with different encoder architectures.

4.4. Optimization algorithm

SGD with momentum and cosine decayed learning rate is used for the optimization

algorithm.2 In all experiments value for the momentum hyperparameter is 0.9, while

the other hyperparameters (weight decay and base learning rate) differ.

The learning rate of the Barlow twins method used in experiments can be seen in figure

4.3
2Since contrastive methods require large batch sizes, they usually use LARS [25] optimization algo-

rithm. MoCo method is an exception because it does not require a large batch size to give competitive

results. Because of this SGD is also used in MoCo method.

23



Figure 4.3: Learning rate in model trained for 400 epochs on CIFAR-10.

4.5. Evaluation protocol

For model evaluation on the validation set, a non-parametric weighted kNN classifier

is used [19]. This metric is consistent and easy to use during validation, unlike the

parametric linear classifier, which we have to train on a frozen backbone.

Implementation of weighted kNN classifier was taken from [3] and can be seen in

figure 4.4. At the end of each epoch, we freeze weights and calculate features (from

training data points without augmentation) used in the feature bank. During the vali-

dation step, features from the validation set are calculated and passed to the weighted

kNN classifier along with the feature bank. The cosine similarity function is used to

measure the similarity between features. Top k nearest neighbors are used to predict

the class with weighted voting. The weight of each neighbor is

αj = exp

(
fi · f
τ

)
where temperature τ regulates how much each weight will be affected by similarity

change. Feature f is the one we want to classify, and feature fi is one of the k most

similar features from the training set used for calculating weights.

Temperature τ and the number of nearest neighbors k are hyperparameters in the al-

gorithm, denoted with knn_t and knn_k. Their values are same for all experiments

and are set to τ = 0.1 and k = 200. Similar values are chosen in [19]. Models that

achieved the best accuracy on the validation set are also evaluated with a linear classi-

fier by freezing the backbone and training a linear classifier for ten epochs with SGD.

The performance of the backbone trained with BYOL was tested with different learn-

ing rates. Since they all achieved comparable results, shown in table 4.1, for all other

evaluations lr = 0.3 was chosen.

Linear classifier was also trained with up to fifty epochs. Difference in accuracy after
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training for fifty and ten epochs was only 0.5%. Because of this all linear classifiers

were trained for ten epochs.

Table 4.1: BYOL model accuracy with different learning rates during linear readout under

linear evaluation.

Learning rate 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Top-1 accuracy 85.3 85.48 85.48 85.51 85.52 85.55 85.7

Figure 4.4: Weighted kNN classifier implementation.

4.6. Model comparison

In this section, details of each implemented model will be explained. At the end of

the section performance of implemented models will be compared. If not stated other-

wise, implementation choices that are common for all models were stated in previous

sections of this chapter.

4.6.1. MoCo

MoCo [16] is the only contrastive method that was implemented. Even though Sim-

CLR [15] reports better results, with MoCO we can reduce memory footprint by using
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a smaller batch size and maintaining a momentum encoder. Implementation is modeled

after Barlow twins implementation [4]. The model was loaded using Lightly frame-

work [2].3 The loss function used in experiments is temperature normalized InfoNCE

loss. Loss is given with equation 2.1 and scoring function with equation 2.2.

Encoder size is set to 4096, momentum to 0.99, and temperature to 0.1. Hyperparam-

eter values are taken from the original paper [16].

Some implementation choices, like adding a projection head and augmentation pipeline,

were motivated by SimCLR paper [15]. These modifications drastically improve the

performance of the model, as can be seen in figure 4.2.

4.6.2. BYOL

BYOL [18] implementation is modeled after Barlow twins implementation [4]. The

model was loaded using Lightly framework [2].4 Loss function used in experiements

is negative cosine similarity loss 2.4.2.

The momentum for the update of the encoder is 0.9 and the base learning rate is 0.06.

4.6.3. SimSiam

SimSiam [21] implementation is modeled after SimSiam implementation on CIFAR-

10 [5]. Model was loaded using Lightly framework [2].5 Loss function used in exper-

iment is negative cosine similarity loss 2.4.2.

The base learning rate is 0.04.

4.6.4. Barlow twins

Barlow twins [22] implementation is taken from [4]. The model was loaded using

Lightly framework [2].6 Loss function used in experiment is given with equation 2.5.

Regularization hyperparameter λ is 0.005 as suggested in original paper [22].

3Complete implementation of MoCo model can be found on https://github.com/lightly-

ai/lightly/blob/master/lightly/models/moco.py
4Complete implementation of BYOL model can be found on https://github.com/lightly-

ai/lightly/blob/master/lightly/models/byol.py
5Complete implementation of SimSiam model can be found on https://github.com/lightly-

ai/lightly/blob/master/lightly/models/simsiam.py
6Complete implementation of Barlow twins model can be found on https://github.com/lightly-

ai/lightly/blob/master/lightly/models/barlowtwins.py
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4.6.5. DirectPred

DirectPred [23] implementation is modeled after SimSiam implementation on CIFAR-

10 [5]. Model was written using BYOL model from Lightly framework [2] and imple-

mentation [6] supplied with original paper [23] as references.

The projection head is the same as in the BYOL model. Due to restriction mentioned

in section 3.2 prediction head is one layer MLP. The main difference between BYOL

and DirectPred is how the prediction head is updated. Implementation of analytical

update of prediction head, using eigendecomposition, can be seen in figure 4.5

Figure 4.5: Analytical predictor calculation implementation.

It is worth noticing that ϵ hyperparameter is not multiplied with the most significant

eigenvalue because they are normalized before making it equal to 1.

The base learning rate is 0.06. The momentum m for the update of the encoder is

0.9. The momentum for updating the correlation matrix F̂ is 0.99. Regularization

parameter ϵ is 0.1.
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4.6.6. Performance on CIFAR-10 dataset

Implemented models mentioned in previous subsections were compared on CIFAR-10

dataset [7]. On the first graph 4.6 performance on validation set is shown.

We can see that non-contrastive methods perform similarly when trained for 400 epochs,

with the highest accuracy of around 90%. SimSiam might be underperforming during

the first half of the training because of the wrong choice for the learning rate hyper-

parameter. Learning seems quite unstable, which could be caused by the high base

learning rate. Another possibility is that the lack of stability in the early epochs is

caused by setting the target projector to be equal to the online projector instead of us-

ing EMA for setting the target projector.

Non-contrastive method MoCo also performs well with the highest accuracy of around

85%, and the Barlow twins method has the worst highest accuracy of around 80%.

Figure 4.6: Comparison of implemented models on validation set.

We can see that the best performing models on validation set, also have the best

results on test set shown in table 4.2. Even though the results are in same order, there

is a significant drop in top-1 accuracy, of around 6%, for non-contrastive models [18;
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21; 23]. This gap might be decreased with:

– Different optimizer during linear evaluation. SimSiam paper [21] reports a

slight increase in accuracy when using LARS optimizer [25] and bigger batch

size.

– Different augmentations during linear evaluation. In these experiments, only

random cropping was used.

– Training for more epochs with smaller learning rate.

Method Top-1

MoCo [16] 82.37

BYOL [18] 85.55
SimSiam [21] 82.88

Barlow twins [22] 81.97

DirectPred [23] 84.43

ResNet-18 [24] (Supervised) 92.34

ViT-H/14 (Supervised SOTA) [26] 99.5

Table 4.2: Models top-1 accuracy under linear evaluation.

Models were evaluated using the linear evaluation protocol described in section 4.5.

Results along with the results of the ResNet-18 model and the SOTA supervised method

are shown in table 4.2. The ResNet-18 model when trained for 200 epochs performs

better than SSL methods with the same backbone. This gap is not that wide, consid-

ering that the backbone in SSL methods is trained on completely unannotated data.

However, it can be reduced if we use fine-tuning. Fine-tuning experiment was done on

the best-performing method, BYOL, and was run for 70 epochs with lr = 0.005. For

fine-tuning, we used both 10% and 100% of training data. Results are shown in table

4.3.

Even though the gap between implemented SSL methods and SOTA supervised

method is pretty wide, it is worth noting that the goal of this thesis was not aimed at

achieving high accuracy on the test set, so the hyperparameters were not tuned, and

the backbone model was kept as small as possible. Better results could be achieved by

using deeper backbone, e.g. ResNet-50, and by fine-tuning the model on part of the

dataset. In addition, the listed supervised method has 60 times more parameters than

the best-performing method, BYOL.
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Method Top-1

10% 100%

BYOL [18] 82.8 91.66

ResNet-18 [24] (Supervised) 65.7 92.34

Table 4.3: Models top-1 accuracy after fine-tuning.

4.7. Non-contrastive methods analysis

In this section, we will try to see which observations made on a simple linear model

3.1 translate to real-life examples.

4.7.1. SimSiam without prediction head

It was shown in section 3.1 that a simple linear model without a prediction head would

cause weights to collapse. Because of this collapse, representations should become

constant, and loss should become minimal, making it impossible for the model to learn

anything useful.

Results of SimSiam [21] model trained for 100 epochs without a prediction head are

shown in figure 4.8. It can be seen that loss is immediately minimized (as expected),

the standard deviation of representations7 also drops to 0 (which means that they be-

come constants) and accuracy on the validation set stagnates.

This experiment supports observations made from analyzing a simple model.

Figure 4.7: SimSiam model without prediction head trained for 100 epochs.

7Standard deviation is calculated on the last batch in an epoch.
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4.7.2. BYOL eigenspace alignment

It was shown in section 3.1 that relation in equation 3.2 collapse to 0 during training.

It can be shown that matrices that commute are simultaneously diagonalizable, which

means that their eigenspaces align.

We could prove this collapse only by adding three assumptions to our model. One of

which was that predictor becomes symmetric and PSD during training. This assump-

tion will also be tested in this experiment.8

Figure 4.8: Properties of predictor during training of a BYOL [18] model. The first graph

shows sorted eigenvalues of correlation matrix F. Second graph shows sorted eigenvalues of

the predictor. The third graph shows normalized correlation between Wp ∗ U and U , where

U are eigenvectors of matrix F. 1 means that values are correlated and that the eigenspace is

aligned, and 0 means that the values are not correlated and that the eigenspace is not aligned.

The fourth graph represents the asymmetry of the predictor. The lower the value, the more

symmetric the matrix is.

From the fourth graph, we can see that the predictor becomes more symmetric with

time which validates the third assumption in 3.1. Asymmetry of a matrix was measured

with the following equation:

|W −W T |/|W | (4.1)

The first two graphs show that the leading eigenvalues decrease but not nearly as much

as the smaller eigenvalues. We can see that the first 70 eigenvalues carry all the in-

formation and that eigenvectors for those eigenvalues are aligned. Since 0 eigenvalues

represent trivial solutions, it makes sense that the eigenvectors of those eigenvalues are

entirely uncorrelated.

On the third graph, we can also observe that the eigenspace becomes more aligned

during training, which was our hypothesis.

8This experiment was originally done in [23].

31



4.7.3. BYOL performance with different prediction head updates

It was stated that the larger learning rate of predictor helps avoid representation col-

lapse and, by doing so, increases performance but that too high a learning rate might

hurt it because eigenvalues of correlation matrix F will not increase with an increase

of eigenvalues of prediction head. Results of this experiment can be seen on graph

4.9. This experiment does not confirm the hypothesis. It can be seen that models

Figure 4.9: BYOL model trained with different learning rates of prediction head.

with a learning rate up to 0.1 have the same kNN accuracy graph. Models with larger

learning also learn useful representations, but the maximum accuracy is way smaller.

This seems to be due to unstable learning because graphs become way wavier with an

increase in learning rate and not the problems mentioned in 3.1.

4.7.4. BYOL performance with large decay

It was stated that too large weight decay inevitably leads to representation collapse

because there is only one stable point, which is trivial. In this experiment, we com-

pare the BYOL model with suggested weight decay and with too large weight decay.

Results can be seen in figure 4.10. Even though accuracy is decreased, it still learns

useful representations. A decrease in accuracy can be caused by too large regulariza-

tion, followed by larger training loss. Because of this experiment does not confirm the

hypothesis.
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Figure 4.10: BYOL model trained suggested and large weight decay.
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5. Conclusion

This thesis was focused on analyzing different self-supervised methods for visual

recognition. In chapter 2, it was explained how different design choices of non-

contrastive methods significantly improved upon SOTA contrastive methods. This

was backed up in the experiments section showing how well different methods per-

form on CIFAR-10 dataset. Table 4.2 shows that the non-contrastive models are more

memory efficient and robust to augmentations choices and that they also learn better

representations. Furthermore, it was shown how non-contrastive methods avoid repre-

sentation collapse and how different components affect performance on the validation

set throughout the training process. Results of eigenspace alignment and predictor

symmetrization during non-contrastive method training, shown in section 4.7.2 are

significant for proving why non-contrastive methods avoid representation collapse and

are the basis for novel non-contrastive method DirectPred [23]. It was shown that this

method could learn better representation than other contrastive methods when trained

for a small number of epochs, like 100. It was also shown that it has comparable per-

formance to SOTA non-contrastive methods when trained for a longer time.

Even though this thesis showed that self-supervised methods, especially non-contrastive

methods, can learn useful representations and achieve good results on the CIFAR-10

dataset, they still performed much worse than SOTA supervised methods. This gap

was due to the time and resources constraint of this thesis. For future work, more com-

petitive results can be achieved using a deeper backbone network, longer training time,

and fine-tuning the model.
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Samonadzirane metode za vizualno raspoznavanje

Sažetak

U zadnje vrijeme, samonadzirane metode postižu rezultate koji su sumjerljivi s

nadziranim metodama. Ove metode znaju davati i bolje rezultate od nadziranih u

području vizualnog raspoznavanja jer se skaliraju s neoznačenim podacima, kojih je

mnogo više. Ove metode su možda i bitnije u zadacima kod kojih je označavanje

podataka jako skupo. U ovom radu su predstavljene neke od trenutno popularnih

samonadziranih metoda. Jedna od tih metoda je implementirana i trenirana na dos-

tupnim skupovima podataka. Dobiveni rezultati su objašenje i uspored̄eni s drugim

popularnim metodama.

Ključne riječi: Samonadzirano učenje, Kontrastivno učenje, Vizualno raspoznavanje,

Duboko učenje

Self-supervised methods for visual recognition

Abstract

Self-supervised methods have been producing results that are comparable to su-

pervised methods. These methods even surpass many supervised methods in visual

representation learning tasks because they scale with unlabeled data. These methods

are also very important in tasks for which labeling data is very expensive, like dense

prediction. In this thesis some more popular contrastive self-supervised methods are

described. One of those methods was implemented and trained. The results obtained

are explained and compared to other SOTA methods.

Keywords: Self-supervised learning, Contrastive learning, Non-contrative learning,

Visual recognition, Deep learning
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