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1. Introduction and related works

The goal of this thesis was to research and implement methods and models that would

allow efficient content-based queries on a given image database. Developed procedures

would be used to find the topologically closest image contained in a robot’s visual

memory. A robust visual feature matching procedure is also researched, to be applied

to pairs consisting of the current location image and image retrieved from the visual

memory as the closest (most similar) match.

Wider context for developing such components is the construction of an appearance-

based navigation framework for large outdoor environments, divided, similarly to [15],

in to the mapping, task preparation and navigation phase. In appearance-based ap-

proach to navigation ([3], [15]) the control algorithm relies on (visual) sensor readings

correlated with the topological information stored in robot’s memory. The topologi-

cal information is created during the mapping phase where the robot is navigated by

a human controller. During this phase, the visual memory is formed by selecting key

images from the video of the entire motion. The properties of the key images selected

need to allow successful visual navigation on the path between the images, and are ad-

dressed in a complementary Master thesis [14]. The navigation phase (also the focus

of [14]) uses the information stored in the visual memory and the data extracted during

task preparation to achieve autonomous robot navigation along the recorded path.

The main problems addressed in this Master thesis are the processes performed

during the task preparation phase [15]. Firstly, explicit topological localization of the

robot is performed, by determining the image from the visual memory most similar

to the image of the initial robot position (cf. Figure 1.1). Secondly, a fine-level lo-

calization with respect to the closest and most similar visual memory image (with its

topological information available) has to be performed. In order to achieve this, cor-

respondences between interest regions of the initial position image and the selected

visual memory image have to be determined. These interest regions correspond to

the positions and sizes of visual features extracted from the images. Further fine-level

localization is achieved by the recovery of multiple view geometry based on the de-
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(a) (b)

Figure 1.1: Figure (a) is a schematic representation of the visual memory. The visual memory

contains the key images depicted on the robot path. Figure (b) summarizes the topological

localization task: for the image of an unknown location, the goal is to find the topologically

closest image from the visual memory.

termined correspondences during the navigation phase, and exceeds the scope of this

thesis.

1.1. Topological localization

Searching for the image contained in an image collection most similar to a query im-

age is a problem addressed in the field of content-based image retrieval. Approach

explored in this thesis is heavily based on procedures previously utilized in the field

of language processing. The concepts of term frequency–inverse document frequency

(TF-IDF) (c.f. [12, 11]) and inverted files (cf. [12]), conventionally used for content

based search of text documents, are exploited in [13, 9] for CBIR. In [13], viewpoint

invariant regions with complementary properties are extracted and treated as visual

words that serve a role similar to search terms in text analytics. Shape Adapted regions

that are centered on corner-like features are extracted, as well as Maximally Stable re-

gions corresponding to blobs of high contrast with respect to their surroundings. These

regions are then represented by SIFT (Scale-invariant feature transform) descriptors,

first introduced in [5], which are suitable for the purposes of this thesis because they

are invariant to small shifts in region positions. Since the best match within the visual

memory is expected to be an image taken with robot position and rotation offset from

the query image, some localization error in the region extraction process is to be ex-
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pected [13]. SIFT descriptors ensure a large subset of common visual words between

subsequent key images, a property useful for CBIR application as well as for the latter

processing step of visual features matching.

The basis for the CBIR part of this thesis is [9], where the visual words are extracted

from images in the visual memory in a similar manner as in [13]. An improvement

to scalability with respect to the methods presented in [13] is achieved in [10] by

constructing a hierarchical tree structure from the collection of visual features, called

a vocabulary tree. By utilizing a hierarchical search structure, authors of [9] allow for

much larger database sizes compared to a non-hierarchical approach from [13] without

compromises in speed or accuracy of the image retrieval process.

1.2. Wide baseline matching of visual features

The process of visual feature matching is implemented in two steps: firstly, a tentative

correspondances set is established where a large portion of the features in the query

image are matched with their closest matches in the visual memory image, which gives

a significant portion of false matches. The performance of simple brute force matching

where each feature is matched to the feature with smallest Euclidean distance between

descriptor vectors is compared to the performance of the voting scheme proposed in

[7], and the brute force approach to matching then further used for finding the basic

correspondance set.

After the correspondance basis is established, the second step is applying several

filtering methods aimed to reject false matches to the basis in varying orders and com-

binations. While relatively simple, the filtering methods rely on some expected image

properties, such as small positional and rotational viewpoint offset (e.g. a match be-

tween a feature in the upper-left and a feature in the lower-right corner can most proba-

bly be rejected) and object compactness [13]. Filtering based on visual word frequency,

also used in [13], is not explored in this thesis. The best combination of filters is se-

lected empirically to be used in the final implementation of the matching procedure.

The choice of feature detection algorithms and feature descriptors is shared between

the CBIR and matching processes, eliminating the need for repeating the process of

feature extraction for the query images. Best results were achieved with Difference of

Gaussians (DoG) features [5] and Maximally Stable Extremal Regions (MSER) [7],

while the developed implementation allows for easy choice between those and other

types of features (e.g. Harris corners) as well as using a combination of features. Ar-

guments that using a combination of features enhances the accuracy of the matching
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process, as well as the support for the choice of features used in this thesis, can be

found in [13, 15, 2]. Also, in both [15, 13] it is argued that a combination of fea-

tures shows promise while used in tracking process, which, although not encompassed

by this thesis, is the phase following the matching process in the appearance-based

navigation framework according to [15].

The rest of the thesis is structured as follows: the next Chapter gives a detailed

overview of the methods used in the thesis, the implementation is described in Chapter

3, followed by the analysis of results in Chapter 4. CBIR and visual feature matching

are addressed separately through all the Chapters. The thesis is concluded in Chapter

5.
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2. Overview of the developed
framework

The developed procedures can be logically divided to activities conducted offline, be-

fore the navigation process, and the activities performed during the navigation process

itself. The part to be used in the offline (learning) phase of the navigation process starts

with visual memory already filled with selected key images. In the learning phase, a

portion of the visual memory images is used to construct the structure supporting effi-

cient CBIR queries, and image descriptors for all the key images are calculated.

After the offline phase, the initial activities needed for the navigation process begin.

Upon the start-up of the robot, an image of the current location is acquired and the most

similar database image retrieved by using the search structure constructed in the offline

phase. The retrieved image should represent the closest topological location and the

first location to be traversed during the navigation process.

For the robot establish the correlation with the mapped features, the multiple-view

geometry must be recovered for the image pair consisting of the selected base image

and the image of the current location acting as a query image. For that purpose, a

robust matching procedure was developed taking into account specific assumptions

about the image pairs arising from the intended domain (cf. Section 2.3). While the

initial matching accepts a significant amount of false feature matches, a satisfactory

accuracy is acquired after applying the appropriate filtering methods to the matches.

2.1. Feature extraction and feature descriptors

In order to achieve good performance of matching and content-based image retrieval

methods, interest regions – local features with complementary properties have to be

extracted from the images [2, 13, 15].

The first type of local features this thesis focuses on are Maximally Stable Extremal

Regions (MSER), first introduced in [7]. The other type of used features are based on
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the extrema detection on the Difference of Gaussians images, introduced as a part

of Scale Invariant Feature Transform (SIFT) pipeline in [5]. In addition to exellent

performance of both types of features in wide-baseline matching [2], the SIFT features

have high contrast and good localization along image edges and can be considered

complementary to blob-like MSER features, which benefits the CBIR process.

After detecting interest regions, they need to be represented in a standardized

manned to ensure efficient comparison between features. Each image is then repre-

sented by a set of local feature descriptors it contains. For this purpose, SIFT descrip-

tors are used (the term SIFT is presently most commonly used in reference to only the

feature description part of the pipeline presented in [5] and refined in [6]). The choice

of MSER and DoG feature extraction methods ensures good feature localization while

using SIFT descriptors provides invariance to small positional shifts of the regions that

can occur when extracting features on images with a difference in scale and camera

position.

Maximally Stable Extremal Regions are a subset or extremal regions proposed

in [7]. In this article, extremal regions are defined by their two main desirable proper-

ties: this set of regions is closed under continuous transformation of image coordinates

(that include perspective transformations) and under monotonic transformation of im-

age intensities. The MSER regions are an affinely-invariant stable subset of extremal

regions for which a detection algorithm of near linear complexity was developed [7].

Since an efficiend algorithm for extracting all of the extremal regions has not yet been

developed, only MSER regions are of practical for the matching process and CBIR.

The authors offer an intuitive explanation of the introduced MSER interest regions: all

possible thresholds are applied to the input image, and the resulting black and white

images are ordered in a sequence by increasing threshold value. From the set of all

connected components from the entire sequence, the ones that are stable over the large

range of thresholds are selected. This is done by only extracting the connected com-

ponents at intensity levels that are local minima of the rate of change of the function

describing the black area in the thresholded image.

Extraction of the features based on Difference of Gaussians extrema is conducted

in several steps, according to [5, 6]. To determine the locations of the features invariant

to scale changes of the image, the potential stable features are determined across all

possible scales using a continuous function of scale known as scale space [6, 17]. A

scale space is defined as a convolution of a variable-scale Gaussian, G(x, y, σ) with an

input image, I(x, y) according to:
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L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (2.1)

where ∗ is the convolution operator in x− y space of the image, and the Gaussian

is defined as:

G(x, y, σ) =
1

2πσ2
e−(x

2+y2)/2σ2

. (2.2)

The initial image is repeatedly convolved with Gaussians and a set of scale space

images, called an octave, is produced. Scale space images are produced through mul-

tiple octaves, where the initial image for the next octave is obtained by down-sampling

the Gaussian image from the current octave that has twice the initial value of σ. The

process of blurring the images with the Gaussian kernels is then repeated for the next

octave [6].

Stable keypoint locations are not detected directly in the convoluted images, but

rather in the difference-of-Gaussian function convolved with the image [6], D(x, y, σ).

The expression for calculating D(x, y, σ) indicates that it can be easily computed by

image subtraction from smoothed images L(x, y, kσ) and L(x, y, σ) which are sepa-

rated by a constant multiplicative factor k:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)

= L(x, y, kσ)− L(x, y, σ). (2.3)

This ensures near scale invariance of the features, as the difference-of-Gaussian

function is a close approximation of the scale-normalized Laplacian of Gaussian re-

quired for true scale invariance (cf. [8]). Local extrema detected on the difference-of-

Gaussian images are then considered keypoint candidates. During keypoint localiza-

tion process, introduced in [6], keypoints that have low contrast or are poorly localized

along an edge are rejected. For the remaining features, location, scale and octave (and

from that, feature radius) are determined based on the interpolated location of the max-

imum.

The final step is assigning a consistent orientation to all keypoints, so that keypoint

descriptors could be extracted relative to this orientation and achieve invariance to im-

age rotation. For each keypoint, an orientation histogram is formed based on gradient

magnitude and orientation values on the corresponding smoothed image correspond-

ing to the determined keypoint scale. The highest peak in the histogram determines
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the keypoint orientation, while the keypoints with two distinguished peaks in the his-

togram are split to produce two different keypoints with a different orientation.

To represent the extracted features, SIFT descriptors (introduced together with

DoG features in [5]) which ensure viewpoint and illumination invariance [16] are

used. To calculate the descriptor, scale and octave information about the keypoint is

used. Gradient magnitudes and orientations are sampled around the keypoint location,

with the gradient orientations rotated relative to the keypoint orientation. A Gaussian

weighting function is applied to the calculated gradient magnitudes, with the σ equal to

half of the width of the descriptor region. This region is then further divided into 4× 4

sample regions and their orientation histograms with 8 directions are calculated. The

magnitudes from the orientation histograms of all the sample regions form a keypoint

descriptor with 4× 4× 8 = 128 components, which is normalized before use.

2.2. Methods used for content-based image retrieval

The search structure used to perform content-based image retrieval on the images from

the visual memory is based on ideas presented in [9], with TF-IDF scoring that was in-

troduced to the field of content-based image retrieval in [13]. DoG and MSER features

are used, with the choice explained in Section 2.1.

Usage of the developed CBIR system can be divided in two distinct phases:

– Offline or learning phase, in which a part of the visual memory is used to

construct a vocabulary tree and image descriptors are calculated for all the

images in the visual memory,

– Online or retrieval phase, in which the vocabulary tree is queried by an un-

known image to try and find the topologically closest image (and consequently,

the most similarimage ) from the visual memory.

While the focus of [9] was to develop a technique that would primarily be fast and

work on large image databases containing the images of different objects, this thesis

attempts to utilize the same technique for a slightly different purpose. As the query

is performed only once, on the beginning of the autonomous navigation (and before

any actual movement of the robot), achieving highest possible speed was not among

the priorities. Secondly, the visual memory is expected to contain on the order of 500

images (c.f. [9] works with database as large as 1 million images). Thirdly, the most

distinguished difference in the application domain is that while the original article tries

to retrieve an image of an object highly different from all the others in the database
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(e.g. find an image of a shoe amongst images or guitars, flowers and rubber ducks),

the consecutive images in the visual memory are similar, containing a high number of

common features. Finally, the procedure is used here on environment images while the

original article was mostly dealing with objects on a neutral background.

2.2.1. The learning phase

The main goal of the learning phase is to construct a search structure allowing for an

efficient content-based search of the visual memory. This is achieved by forming a

vocabulary tree using the process presented in [9]. The input to the learning phase of

the algorithm are all images (more specifically, image paths) contained in the visual

memory, and the learning is unsupervised. To limit the memory consumption and

time requirements according to the characteristics of current computer ahchitectures,

not all the images from the visual memory have to participate in the vocabulary tree

construction. Loading of all the images and holding all the features from all the images

in the memory is avoided.

The first step consists of retrieving all feature descriptors from all the images used

as the basis of the vocabulary tree construction. The number of images used for the

construction is a parameter of the construction process, with key images selected ran-

domly. The goal is for the vocabulary tree to define a good quantization of the feature

descriptors, where each quantization cell defines a single visual word. All feature de-

scriptors that fall into the same quantization cell are represented by a same visual word,

and an image can be thought of as a (multi)set of visual words it contains.

The quantization step is performed hierarchically, as proposed in [9]. For the con-

struction of the first level of the vocabulary tree, a simple k-means clustering is per-

formed on the training feature descriptors. This partitions the training data in k groups,

where each group is represented by its cluster center in the first level of the vocabu-

lary tree. The k-means clustering is then recursively applied on the feature descriptors

belonging to each separate group, as illustrated in Figure 2.1. The tree is built level

by level, up to maximum of L levels. An example of the tree built for k = 3, L = 5

is shown in Figure 2.2. The cluster centers in the last level of the tree define the final

feature descriptor quantization and are treated as visual words.

After the vocabulary tree is constructed, only the quantisation of features belonging

to images used in construction is determined. The set of visual words for the images

from the visual memory not used as the basis for vocabulary tree is obtained as follows:

each feature is propagated down the vocabulary tree to determine the quantization cell
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it belongs to. Since all the feature descriptors and cluster centers are represented as

128-component vectors, determining the closest cluster center at each level is done by

comparing the k dot products of a feature descriptor with each of the cluster centers.

Thus, determining the visual word that represents a feature descriptor requires a total

of kL dot products to be performed.

In order to be able to determine the relevance of the images in the visual memory

to the query image, image descriptors need to be calculated. The similarity measure

between images is based on the similarities between the paths down the vocabulary

tree for the feature descriptors of the images from the visual memory and the query

image. As some features are more common through all the images than the others, not

all of them carry the same discriminatory properties. The weights assignment to the

visual words in the last tree level as well as to the inner nodes of the vocabulary tree is

inspired by TD-IDF, a technique adapted from the area of text analytics [11, 12]. In text

analytics, weight of a search term is higher for more discriminative terms (i.e. the ones

occuring in a small portion of the documents), while the words with no discriminative

properties (e.g. “the”, “a”) are assigned weights close to zero. A similar weighting

scheme, where feature descriptors with high frequency through all images are assigned

lower weights is used in the context of image retrieval in [13, 9]. The entropy weighting

used here assigns weights to all tree nodes according to the following equation:

wi = ln
N

Ni

, (2.4)

where wi is the weight assigned to the ith node of the tree, N is the total number of

images in the visual memory, and Ni is the number of visual memory images with

Figure 2.1: Process of recursive hierarchical clustering, with k = 3 for simplification. The

initial clustering is shown in the upper-left corner image. The other images show recursive

application of the clustering process to one of the initial clusters.
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Figure 2.2: An example of the vocabulary tree for k = 3, L = 5. The depicted tree is a

complete tree, while some of the branches can be missing in an actual vocabulary tree generated

during the learning phase.

feature descriptors with a path through node i. An image descriptor contains one entry

per each node in the tree, calculated as follows:

di = miwi, (2.5)

where mi is the number of feature descriptors with a path through node i that come

from the image for which the descriptor needs to be determined . It is important to no-

tice that because of the weight assigning technique, a large portion of the weights equal

to zero. Also, the maximum number of nodes through which feature descriptors from

the same image can pass is at most L times the number of feature descriptors (if every

descriptor is on a path through a different node on each level of the tree). That means

that the total number of non-zero entries in the image descriptor is commensurate with

the number of feature descriptors of an image (in the order of 300 in case of using only

MSER, or 1000 in case of using both DoG and MSER features). This allows for an

efficient storage of image descriptors as sparse vectors. The stored image descriptors

are normalized to avoid scoring bias in favor of images with many feature descriptors.

When the vocabulary tree is queried with a new image, a relevance score between

two images is calculated as follows:

s(q,d) =
∥∥ q
‖q‖
− d
‖d‖

∥∥, (2.6)

where q and d are query image descriptor and the descriptor of an image from the

visual memory, respectively. According to [9], the most suitable norm to use is the

L1 norm. To efficiently implement scoring, another technique from text analytics is

used. The idea of inverted files was introduced in the process of designing an efficient

engine to search through large textual documents databases [1]. In the inverted file,

each leaf of the vocabulary tree stores the information about the images containing

feature descriptors represented by the visual word of that leaf as well as the number of
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such feature descriptors, mi, for each of those images. The inverted files of the inner

nodes are not stored explicitly, but are calculated as a concatenation of the inverted

files of the leaf nodes as the approach suggested in [9] suggests.

2.2.2. The retrieval phase

When the vocabulary tree is queried with a new image, the first steps are to extract fea-

tures and retrieve feature descriptors for that image and then calculate the query image

descriptor in the same manner that image descriptors for the images from the visual

memory were calculated. When the query image descriptor vector, qi, is calculated

and normalized, a score between the query image and all database images has to be

calculated efficiently. Since the L1 norm is used, the score between two normalized

image descriptors can be expressed differently by the formula:

‖q− d‖ =
∑
i

|qi − di| (2.7)

=
∑
i|di=0

|qi|+
∑
i|qi=0

|di|+
∑

i|qi 6=0,di 6=0

|qi − di|

= ‖q‖1 + ‖d‖1 +
∑

i|qi 6=0,di 6=0

(|qi − di| − |qi| − |di|)

= 2 +
∑

i|qi 6=0,di 6=0

(|qi − di| − |qi| − |di|)

= 2− 2
∑

i|qi 6=0,di 6=0

bi,

where the fact that all the image descriptor components are non-negative is considered

when calculating bi:

bi =

{
di if qi > di

qi if qi ≤ di
(2.8)

To simplify the calculations, the constant addend and a constant factor can be elim-

inated, obtaining a simpler relevance score in which higher values represent a better

score for the image from the visual memory:

s′(q,d) =
∑

i|qi 6=0,di 6=0

bi (2.9)

This representation suggests an efficient way to calculate relevance scores in re-

spect to the query image for all images in the visual memory. For each non-zero entry
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of the query descriptor qi 6= 0, all image descriptors with a non-zero entry di 6= 0

can be accessed easily using the information stored in the inverted file. All the rele-

vance scores are calculated simultaneously, adding to each sum as the corresponding

non-zero entry is encountered.

As all relevance scores are calculated simultaneously, the retrieval time is the same

for accessing any number of highest-scored result images.

2.3. Approaches to wide baseline matching

Although the matching procedure has been developed with DoG and MSER features

described by SIFT descriptors in mind, the presented approach is implemented modu-

larly to allow the usage of any kind of vectorized descriptors calculated for arbitrarily

selected visual features (e.g. Harris corners). The matching procedure can be divided

in multiple modular steps, where the concrete method for each step can be chosen from

all available methods requiring input and producing output data corresponding to the

step:

– Base step: generates an initial set of potential matches, allowing for a signifi-

cant amount of false matches. The potential matches are ordered according to

the concrete method’s similarity measure.

– One or more filtering steps: each of the filters rejects some of the proposed

feature matches based on it’s rejection condition. A varying number of filter

steps may be applied to the matches in arbitrary order.

While widely-used methods for wide-baseline feature point matching have been

tried out for the base steps, the filters were designed with specific feature point match-

ing application in mind. Because of that, some filters show significantly better per-

formance on the majority of the test image pairs (the typical settings) than on pairs of

less common consecutive images from the visual memory (e.g. turns and curves of the

mobile robot). Although the performance on the special cases may not be satisfactory

with current parameters of the procedures, the potential shown through more common

cases indicates that their performance may improve when using data collected in the

other parts of the navigation process.

No information about the geometry between the pair of images is used. This is

because the output of the matching is used in [14] as an input to the multiple-view ge-

ometry calculations, where the geometry is estimated and bad matches further rejected

with RANdom SAmple Consensus (RANSAC) algorithm.
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2.3.1. Base matching step

First algorithm considered as a base step in visual feature matching was a simple brute

force matcher based on Euclidean distance between vectorized feature descriptors.

The distance of the descriptor vector of the interest region from the query image and ev-

ery descriptor vector from the base image is measured, and the query feature is matched

to the base feature with the smallest distance. An additional criterion to improve the

percentage of accepted false matches was introduced in [6], where the distance to the

second closest neighbor is considered. If the distance ratio closest/nextClosest is

greater than a coefficient k ∈ [0, 1], the match is rejected. This models the assump-

tion that correct matches have the closest neighbor significantly closer than the closest

incorrect match to achieve reliable matching [6]. Another additional criterion is pro-

posed in [10]: in addition to calculating the closest neighbors from the base image of

every feature descriptor in the query image, the closest neighbors are calculated af-

ter reversing the roles of the images. This produces a symmetrical algorithm, where

only the feature pairs that were matched in both cases are contained in the final set of

accepted matches.

The pseudocode follows for this simple matching method, allowing for a choice of

the coefficient k (where k = 1 is equivalent to ignoring this criterion) and a possibility

of the “marriage” criterion:

BFM(k, marriage, base_image, query_image)

matches = {}

for every feature_vector VQ from the query_image:

(fst, snd) = calc_closest(VQ, base_image, 2)

if (fst distance < k*snd distance)

add fst match to matches

if doing marriage

matches_reverse

= BFM(k, false, query_image, base_image)

for every match in matches

if match not in matches_reverse

remove match from matches

return matches

As the basic brute force matching, as well as the functionality to find n nearest neigh-

bors to the match are already implemented in the OpenCV library, the available imple-
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mentations were used with additional conditions to implement two proposed criteria

([6, 10]).

The second algorithm considered for this step is the voting scheme based matching

proposed in [7]. The core of the considered wide-baseline matching algorithm is the

robust matching voting scheme focused on the component-wise similarities between

description vectors as opposed to considering the descriptor vectors as a whole. In this

method, when considering a query feature, every component of the descriptor vector

is compared to the base feature descriptor components separately. For a component qc
in the query feature vector q, the k of the base feature vectors bi with the most similar

component bi
c cast a vote for a match between q and bi. A query feature gets matched

to a base feature with most votes. The k parameter has been set to 1% of the features

present in the images, as suggested by [7]. The pseudocode for this procedure can be

written as follows:

VSM(k, base_image, query_image)

matches = {}

for every feature_vector VQ from query image:

for every component c in feature_vector:

find k feature_vectors from base image

with min|VQ[c] - VB[c]|

for every feature_vector VB out of k minimal:

cast a vote for match(VQ, VB)

VBH = match(VQ, VB) with most votes

add match(VQ, VBH) to matches

return matches

The implemented methods both return the matches sorted by quality, the match

with the smallest Euclidean distance being returned first by the brute force approach

and the match with most votes by the voting approach. Although it is not obligatory for

a matching basis to work, some of the implemented filtering steps expect the potential

matches set to be sorted by some priority criterion.

As the execution times of the voting scheme based matching were more than 3

times longer than the times for the brute force matching, and the testing of the brute

force matcher produced satisfactory results (c.f. Chapter 4), only the brute force

matcher is used in the final implementation.
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2.3.2. Filtering steps

As the matching basis produces a set with a significant percentage of false matches,

filtering must be carried out on those potential matches in order to achieve better ac-

curacy. Each implemented filter exploits a certain assumption about the target pair of

images.

The simplest implemented filter is the Coordinate filter. It considers every match,

and keeps only the matches where base feature coordinates are within d×d pixel square

around the query feature coordinates, as shown on Figure 2.3.

The reason for exploration of this approach is in the fact that image pairs used as

inputs for the visual feature matching process are expected to be very similar, e.g. the

offset between robot position and orientation used to capture the images can usually

be assumed to be small (a significant amount of features used in tracking in [15], [14]

is expected to be present in the image pair). This is true for robot movement along

mostly straight paths and slight curves, where the filter shows good characteristics

and improves the accuracy of base match set. Experiments with the filter show that its

usefulness depends heavily upon window size and that the window size exhibiting good

characteristics on the typical pictures has problems when applied to image pairs taken

on strong curves. Still, usage of this filter could still be possible if an information about

average or median feature displacement between consecutive key images is calculated

during visual memory preparation in the learning phase to be used as a parameter for

the filtering process.

The Spatial filter is based on the presumption that features of the same object stay

localized through keyframes. This method corresponds to the spatial filtering method

presented in [13], with slight differences: while the method in [13] was intended to

Figure 2.3: Schematic representation of the Coordinate filter. An example of a rejected match

are the features with coordinates (xq1, yq1) from the query image IQ and (xb1, yq1) from the

base image IB , shown in red. It can be seen that the base feature falls out of the d×d rectangle,

shown around the query feature in IQ and it’s position (marked in gray) in IB . An example of

an accepted match are the query and base features with coordinates (xq2, yq2) and (xb2, yb2)

respectively. The base feature from the accepted match is shown in red.
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be used primarily when queries were only image clips representing one object, here

the modifications to the method were needed to apply it to query images. For each

matched pair of features, the following is considered:

– k nearest neighbors of the base feature from the matched pair are considered

(good results with k = 1% of all base features, [13])

– median m of the distance between the neighbors and the base feature is calcu-

lated

– the query area is defined in the query image as a circle of radius 130% ·m
centered in the query feature from the matched pair,

– to cast a vote for the match, a neighbor of the base feature should be matched

to a feature inside the query area

The term of query area had to be redefined with respect to the method in [13].

Since in [13] a query is a section of the image containing the queried object, the query

area in the original method is simply defined as the entire queried section. Here, defin-

Figure 2.4: Schematic representation of the Spatial filter. A possible match between the feature

q0 from the query image Iq and feature b0 from the base image Ib is considered. The 4 nearest

neighbors of b0 have been emphasized as well as their matches from the query image. The area

highlighted in green in the query image is the query area. The neighbor match pairs that fall in

to the query area and cast a vote for the initial match are marked in green, while the match pair

that falls outside of this area and does not cast a vote is marked in red.

Figure 2.5: Explanation of the vote pondering for the Spatial filter. One of the neighbors of the

base feature b0, b1 is matched to two query features, q1A and q1B . If the votes are not pondered,

the match between b0 and q0 will receive 3 votes out of 4, giving it a score of 0.75. If votes are

pondered, the match receives 1+1+0.5
3 votes, receiving a slightly better score of 0.83.
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ing the query area through the median of the base neighbors distances proved to be a

good choice. Different percentages of the median distance were assessed, and the size

of 130% of the median distance has been chosen for the query area. A vote threshold

of 50% of all possible votes has been empirically chosen as the one with best perfor-

mance. All the votes also have to be pondered since more than one query feature can

be matched to a particular base feature. The graphical explanation of the base concept

behind this filtering method can be seen in Figure 2.4, while the Figure 2.5 gives a

graphical explanation of the vote pondering.

Output matches from the spatial filter are also ordered by the number of supporting

votes cast in favor of each match, much like the base methods order their outputs by

their respective priority criteria. It should also be noted that the results of this method

of spatial filtering depend on the percentage of false matches in the initial matching

set. This happens because with the low accuracy initial matching, the presumption that

most features of the same object will say localized through keyframes no longer holds:

since a lot of the matches are false, a significant amount of the features belonging to

the same object are falsely matched and these false matches are not localized.

The last filter implemented is the Multiple position filter. Upon careful exami-

nation of the extracted features, it can be noticed that many of the visual features are

extracted at the same (or very close) position within the image. Although those features

do contribute to the accuracy of CBIR process and increase the chances of successfully

matching a large portion of the extracted features, multiple correct matches in the same

position are of no use in the multiple view geometry calculations for which the output

of the matching process is used. Also, not all of the query image visual features from

the same grid cell are matched correctly to their pairs in the base image.

This filter aims to remove query features that are spatially equivalent from the

matching results. Ideally, it would leave only the best match from a collection of

Figure 2.6: Schematic representation of the Multiple position filter. On the left, original query

image Iq0 is shown, split into grid cells. The darkness of the salient query features corresponds

with the sorted order of the features, with the darkest features being the one with the highest

priority. On the right, in the image Iq1, only one feature is left per grid cell.
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matches located in in the same query image coordinates. For this reason, the input

matches for this method are expected to be sorted by some priority criterion. It can

be applied to all of the base matchers and filters introduced in this section, since both

base matchers and the Spatial filter sort their outputs, and the Coordinate filter does not

change the order of features that have not been rejected during the filtering process. If

the input matches to for the Multiple position filter are not sorted before the filtering

process, a match that appears first in the list of matches will be accepted, while all the

other matches with the query feature in the same position will be rejected.

For the purpose of this filtering, the image area is split in to x × x pixels wide

grid cells, as shown in Figure 2.6. When the query feature from the matched pair is

encountered, the corresponding grid cell is marked. Any new matches with the query

image falling in the same grid cell are rejected.
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3. Implementation

Methods and procedures researched for this thesis are implemented in C++ program-

ming language, using OpenCV1 open source library and following the style of the ViSP

library2, standing for Visual Servoing Platform. ViSP is an open-source cross-platform

solution providing functional implementations of procedures used in visual tracking

and servoing. The only other outer library used while implementing the methods of

interest to this thesis is OpenCV computer vision library. Since the ViSP library is

already using OpenCV, no new outside dependencies are introduced by using OpenCV

functions. The implementation is focused on decoupling all the major functionalities,

and providing access to them through interfaces or superclasses to ensure modularity

of the components. Detailed explanations of the design patters used can be found in

[4].

3.1. Modules used for feature detection

To store all the information concerning an interest region of an image – a visual fea-

ture, the class p_vpExtractedFeature is implemented. The purpose of this class

and the data stored in every instance is comparable to class cv::KeyPoint from

OpenCV: it stores the position of the interest region center within the image, the scale

on which the feature has been detected, and the radius of the interest region.

Feature detection is separated into two processes: feature extraction and calculating

descriptors on the set of already extracted features. Each of this parts provides its own

interface, namely p_vpFeatureExtraction and p_vpDescriptorGenerator.

The inheritance diagrams for these interfaces can be seen in the Figure 3.1, where it

can be noted that wrappers for the corresponding OpenCV functionalities have been

implemented, as well as dummy concrete classes for each of the interfaces. The

dummy classes help with testing the interaction of the components, while, addition-

1http://opencv.willowgarage.com/wiki/
2http://www.irisa.fr/lagadic/visp/visp.html
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(a) (b)

Figure 3.1: Inheritance diagrams for the interfaces used in feature detection procedures. The

interface used for feature extraction is shown in (a), while (b) is showing an interface used for

specifying the way of forming the descriptor vectors.

ally, p_vpDummyExtractor can also be used to combine the features extracted

externally with the rest of the implemented system. An additional concrete class for

feature extraction, p_vpMultipleExtractor, implements the composite design

pattern to allow unified work with features extracted by different procedures. An inter-

face p_vpFeatureDetector provides methods that perform the complete feature

detection process. The class p_vpCompositeDetector provides implementations

of these functionalities in case stand alone feature detection. This class implements the

strategy design pattern, allowing for a choice of feature extraction method and feature

descriptors. Accessing the features of an image used as a query in the content-based

image retrieval process should be done through an instance of p_vpTreeDetector

class, to avoid repeating the feature extraction process and calculating the feature de-

scriptors. This class does not provide a public constructor, and an instance can only be

obtained from the content-based image retrieval module. It is also possible to access

an instance of p_vpTreeDetector for all the images stored in the visual memory,

but the feature descriptors are coarse representations of the real descriptors as they are

the descriptors of the corresponding visual words.

3.2. Modules used in content-based image retrieval

As explained in Section 2.2, the main structure used for content-based image retrieval

is the vocabulary tree. To construct and manipulate the vocabulary tree structure, two

classes are implemented: p_vpImageSearchNode and p_vpContentImageSearcher.

The class p_vpImageSearchNode provides low-level functionalities to manipu-

late the tree, such as calculating tree weights or accessing the visual words from their

integer id-numbers. The p_vpContentImageSearcher class works with those

methods to provide complete functionalities for content-based image retrieval: filling

the visual memory, vocabulary tree construction and querying the visual memory.
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3.3. Modules for visual feature matching

The module for visual feature matching is also implemented as a strategy design pat-

tern through the interface p_vpImageMatcher. It allows for a choice of different

feature extraction methods for the each component the image pair it operates on, as

well as a choice between different base matching methods. Base matching methods all

implement a common interface p_vpDescriptorMatcher and need to be initial-

ized with already extracted features paired with their descriptor vectors for both im-

ages. The interface for image matching also implements the decorator design pattern,

where the matching basis can be obtained by instantiating a p_vpBasicImageMatcher

with appropriate feature detectors and a base matching method. The concrete match-

ing filters are interfaced by p_vpMatchingDecorator, allowing them to work

with matched feature pairs obtained from the base methods. Complete inheritance and

collaboration diagrams for the matching module are shown in the Figure 3.2.

(a)

(b)

Figure 3.2: Inheritance and collaboration diagrams for the matching module. The inheritance

diagram is shown in (a) and the collaboration diagram in (b). The use of the decorator design

pattern is visible from the diagrams.
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4. Testing and results

The testing has been done on video sequences acquired from an electric car-like robot

CyCab. Various sequences of different locations were used, as well as multiple se-

quences taken along the same path at different times and lighting conditions. For parts

of the testing, only key images extracted from sequences are used, extracted with the

methods implemented in [15] and [14]. Detailed methods for testing and their tabular

and graphical representations are described in the Sections that follow, separately for

the localization within the visual memory and for visual features matching.

4.1. Localization of the robot within the visual memory

The localization within the robots visual memory was tested on two pairs of different

video sequences take along the same path (c.f. Figure 4.2(a)). For each testing ex-

periment, query images were randomly selected from one of the sequences while the

visual memory contained only key images from the other sequence (key images were

selected with the process described in [14]). The branching factor and the depth of

the vocabulary tree are set to k = 6, L = 10 for both experiments, as those were the

parameters that produced the best results in [9].

For the first experiment, the outdoor video sequences were taken under similar

lighting conditions (similar weather and illumination) and in a small time gap (no ma-

jor changes to the environment). Only the two highest ranking answers are considered.

One of the two topologically closest key images is ranked highest in the 113 out of

120 query attempts, while the key image with an offset of 4 or less was not found

only in 2 of those query attempts. Tabular results presented in 4.1 show the distance

of the highest ranked and best of two highest ranked answers to the actual closest key

image. The distance of 1 means that one of the two best matches is found, while the

answer distance of 5+ is considered an unsuccessful query. Medians and distances

of the successful queries as well as the percentage of the successful queries are also

included.
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Table 4.1: Distance information for the first experiment (learning and testing on sequences

with similar lighting conditions), taking in the account the highest ranking and the best of two

highest ranking responses. The closest possible distance (correct answer) equals 1. Successful

queries are considered those where the answer is found among the two highest ranking answers,

with a distance equal to or less then 2. Parameters k = 6, L = 10, and the vocabulary tree was

built using all of the 42 images from the visual memory. The testing was done on 120 randomly

chosen images.

answers considered median average successful (%)

1 1 1.07 98.33

best of 2 1 1.05 100.00

The second experiment was done on video sequences with different illumination

and with environment changes. The illumination on the sequence from which the

visual memory images were selected was such that images were of good contrast,

while the strong illumination in the testing sequence produced images with very bright

and dark areas with almost no interest regions in which the features could be selected

(c.f. Figure 4.1). The map of the visual memory for this experiment is shown on Figure

4.2(a), while the video sequence used for the testing was taken only in the area marked

blue on Figure 4.2(b). The area marked red on the Figure 4.2(b) is the area where the

images were taken from the shadow, while strongly illuminated parts are visible. It is

visible on the image that the red area covers a part of the recorded path with a high

density of key images, while the testing results indicate that it corresponds to most of

the unsuccessful attempts in localization in this experiment. The tabular representation

in Table 4.2 offers the same data as the Table 4.1 for the first experiment, except that

the data is offered for up to 5 of the highest ranking answers considered.

These experiments lead to conclusion that the implemented methods work well on

sequences taken under the same illumination conditions as well as when the illumina-

tion is different but still allows for clear detection of the features. Most of unsuccessful

queries came from parts of the sequences where dark and bright areas in the image were

almost homogeneous because of the poor illumination and the number of extracted fea-

tures in those areas are low. Most of the unsuccessful queries in the first experiment

and a smaller portion of them in the second experiment came from the parts of the

path where homogeneous surfaces, such as walls and asphalt, with a low number of

extracted features, make a significant portion of the image area.

In Table 4.3, the execution times for building the vocabulary tree and for querying
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Table 4.2: Distance information for the second experiment, taking in the account up to the 5

highest ranking responses. Parameters k = 6, L = 10, and the visual memory contains 102

key images. The testing was done on 72 randomly chosen images

answers considered median average successful (%)

Images used to construct the vocabulary tree:

10

1 1 1.72 50.00

best of 2 1 1.57 61.11

best of 3 1 1.50 63.89

best of 4 1 1.50 69.44

best of 5 1 1.44 86.11

Images used to construct the vocabulary tree:

25

1 2 2.24 56.94

best of 1 1 1.72 65.28

best of 3 1 1.68 65.28

best of 4 1 1.36 65.28

best of 5 1 1.37 70.83

Images used to construct the vocabulary tree:

50

1 2 2.28 40.28

best of 1 2 2.07 48.61

best of 3 2 1.93 55.56

best of 4 1 1.74 58.33

best of 5 1 1.73 62.50

Table 4.3: Average execution times for building the vocabulary tree and querying the database.

# of images used in vocabulary

tree construction
construction time (min) query time (s)

10 7 1.45

25 28 1.45

50 101 1.62

such tree are presented for a varying number of images used in the vocabulary tree

construction. It is visible that the time required to get the response to a query does
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(a) (b)

Figure 4.1: A pair of images used for training and testing in the second experiment. The

image (a) is an example of a visual memory image, while the image (b) is an image of the same

locations from the training sequence.

(a) (b)

Figure 4.2: Figure (a) represents topological map of the visual memory used in the second ex-

periment. Figure (b) indicates the shadowed areas producing low contrast input images (marked

red) and the part of the path used for testing (marked blue).

not depend much on the number of images used for vocabulary tree construction. The

measured times are commensurable with the times presented in [9]. Query times mea-

sured for the implemented procedures are about 0.5 seconds larger than the ones in [9]

because both MSER and DoG features are extracted from the images, in contrast to

only MSER extraction in [9]. It should be noted that the building of the vocabulary

tree includes feature detection for all the images contained in the visual memory and

query features are extracted before performing a query on the vocabulary tree.
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Table 4.4: Average accuracy of matching with different filter combinations for k = 0.8

DoG (%) MSER (%)

base method 88.96 79.33

multiple position filter 87.90 77.86

multiple position + spatial filter 97.05 89.81

spatial + multiple position filter 96.93 90.71

Table 4.5: Average size of the accepted matches set after applying filtering methods to potential

matches after brute force matching with k = 0.8

DoG MSER

reference set size:

average number of matches (brute force k = 0.6 + multiple

position filter) (#)

212.4 36.0

features remaining (%)

multiple position + spatial filter 118.1 137.4

spatial + multiple position filter 119.7 136.9

multiple position + coordinate (100px) + spatial filter 122.6 154.5

4.2. Performance of the matching process

To test the accuracy of matching process on the visual features of an image pair, the

matches for the desired image pair must be annotated by hand. Because the lengthiness

of the testing procedure, the image pairs that were used to obtain accuracy results have

been selected by hand from available key image databases containing the potential

visual memory of the robot. Experiments were done with DoG and MSER feature

detection algorithms on consecutive key images. Accuracy testing for the DoG features

was done on 5 different consecutive key images from 3 different sequences while for

MSER features testing an additional image pair was included in the results for the

total of 2 image pairs per sequence. The key images were selected from the sequences

by the process implemented in [15]. Choice of images aimed to include the most

representative image pairs to obtain the results most relevant for the broad range of

possible cases.

The Table 4.4 shows the percentage of correct matches out of all accepted matches

for different combinations of filters. Although the Coordinate filter with 100px win-
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dow size shows results commensurable with the best results presented in Table 4.4, it

was not included in the results listings because of its instability. Conclusions about the

instability of the Coordinate filter can be drawn from examining the percentage of the

correct matches in the accepted matches set, as well as its size for 50px setting. While

the filter performs very good for image pairs with low positional offsets (typically, on

a straight part of the path), the number of accepted matches is reduced to as little as
1
50

of the number of accepted matches before applying all the filtering methods. This

happens because the predetermined window size for the Coordinate filter is not the

most suitable one for all of the image pairs. An example of such image pair with a

significant positional and rotational offset, and the behavior of the Coordinate filters

with 100px and 50px window size are shown in Figures 4.3 and 4.4. Still, the testing

results obtained when the Coordinate filtering is applied with approximately appro-

priate window size are promising. During the visual memory preparation done in the

offline phase, described in [14], information about the average distances in the matched

feature coordinates could be obtained. If this, or some similar measure is available, it

could be used to precalculate a more appropriate window size for the Coordinate fil-

ter, thus increasing the accuracy of the matching obtained while keeping the desirable

property of higher match acceptance rate.

The “marriage” criterion was not used as well, since the size of potential matches

set was initially to small, and the accepted match sets did not have a satisfactory size

despite a high percentage of correct matches. The acceptance rate for the Spatial filter

is set to 50% of all pondered votes. The size of the Multiple position filter window is

set to 11 pixels, since that is the size of the tracking window that is to be used on the

features during the navigation process described in [14].

It should be noted that Multiple position filtering should always be applied, as

multiple matches at the same image coordinates need to be eliminated. Experimentally,

it is shown that the Multiple position filter should be applied to the matches set after

applying the Spatial filtering. Another relevant factor for determining the quality of

results is the number of matches in the end of the process. The distance ratio k for

the brute force matching was chosen with a compromise between the percentage of

the accurate matches and the size of the accepted matches set in mind. The Figure 4.5

displays the correlation between the accepted set size and the percentage of the correct

matches. Based on this data, the distance ratio was set to k = 0.8, which coincides

with the distance ratio suggested in [6]. Table 4.5 summarizes the changes in size of

the accepted matches set for the filter combinations used in the final implementation.

The accepted matches set size taken as a reference was the size of the matches set
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(a) Coordinate filter with window size 50× 50 pixels

(b) Coordinate filter with window size 100× 100 pixels

Figure 4.3: Pair of images on which where Coordinate filter with a smaller window performs

worse than if a larger window is used. Images filtered with Multiple position filter and Coor-

dinate filter are shown before applying the Spatial filtering. It can be observed that the number

of matches on the image pair (a) is greatly reduced with respect to the total number of features,

while the accuracy is low. The number of matches and their accuracy on the second image pair

shown in (b), however, is visibly higher. These results were obtained with k = 1.0, but the

Coordinate filter performs in the same manner for all image pairs with a large positional and

rotational offset with all parameter combinations for the matching basis.

acquired with brute force matching without the “marriage” criterion and distance ratio

limit k set to 0.6, with only Multiple position filter applied. The average number of

accepted matches for the final choice of parameters is around 50 per image pair when

using MSER features, and around 250 when using DoG features.

The speed of the optimal combination of filters (Spatial filter followed by the Mul-

tiple position filter) has been tested for the DoG and the MSER feature matching done

simultaneously with the SIFT feature descriptors. Tests were done on 4 different im-

age pairs, and for each image pair the process was run 50, averaging the execution
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(a) Coordinate filter with window size 50× 50 pixels

(b) Coordinate filter with window size 100× 100 pixels

Figure 4.4: Pair of images on which where Coordinate filter with a smaller window performs

better than if a larger window is used. Images filtered with Multiple position filter and Co-

ordinate filter are shown before applying the Spatial filtering. While the number of accepted

matches after applying both filters (a) and (b) is fairly large, the matched features are visibly

more accurate on (a) than on (b). The best size of the Coordinate filter window to achieve

the best percentage of correct accepted matches depends on the positional and rotational offset

between the images in the pair.

times for final calculations. The average execution time was 2.26 seconds. Most time

is spent on the feature detection process, while the matching procedure is much faster.
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(a) MSER features used

(b) DoG features used

Figure 4.5: Size of the accepted matches set and the percentage of the correct matches accepted

for different distance ratio k for the brute force matching
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5. Conclusion

From the presented results, it can be concluded that though the developed modules are

not yet good enough to use without human intervention for the autonomous navigation,

this first iteration of implementing these functionalities shows potential in exploring

the implemented approach. The modules developed for this thesis were integrated

with the visual navigation modules developed in the complementary thesis [14] to be

used for the autonomous navigation of INRIA CyCab. As both content-based image

retrieval and the matching process rely on visual features detection process designed

primarily for structured images, the localization and the visual feature matching tend

to give unsatisfactory results in the environment containing large homogeneous and

untextured surfaces (such as walls).

In spite of this, developed functionalities can be considered a basis for future devel-

opment of a more robust localization modules. Possible improvements to localization

could come from utilizing image description techniques better suited to represent the

contents of images containing weak textured objects. The other improvement pos-

sibility to the visual matching approach would be to obtain some approximation of

maximum/median visual feature distance for an image pair before starting the visual

matching, to utilize the implemented Coordinate filter with appropriate parameters.

Obtaining a larger initial set of tentative correspondances without increasing the por-

tion of false matches in the set is expected to accept more features in the final set of

correspondances.
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