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1. Introduction

There is a number of advantages for using ultrasound for acquiring medical im-
ages compared to, for example, magnetic resonance imaging (MRI ) or computed
tomography (CT ). Some of the advantages are the low price and portability of
the device, the high speed of image acquisition, its safety for the human health
and the fact that it doesn’t interact with ferromagnetic materials [9].

In this work we are interested in tracking non-rigid deformations of soft tissue
structures in sequences of three-dimensional ultrasound images, caused by phys-
ical motions such as breathing, beating of the heart or some external motion.
If we were able to track a selected part of a deforming tissue in an ultrasound
volume throughout time, we could, for example, keep this part of the tissue in
place during some kind of medical treatment.

The main drawback of ultrasound images is their low signal to noise ratio. In
order to track the deformations of soft tissues in such conditions, Lee and Krupa
suggest the usage of an intensity-based tracking method with the thin-plate spline
warp as the motion model, as described in [9]. The idea is to put a number of
control points in the ultrasound volume, track them through the sequence and use
their locations to find the deformations of the tracked tissue. The problem with
their method is that the motion model explodes when there is too much of noise
present in the images. The goal of this work is to reimplement the procedures
described in their paper and to improve the tracking where it previously failed.

The methods tried in this work in order to improve the previous tracking
procedure were adding regularization to the thin-plate spline warp motion model
used in the tracker and physically constraining the movement of control points
using a mass-spring system.

The work is structured as follows. First we describe the thin-plate spline warps
in Chapter 2, which is followed by the explanation of intensity-based tracking in
Chapter 3. In order to test our tracker implementation we had to generate some
ground-truth data, which is done as explained in Chapter 4. The mass-spring
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system is described in Chapter 5, followed by the discussion of the experimental
results in Chapter 6. The implementation details are given in Appendix A.
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2. Thin-plate spline warps

To explain the idea and the purpose of thin-plate splines warps, we first have to
see what a warp and a thin-plate spline are. To be able to do so, we will first define
radial basis functions and explain how they can be used for interpolating values
over scattered points of data. After that, we will introduce thin-plate splines,
and finally the thin-plate spline warps. All of this will be briefly described in the
following sections. Let’s start!

2.1. Radial basis functions

We say that a function φ(x, c) : R+ → R is a radial basis function (RBF) if it
has the form

φ(x, c) = φ (||x− c||) , (2.1)

where the norm || · || usually represents Euclidean distance. In other words, a
function is a radial basis function if its value depends only on the distance of
x ∈ Rd from the point c ∈ Rd, which is usually refered to as the center.

2.1.1. Radial basis function interpolation

Given an unknown function f(x) : Rd → R and a set of nc points, ci, at which the
values of the function f are known, we can define the interpolation problem as
the problem of finding a function s(x) : Rd → R which satisfies the interpolation
conditions

s(ci) = f(ci) ∀i ∈ {1, 2, . . . , n}. (2.2)

The function s(x) is called the interpolant and it is known that it can be found
by summing up nc weighted radial basis functions [3], as shown in the following
equation

f(x) ≈ s(x) =
nc∑
i=1

wiφ(x, ci). (2.3)
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The wi in the equation represent the weight coefficients and ci represent the cen-
ters of the radial basis functions. The centers are chosen at the points where the
values of the function f are known and the weight coefficients can be calculated
by putting the interpolation conditions (2.2) into equation (2.3) [3], and then
solving the system 

f(c1)
...

f(cnc)

 =


Φ1,1 . . . Φ1,nc

... . . . ...
Φnc,1 . . . Φnc,nc



w1
...
wnc

 , (2.4)

where
Φi,j = φ(ci, cj). (2.5)

Without going into proofs and details, we will just state that the matrix Φ is
always nonsingular for some choices of the radial basis function type, if the centers
are distinct, resulting in a uniquely defined coefficients vector, given by

w = Φ−1f . (2.6)

For a detailed discussion about the nonsingularity of the matrix Φ and the exis-
tance of a unique interpolant of form (2.3), refer to [15], [1] and [11].

Again without any proof and details, we will introduce a more general form
of the interpolant equation

f(x) ≈ s(x) =
nc∑
i=1

wiφ(x, ci) + P (x), P ∈ Πm(Rd), (2.7)

where Πm(Rd) represents the vector space of polynomials in d real variables of
total degree m [1]. The choice of the value of m depends on the choice of the
radial basis function type φ and will be mentioned in the following subsection.
Notice that the equation (2.7) comes to the form of (2.3) in cases when there is
no polynomial term, that is, when m = 0. For m > 1 the polynomial term in
(2.7) adds q = (m−1+d)!

d!(m−1)! degrees of freedom [11] which are eliminated by satisfying
q conditions [1]:

nc∑
i=1

wip(ci) = 0, (2.8)

for all the terms p in the polynomial P . By combining (2.7) with the conditions
(2.8), we can write a linear system Φ C

CT 0

w
a

 =
f

0

 , (2.9)
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where Φ represents the matrix defined in (2.5), the i-th row of C is defined as
Ci =

(
1 ci

)
, wi are the RBF weight coefficients and ai are the coefficients of the

polynomial term in (2.7). Using this system we can find the coefficient vectors
w and a which are needed to define the interpolant (2.7). The sizes of matrices
used in (2.9) are going to be discussed later in Section 2.2, when we choose a
concrete RBF type to be used in (2.7).

2.1.2. Radial basis function types

There exists a number of different radial basis functions and some of the most
used are listed in Table 2.1. The rightmost column in the table shows the values
of m, the total degree of the polynomial term used in (2.7), depending on the
choice of the RBF type φ. We can see that m = 0 when we use the Gaussian
or Inverse multiquadratic RBF, so there is no polynomial term added in the
interpolant and (2.7) comes to the form of (2.3). These are the cases when Φ
is invertible and the weight vector w can be found using equation (2.6). When

Table 2.1: Some of the different types of radial basis functions [11]

RBF type φ(r), r = ||x− c|| β conditions m(φ)
Gaussian e−r

2 — 0
Multiquadratic (−1)dβ/2e(1 + r2)β/2 β > 0, β 6∈ 2N dβ/2e
Inverse multiquadratic (1 + r2)β/2 β < 0 0

Polyharmonic spline
(−1)dβ/2erβ β > 0, β 6∈ 2N dβ/2e
(−1)1+β/2rβ log r β > 0, β ∈ 2N 1 + β/2

using the Multiquadratic or Polyharmonic spline RBF, m is greater than zero
and a polynomial term exists in (2.7). The RBF that we are going to use in this
work is of the polyharmonic spline type, with β chosen to be 2. It has the form

φ(r) = r2 log r, r = ||x− c|| (2.10)

and it is called the thin-plate spline. It should be noted that (2.10) is defined this
way in R2. The R3 form will be introduced later.

2.2. Thin-plate splines

As defined in the previous subsection, the thin-plate spline (TPS) is a special
type of polyharmonic splines, with β = 2. Thin-plate splines were first presented
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by Harder and Desmarais in [8] and were later mathematically formalized by
Duchon [5] and Meinguet [12]. Thin-plate splines are known for their property of
minimizing bending energy of a thin metal plate which will be briefly described
in the following subsection.

2.2.1. Physical analogy

Imagine an infinite thin metal plate and four points lying on it, forming a square.
Now take four hooks and put one of them into one of the four defined points, so
that they can be pulled in directions perpendicular to the plate. Pull the two
hooks on one diagonal of the square in the direction of the plate’s normal and
pull the other two hooks in the opposite direction. The plate will bend and take
a shape similar to the one shown in Figure 2.1, which is the shape that minimizes
the plate’s bending energy.

Figure 2.1: An infinite thin metal plate constrained by four hooks. Two of the hooks
on one diagonal are pulling the plate in one direction and the other two are pulling the
plate into the other direction. The shape that the plate takes minimizes its bending
energy. This image was borrowed from [2].

2.2.2. Two dimensions

We can look at the thin metal plate shown in Figure 2.1 as a function f : R2 → R
which defines the height of the plate at every location x ∈ R2 lying on the plate.
In our example, the heights are constrained at four locations ci shown as hooks
in the figure. We want to find an interpolant s which will find the heights of
the plate at unknown locations given the heights at points ci, minimizing the
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bending energy at the same time. The energy which we want to minimize can be
expressed by the equation

Is =
∫∫

R2

(
∂2s

∂x2

)2

+ 2
(
∂2s

∂x∂y

)2

+
(
∂2s

∂y2

)2

dxdy. (2.11)

It has been proven by Duchon [5] that the function s which minimizes this energy
has the form

s(x, y) = a1 + a2x+ a3y +
nc∑
i=1

wiφ2D(||(x, y)− (xci
, yci

)||), (2.12)

where
φ2D(r) = r2 log r, r = ||x− c||. (2.13)

We can see that s is actually the interpolant defined in (2.7) with the RBF (2.13)
chosen to be the thin-plate spline RBF defined in (2.10). In order for s to have
square integrable second derivatives [4], [2] we add the following constraints

nc∑
i=1

wi =
nc∑
i=1

wixi =
nc∑
i=1

wiyi = 0, (2.14)

which are the conditions mentioned previously in (2.8). If we define a vector v
containing the known values of the function f at points ci, vi = f(ci), we can
combine it with (2.12) and the constraints (2.14) to get the system

Φnc×nc Cnc×3

CT
3×nc

03×3

wnc×1

a3×1

 =
vnc×1

03×1

 . (2.15)

The matrices in (2.15) are defined analogous to the ones defined in (2.9). Solving
this system gives us the vectors w and a, which then uniquely define the inter-
polant (2.12). We can see that the number of parameters needed to define the
TPS interpolant depends on the number of chosen centers nc. In two dimensions
the interpolant is determined by nc + 3 parameters.

2.2.3. Taking it into three dimensions

As we have to deal with three-dimensional data in our work, we will have to
extend the interpolation described in the previous subsection by adding one more
dimension. Unfortunately, the interpolant in three dimensions cannot be shown
as nicely as the two-dimensional one pictured by a metal plate in Figure 2.1. As
Bookstein says in [2], the equivalent of the metal plate for the three-dimensional
case is a slightly bent hyperplane in Euclidean four-space and will thus require
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considerable imagination, because it is not really clear how to draw it. However,
extending the two-dimensional interpolant into three dimensions can be done
without any major changes to what we have previously defined.

The bending energy which our three-dimensional interpolant has to minimize
is the following [16]:

Is =
∫∫∫

R3

(
∂2s

∂x2

)2

+
(
∂2s

∂y2

)2

+
(
∂2s

∂z2

)2

+ 2
( ∂2s

∂x∂y

)2

+
(
∂2s

∂x∂z

)2

+
(
∂2s

∂y∂z

)2
 dxdydz, (2.16)

which is achieved by a function of the form

s(x, y, z) = a1 + a2x+ a3y + a4z +
nc∑
i=1

wiφ3D(||(x, y, z)− (xci
, yci

, zci
)||). (2.17)

According to [2], the RBF used in (2.17) is now

φ3D(r) = r, r = ||x− c||. (2.18)

One more constraint is added to the ones defined in (2.14):
nc∑
i=1

wizi = 0 (2.19)

and again a system similar to (2.15) can be written:Φnc×nc Cnc×4

CT
4×nc

04×4

wnc×1

a4×1

 =
vnc×1

04×1

 . (2.20)

Solving this system gives us the vectors w and a, needed to determine the inter-
polant (2.17). In the three-dimensional case the interpolant depends on nc + 4
parameters.

2.3. The thin-plate spline warp

We are given a set of nc points lying on a plane (in R2), A = {a1,a2, . . . ,anc}.
Let us take these points and move them around the plane a bit to get a new set
of points, B = {b1, b2, . . . , bnc}. As we know the point correspondences from set
A to set B (we know which point from A has moved to which location in B), we
can define a function m(x) : R2 → R2 which will map the points from A into
points from B. This mapping function is called a warp and once found, it can be
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used to move all the points on a plane according to the movement of just a set
of control points.

The usage of thin-plate spline warps for modelling deformations of biologi-
cal images has been described in detail by Bookstein in [2]. The main idea of
defining a warp is to observe the changes of a point’s location separately in every
dimension. Following this principle, the thin-plane spline warp in two dimensions
if written as

m2D(x) =
sx(x)
sy(x)

 =
ax1 ax2 ax3

ay1 ay2 ay3




1
x

y

+
nc∑
i=1

wxi
wyi

φ2D(||x− ci||), (2.21)

where sx(x) represents the two-dimensional TPS interpolation function (2.12)
describing the displacements in the x dimension, and similarly, sy(x) describing
the displacements in the y dimension. Notice that the centers ci are the same for
both splines. As the TPS warp defined in (2.21) consists of two TPS interpolants
(2.12), each of which depends on nc + 3 parameters, we can see that the two-
dimensional TPS warp depends on 2 · (nc+ 3) parameters. These parameters can
be calculated by solving a system similar to (2.15):Φnc×nc Cnc×3

CT
3×nc

03×3

wx
nc×1 wy

nc×1

ax3×1 ay3×1

 =
vxnc×1 vync×1

03×1 03×1

 . (2.22)

The matrices and vectors used in this system have been defined in previous sec-
tions.

2.3.1. The warp in three dimensions

Following the same ideas which were used to define the two-dimensional TPS
warp, we can define the warp in three dimensions as

m3D(x) =


sx(x)
sy(x)
sz(x)

 =


ax1 ax2 ax3 ax4

ay1 ay2 ay3 ay4

az1 az2 az3 az4




1
x

y

z

+
nc∑
i=1


wxi

wyi

wzi

φ3D(||x−ci||), (2.23)

where the functions sx, sy, sz refer to three three-dimensional TPS interpolants
defined in (2.17). As each of the interpolants needs nc+4 parameters to be defined,
the three-dimensional TPS warp will be defined with 3 · (nc+4) parameters. The
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system used to find the parameters is then written as:Φnc×nc Cnc×4

CT
4×nc

04×4

wx
nc×1 wy

nc×1 wz
nc×1

ax4×1 ay4×1 az4×1

 =
vxnc×1 vync×1 vznc×1

04×1 04×1 04×1

 . (2.24)

2.3.2. Using the warp to find new point locations

Let us examine a simple example of how the 3D TPS warp can be used. Imagine
a cube defined in a 3D discrete grid, consisting of n points. Now we will add nc
more points inside the cube and call them control points. The i-th point in the
cube is refered to as pi and the i-th control point is ci. We know the locations of
both all of the n cube points, pi = (xpi

, ypi
, zpi

), and all of the nc control points,
ci = (xci

, yci
, zci

). Imagine now that the control points move a bit, each of them
in a random direction. We want to find out where we should move the n cube
points, so that the points follow the movement of the control points. If we know
the new locations of each of the control points, c′i, we can find the new cube point
locations as follows.

First we will write the warp function (2.23) in matrix form as
(
xp

′

n×1 yp
′

n×1 zp
′

n×1

)
=
(
Bn×nc Qn×4

)wx
nc×1 wy

nc×1 wz
nc×1

ax4×1 ay4×1 az4×1,

 (2.25)

where we define the matrix B as Bi,j = φ3D
(
||pj − ci||

)
, the j-th row in matrix

Q as Qj =
(
1 xpj

ypj
zpj

)
and the vectors xp′ , yp′ and zp′ contain the new x,

y and z coordinates of point pi in the i-th row. Now, if we denote the leftmost
matrix in (2.24) as K, and the (nc + 4) × nc submatrix of the inverse K−1 as
K∗, then we can find the parameters matrix aswx

nc×1 wy
nc×1 wz

nc×1

ax4×1 ay4×1 az4×1,

 = K∗
(
xc

′
nc×1 yc

′
nc×1 zc

′
nc×1

)
, (2.26)

where the vectors xc′ , yc′ and zc′ contain the new x, y and z coordinates of the
control point c′i in the i-th row. At last, if we denote the

(
B Q

)
matrix in

(2.25) as M , we can calculate the new positions of all the n cube points using
the equation (

xp
′

n×1 yp
′

n×1 zp
′

n×1

)
= MK∗

(
xc

′
nc×1 yc

′
nc×1 zc

′
nc×1

)
. (2.27)

If we denote the leftmost matrix in (2.27) as P ′ and the rightmost matrix as C ′,
we will be able to write the equation in a simpler way, as P ′ = MK∗C

′.
The only problem left is what to do if we don’t know the new control point

locations. This will be discussed in the following chapter.
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3. Intensity-based tracking

As it was described in the example at the end of the previous chapter (2.3.2),
by knowing the initial control point positions and the positions of control points
in the volume at the current time, we can calculate the 3 · (nc + 4) parameters
needed by the 3D TPS warp defined in (2.23) and then use the warp to find new
locations of other points in the volume. This means that we can select a region
of interest in the initial volume and estimate its deformation through time only
by knowing the positions of the control points. The remaining problem is to find
the control point locations in the current volume in the sequence. To be able to
do this, we must use some kind of visual tracking. Because the signal to noise
ratio in ultrasound images is very low, it is hard to extract trackable features, so
direct pixel intensity values are used instead.

In this work we are using the same method as described in [9], which is based
on the 2D region tracking method presented in [7]. The used tracking method
will be described in the following sections.

3.1. The motion model and the tracking region

First of all, we will define the position of a point p by using a parametric motion
model

p = f(p0,µ(t)), (3.1)

where p0 represents the initial position of the point, and µ(t) represents a vector
of motion parameters at given time t. In our case, the motion model is the
3D TPS warp defined in (2.23), where the motion parameters are actually the
control point positions that we are trying to estimate. We can write the motion
parameter vector as

µ(t) =
(
xc1(t) yc1(t) zc1(t) . . . xcnc

(t) ycnc
(t) zcnc

(t)
)T
, (3.2)
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where xci
(t), yci

(t) and zci
(t) are respectively the x, y and z coordinates of the

control point ci at time t, and nc is the number of control points. As mentioned
a few times before, by knowing the control point positions, i.e., the motion pa-
rameters, we can find new positions of the other points that we want to track.

If we say that I(p) gives us the intensity value at point p, and if we mark
the set of n points in the region that we want to track as P = {p1,p2, . . . ,pn},
we can define the tracking region I as a function of P that gives us a vector of
intensities

I(P ) =
(
I(p1) I(p2) . . . I(pn)

)T
. (3.3)

If we combine (3.3) with our motion model (3.1) and mark the initial set of the
tracked points as P 0 = {p0

1,p
0
2, . . . ,p

0
n}, then the tracking region I can be defined

as a function of P 0 and the motion parameter vector µ at time t, and we can
write

I(P 0,µ(t)) =



I(f(p0
1,µ(t)))

I(f(p0
2,µ(t)))
...

I(f(p0
n,µ(t)))

 . (3.4)

The initial tracking region (set at time t = t0) will be denoted as

I∗ = I(P 0,µ(t0)) (3.5)

and will be referred to as the reference tracking region.

3.2. Estimating the motion parameters

The goal of the intensity-based region tracking is to minimize the difference be-
tween the current tracking region I and the initial, reference tracking region I∗.
This can be described by an objective function

O(µ) = ||I(P 0,µ)− I∗||2, (3.6)

where we are using the tracking regions as defined in (3.4) and (3.5).
According to [7], our problem of region tracking can be rewritten as a problem

of finding a vector of offsets δµ such that

µ(t+ τ) = µ(t) + δµ (3.7)
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can be written for an image at time t + τ . Using this equation, we can redefine
the objective function (3.6) as a function of δµ

O(δµ) = ||I(P 0,µ(t) + δµ)− I∗||2. (3.8)

By expanding I(P 0,µ(t) + δµ) in a Taylor series about µ and t we will get

I(P 0,µ(t) + δµ) = I(P 0,µ(t)) + Jµδµ+ τ
∂I

∂t
+ h.o.t., (3.9)

where Jµ is the Jacobian matrix of I with respect to µ, which will be discussed
more in detail in the following subsection.

By ignoring the higher order terms (marked as h.o.t) and including (3.9) in
(3.8) we get

O(δµ) ≈ ||I(P 0,µ(t)) + Jµδµ+ τ
∂I

∂t
− I∗||2. (3.10)

If we now approximate τ ∂I
∂t

as

τ
∂I

∂t
≈ I(P0,µ(t+ τ))− I(P0,µ(t)), (3.11)

the equation (3.8) then becomes

O(δµ) ≈ ||I(P 0,µ(t+ τ)) + Jµδµ− I∗||2. (3.12)

Finally, by solving the equations ∇O = 0, we get

δµ = −J+
µ (I(P0,µ(t+ τ))− I∗), (3.13)

where J+
µ denotes the Moore-Penrose pseudo-inverse of Jµ, defined as

J+
µ = (JTµJµ)−1JTµ. (3.14)

If we define an error vector as

e(t+ τ) = I(P 0,µ(t+ τ))− I∗, (3.15)

we can write the motion vector offset as

δµ = −J+
µe(t+ τ). (3.16)

In the work described in [9] the motion vector offset is additionally scaled by a
positive constant λ in order to ensure an exponential decrease of the error (3.15).
This is then reffered to as the velocity vector of motion parameters and is written
as

vµ = −λJ+
µe(t+ τ). (3.17)
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3.2.1. Construction of the Jacobian matrix

Following the work described in [9], the Jacobian matrix can be calculated from
our motion model f (3.1) and the 3D image gradient ∇P 0I at time t using the
equation

Jµ = ∂I

∂µ
= ∂I

∂P 0
× ∂P 0

∂P
× ∂P

∂µ
= ∇P 0I × f−1

P 0 × fµ. (3.18)

This matrix is a n× 3nc matrix and here it is shown how to construct it row by
row.

Calculating ∇P 0I

The first term in (3.18) is the 3D image gradient ∇P 0I. It is calculated at all of
the points in the previously defined set P 0 by using a 3× 3× 3 Sobel operator at
each point. For example, the gradient at point p0

i that we will denote as ∇p0
i
I,

will be a 1 × 3 row vector, containing the values of the gradient in x, y and z

directions.

Calculating f−1
P 0

The second term, f−1
P 0 , represents the inverse of the 3 × 3 Jacobian matrix of

f(p0,µ(t)) regarded as a function of p0. This matrix is calculated at every point
p0
i in P 0. If we denote the matrix fP 0 at point p0

i as fp0
i
, we can define it as

fp0
i

=
(

∂f(p0
i ,µ(t))
∂x

p0
i

∂f(p0
i ,µ(t))
∂y

p0
i

∂f(p0
i ,µ(t))
∂z

p0
i

)
=



∂xpi

∂x
p0

i

∂xpi

∂y
p0

i

∂xpi

∂z
p0

i
∂ypi

∂x
p0

i

∂ypi

∂y
p0

i

∂ypi

∂z
p0

i
∂zpi

∂x
p0

i

∂zpi

∂y
p0

i

∂zpi

∂z
p0

i

 , (3.19)

where we have used xp0
i
, yp0

i
and zp0

i
to denote respectively the x, y and z coor-

dinates of the point p0
i , and xpi

, ypi
and zpi

to denote the x, y and z coordinates
of the point p, calculated from the motion model p = f(p0,µ(t)). If we now use
the equation defined in (2.27), denoting the rightmost matrix in it as C ′, we can
rewrite the equation (3.19) as

fp0
i

=




∂M i

∂x
p0

i

∂M i

∂y
p0

i

∂M i

∂z
p0

i

K∗C
′



T

= C ′TKT
∗


∂M i

∂x
p0

i

∂M i

∂y
p0

i

∂M i

∂z
p0

i



T

, (3.20)
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where we have denoted the i-th row of M as M i. To make it more clearer, we
can expand the equation further to get

fp0
i

= C ′TKT
∗



∂φ3D(p0
i ,c1)

∂x
p0

i

∂φ3D(p0
i ,c2)

∂x
p0

i

. . .
∂φ3D(p0

i ,cnc )
∂x

p0
i

0 1 0 0
∂φ3D(p0

i ,c1)
∂y

p0
i

∂φ3D(p0
i ,c2)

∂y
p0

i

. . .
∂φ3D(p0

i ,cnc )
∂y

p0
i

0 0 1 0
∂φ3D(p0

i ,c1)
∂z

p0
i

∂φ3D(p0
i ,c2)

∂z
p0

i

. . .
∂φ3D(p0

i ,cnc )
∂z

p0
i

0 0 0 1



T

, (3.21)

where φ3D denotes the 3D TPS RBF defined in (2.18) and ci is the i-th control
point. The sizes of matrices in (3.21) are as follows. The first matrix C ′T is a
3× nc matrix, KT

∗ is a nc × (nc + 4) matrix, and the rightmost matrix which we
can call dMT

i is a (nc + 4)× 3 matrix.

Calculating fµ

The last term in (3.18), fµ, represents the 3× nc Jacobian matrix of f(p0,µ(t))
regarded as a function of µ(t). Like the matrix fP 0 , this matrix is also calculated
at every point p0

i in P 0. If we denote the matrix fµ at point p0
i as f iµ, we can

define it as

f iµ =
(

∂f(p0
i ,µ(t))
∂xc1

∂f(p0
i ,µ(t))
∂yc1

∂f(p0
i ,µ(t))
∂zc1

. . .
∂f(p0

i ,µ(t))
∂xcnc

∂f(p0
i ,µ(t))

∂ycnc

∂f(p0
i ,µ(t))

∂zcnc

)
.

(3.22)
By expanding this equation, we will get

f iµ =


∂xpi

∂xc1

∂xpi

∂yc1

∂xpi

∂zc1
. . .

∂xpi

∂xcnc

∂xpi

∂ycnc

∂xpi

∂zcnc
∂ypi

∂xc1

∂ypi

∂yc1

∂ypi

∂zc1
. . .

∂ypi

∂xcnc

∂ypi

∂ycnc

∂ypi

∂zcnc
∂zpi

∂xc1

∂zpi

∂yc1

∂zpi

∂zc1
. . .

∂zpi

∂xcnc

∂zpi

∂ycnc

∂zpi

∂zcnc

 , (3.23)

where we have used the same notations as before, with xci
, yci

and zci
being

respectively the x, y and z coordinates of the i-th control point ci. If we denote
the i-th element of the vector KT

∗M
T
i as vi, whereM i represents the i-th row of

the matrix M , then we can write the matrix f iµ as

f iµ =


v1 0 0 v2 0 0 . . . vnc 0 0
0 v1 0 0 v2 0 . . . 0 vnc 0
0 0 v1 0 0 v2 . . . 0 0 vnc

 . (3.24)
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Putting it all together

After we have shown how to calculate all of the terms in (3.18), we can construct
the Jacobian matrix in the following way:

Jµ =



∇p0
1
I · f−1

p0
1
· f 1
µ

∇p0
2
I · f−1

p0
2
· f 2
µ

...
∇p0

n
I · f−1

p0
n
· fnµ

 . (3.25)

This matrix will be a n × 3nc matrix, where n is the number of points pi in P 0

and nc is the number of the control points ci.

3.2.2. The final tracking algorithm

After we have defined the velocity vector (3.17), the final equation used for esti-
mating the motion parameter vector (3.2) can be written as

µ(t+ τ) = µ(t) + vµτ, (3.26)

where τ denotes the sampling period of the tracking process.
Due to the fact that the Jacobian Jµ is a n×3nc matrix, which is usually quite

large, it is very time-consuming to calculate it and its pseudo-inverse at every step
of the tracker. An alternative is to use an approximated pseudo-inverse Ĵ+

µ which
is calculated only once at the initialization, when t = t0, and is used instead of
J+
µ in (3.17).

3.3. Testing the tracker

After implementing the tracker described above (see Appendix A for implementa-
tion details) we have to somehow test the tracker. The basic idea used for tracker
testing will be explained in this section.

As mentioned before, the goal of the tracker is to minimize the error defined
in (3.15). Unfortunately, we can’t use the final value of this error as the only
measure of correctness of the tracking, because a low error doesn’t mean that the
estimated control point positons, i.e., the values of the motion parameter vector
(3.2), are close to their real values. This is due to the fact that the movement of
the control points cannot be entirely explained by the motion model (3.1) alone
and because there is high noise present in ultrasound images. A better way would
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be to compare the estimated control point positions directly to their real values.
This, of course, cannot be done if we don’t know the real control points positions.
But there is a solution! We can generate our own deformed volumes using our
motion model (3.1) in which the real control positions will be known and use
them as ground truth data to test the tracker.

The methods used in the process of generating our own sequences of deforming
ultrasound volumes will be explained in the following Chapter 4.

3.4. Improving the tracker

There are two methods that we tried in order to improve the accuracy of the
tracker. The first one was to add simple regularization to our motion model
(3.1), i.e., to the three-dimensional TPS warp (2.23), and the second method
was to add some physical constraints to the motion of the control points.

3.4.1. Adding regularization to the TPS warp

As it is mentioned in [4] and [10], adding regularization to TPS relaxes the
interpolation requirement that the interpolant has to pass directly through the
values at the centers, which is useful when dealing with very noisy data, such as
ultrasound images.

According to [4], the relaxation of the interpolation condition is done by min-
imizing

H(s) =
nc∑
i=1

(vi − s(xci
, yci

, zci
))2 + λregIs, (3.27)

where vi represents the value of the function we are interpolating at the point
ci, vi = f(xci

, yci
, zci

), s is the three-dimensional TPS interpolant as defined in
(2.17), Is is the three-dimensional bending energy (2.16) and λreg is the regular-
ization parameter, a positive scalar. As stated in [6], to include the regularization
into the TPS warp, we must replace the matrix Φ in the equation (2.24) by
Φ + λregI, where I represents an identity matrix. This change will affect the
matrix K∗ used in the equation (3.20) in the tracker. Notice that the regular-
ized warp is used only in the tracker to estimate the motion parameter vector.
When finding the new locations of points in the tracked region as described in
Subsection 2.3.2, a warp without regularization is used.
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3.4.2. Constraining the motion of the control points

The second method used for improving the tracker was to physically constrain the
movement of the control points in order to prevent them from going into unnatural
arrangements. This is done by combining the tracker with a mass-spring system,
which is explained in detail in Chapter 5.

18



4. Generating ground truth data

The ground truth data in this work are the control point positions in our generated
sequence of deformed ultrasound volumes. This chapter will describe the idea
used for deforming an ultrasound volume and the methods used in the process.

4.1. The basic idea of volume deforming

The idea used for deforming an ultrasound volume used in this work is very
simple. We will take one ultrasound volume, define a three-dimensional grid of
control points inside of it, move the control points a bit at each step and use our
motion model (3.1) to find new positions of all of the other points contained in
the initial volume. This idea has already been described in detail by an example
that can be found in Subsection 2.3.2.

There are only two things remaining to explain the process of volume defor-
mation completely. The first one is how to define the movement of the control
points during the volume deformation, and the second is the problem of missing
intensities in the generated volumes. Just to be more clearer, imagine a volume
that we are expanding. The dimensions of the expanded volume will be bigger
than the dimensions of the initial volume, which means that the deformed vol-
ume will contain empty space between the voxels with intensities from the initial
volume. The problem of these missing intensities will be solved by interpolation.

The following two sections explain the problems stated above.

4.2. Defining the motion of the control points

In this section we are going to explain how the movement of control points from
their initial positions was defined in this work.

The idea is as follows. For each control point ci we will define a vector vi
pointing into the direction in which we want to move the point. Also, for each
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of these vectors we will add an another parameter li which will define its length,
i.e., the maximal distance the control point can move from its initial position.
The last parameter will be a real number αi ∈ [0, 100] describing the percentage
that the control point has traveled from its initial position along the given vector.
An example of a vector with different values of α is shown in Figure 4.1.

Notice that when we define the control point positions and their vectors point-
ing in the direction we want to move them, not all of the values of parameter α
have to be the same for all of the vectors. A two-dimensional example with four
control points is shown in Figure 4.2, where we have initialized the vectors with
α1 = 70, α2 = 25, α3 = and α4 = 50. By using the directions of the vectors vi,
their defined lengths li and their αi parameters, the starting point vsi and ending
point vei of each vector the control points will move on can be calculated as

vsi = ci − ||vi|| · li ·
αi

100 , (4.1)

vei = vsi + ||vi|| · li. (4.2)

After that, we can change the position of the control point ci by increasing the
parameter αi and using it in the equation

c′i = vsi + ||vi|| · li ·
αi

100 . (4.3)

To make sure that the control points move only between the points vsi and vei ,
the value of the parameter αi has to be between 0 and 100. Because of that, we
will increase the value of αi only until it reaches 100, then start decreasing it to
start increasing it again when it reaches 0. An example of how the control point
positions changed when we increased the αi values by ∆α = 35 is also shown in
Figure 4.2.

b

(a) Vector with α = 0.

b

(b) Vector with α = 50.

b

(c) Vector with α = 100.

Figure 4.1: An example of a vector pointing in the direction in which we want to
move the control point, with different values of the parameter α. When α = 0 the
control point is at the start of the vector, with α = 50 the control point moved half
way from the start towards the end, and with α = 100 the control point is at the end
of the vector.

20



b

bb

b

α3 = 0

α2 = 25α1 = 70

α4 = 50

(a) Control points with ∆α = 0.

b

b

b

b

α3 = 35

α2 = 60α1 = 95

α4 = 85

(b) Control points with ∆α = 35.

Figure 4.2: A two-dimensional example with control points moving along defined vec-
tors. The subfigure on the left shows the control point positons as they were initialized,
and the right subfigure shows their new positions after increasing the parameters αi
of each vector by ∆α = 35. The values of the parameter αi increase until they reach
100, after what they start decreasing. Also, after reaching 0, the value of αi starts
increasing again.

Finally, to generate a deformed volume from the initial one, we will increase
all of the αi parameters by a chosen ∆α, find new control point locations using
the equation (4.3) and use the new control point locations to find new positions
of all of the other points in the initial volume as described in Subsection 2.3.2.
The solution to the remaining problem of unknown intensities at some points in
the deformed volume will be explained in the following section.

4.3. Interpolating the missing intensities

As it was mentioned before, if we expand a volume using the methods described
in the previous two sections, we will end up with a volume that will contain some
empty space, i.e., points at which no intensity value is known. To calculate the
intensities at these points, we will use a method called tetrahedral interpolation
which is going to be explained in the following subsection.

4.3.1. Tetrahedral interpolation

We are given a function f(x) : R3 → R and four points vi ∈ R3 forming a
tetrahedron, as shown in Figure 4.3. The values of the function f are known
at all of the given points vi and we are interested in finding the value of the
function at the point v that is lying inside of the tetrahedron. To be able to find
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the unknown value, we will first have to find this point’s barycentric coordinates.

b

b b

b

b

v1
v2

v3

v4

v

Figure 4.3: Four points forming a tetrahedron. The values of the observed function
f are known at all of the tetrahedron’s vertices. We are interested in finding the value
of the function at the point v lying inside of the tetrahedron, marked here in red color.

Finding the barycentric coordinates of a point

Barycentric coordinates allow us to calculate the location of a point v lying inside
of the tetrahedron by summing up the locations of points forming the tetrahedron,
each multiplied by a corresponding weight. This is written as

v = λ1v1 + λ2v2 + λ3v3 + λ4v4. (4.4)

There is an additional constraint for the weigths

λ1 + λ2 + λ3 + λ4 = 1, (4.5)

from which we can express

λ4 = 1− λ1 − λ2 − λ3. (4.6)

If we rewrite the equation (4.4) for each component of the point v, we will have
the equations

xv = λ1xv1 + λ2xv2 + λ3xv3 + λ4xv4 , (4.7)

yv = λ1yv1 + λ2yv2 + λ3yv3 + λ4yv4 , (4.8)

zv = λ1zv1 + λ2zv2 + λ3zv3 + λ4zv4 . (4.9)
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By substituting λ4 in the equations above with the equation (4.6) and rearranging
the equations a bit, we can write

λ1(xv1 − xv4) + λ2(xv2 − xv4) + λ3(xv3 − xv4) = xv − xv4 , (4.10)

λ1(yv1 − yv4) + λ2(yv2 − yv4) + λ3(yv3 − yv4) = yv − yv4 , (4.11)

λ1(zv1 − zv4) + λ2(zv2 − zv4) + λ3(zv3 − zv4) = zv − zv4 , (4.12)

or in matrix form
Tλ = v − v4, (4.13)

where the matrix T is defined as

T =


xv1 − xv4 xv2 − xv4 xv3 − xv4

yv1 − yv4 yv2 − yv4 yv3 − yv4

zv1 − zv4 zv2 − zv4 zv3 − zv4

 . (4.14)

In the end, the barycentric coordinates of the point v, i.e., λ1, λ2, and λ3, are
found using the equation

λ =


λ1

λ2

λ3

 = T−1(v − v4). (4.15)

The last barycentric coordinate, λ4, is found from the equation (4.6). The matrix
T in (4.15) is invertible because v1 − v4, v2 − v4 and v3 − v4 are linearly inde-
pendent. Also, if the point v lies inside of the tetrahedron, all of its barycentric
coordinates will be from the interval [0, 1]. If any of the coordinates is less than
0 or greater than 1, the point lies outside of the tetrahedron.

Using the barycentric coordinates to find the unknown value

After finding the barycentric coordinates of the point v at which we want to
calculate the unknown value, the value can be estimated using the following
expression

f(v) = λ1f(v1) + λ2f(v2) + λ3f(v3) + λ4f(v4). (4.16)

In our case, the function we are interpolating are the intensities in the volume at
a given point, which can also be regarded as a function I(v) : R3 → R. Using
this notation, the missing intensity at the point v is found using the equation

I(v) = λ1I(v1) + λ2I(v2) + λ3I(v3) + λ4I(v4), (4.17)

which concludes the tetrahedral interpolation subsection.
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4.3.2. Dividing the volume into tetrahedra

In order to use the described tetrahedral interpolation method in our problem of
volume deformation, we must first somehow divide the volume we want to deform
into a set of tetrahedra. To explain how to do this, we will first show how a cube
can be divided into tetrahedra. The process of dividing an object into a set of
tetrahedra is called three-dimensional triangulation and it is shown in Figure 4.4.

(a) First tetrahedron. (b) Second tetrahedron. (c) Third tetrahedron.

(d) Fourth tetrahedron. (e) Fifth tetrahedron. (f) Sixth tetrahedron.

Figure 4.4: Triangulating a cube into a set of six tetrahedra.

Now that we know how to triangulate one cube, let us explain how we can
triangulate a whole volume. For example, let’s say that dimensions of the initial
volume that we want to deform are 10 × 20 × 30 voxels. If we consider each of
the voxels as vertices, we can divide the volume into a set of 9× 19× 29 cubes.
After that, the rest of the process is pretty straightforward; we just divide each
of the cubes in the volume into tetrahedra, as it was shown in Figure 4.4.
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4.4. The final volume deformation algorithm

The final volume deformation algorithm can be described by the following few
steps. First we choose a volume that we want to deform and place a three-
dimensional grid of control points somewhere inside the volume. After that, we
triangulate the volume to get a set of tetrahedra, as it was shown in Subsection
4.3.2. For each control point ci we define a vector vi pointing in the direction in
which we want to move the point, along with its parameters li and αi, as it was
described in Section 4.2. To deform the volume, we increase the αi parameters
of each of the vectors defined above by a value ∆α and find the new locations of
control points using equation (4.3). Using the new positions of control points and
our motion model (3.1) we find the new locations of all of the other points in the
volume, i.e., all of the voxels, as described in the example in Subsection 2.3.2.
After that, we can use the previously generated set of tetrahedra and tetrahedral
interpolation described in Subsection 4.3.1 to find the missing intensities in the
deformed volume. For example, this can be done by iterating through each of
the tetrahedra in the set and then calculating the barycentric coordinates of each
of the points lying inside of the bounding box of the current tetrahedron. If
the current point lies inside of the current tetrahedron, its intensity is calculated
using the equation (4.17). If we want to generate the next deformed volume in
the sequence, we just repeat the whole process from the step where we increase
the αi parameters by ∆α.
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5. Mass-spring system

In this chapter we will describe the main method that we have tried using in order
to prevent unnatural movement of control points during tracking, caused by high
noise present in ultrasound images. The idea is to connect the control points with
a set of springs which will hopefully help keep the control points in a more natural
arrangement, by pushing the points away if they come too close to each other, and
by pulling them together if they move too far from each other. Our mass-spring
system will consist of particles with some mass and springs connecting pairs of
particles. In the next sections we will explain the physics needed to simulate this
kind of a system.

5.1. A single particle

In order to build a mass-spring system, we must first explain what information
is known about a single particle and how this information is used to simulate our
system.

Each particle at the time t is defined by its position x(t), velocity v(t), accel-
eration a(t) and, of course, its mass m, which is considered to be constant. The
velocity of a particle can be linked with its position by writing the equation

v(t) = dx(t)
dt

, (5.1)

and similarly, the acceleration can be linked with both the particle’s velocity and
its position by writing

a(t) = dv(t)
dt

= d2x(t)
dt2

. (5.2)

We can rewrite the equations above as

v = ẋ, (5.3)

and
a = v̇ = ẍ. (5.4)
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By knowing the particle’s acceleration a(t), we can find its velocity by integrating

v(t) =
∫
a(t)dt, (5.5)

and similarly, its position by integrating

x(t) =
∫
v(t)dt. (5.6)

The next question is how to find the particle’s acceleration? Well, if we know
the total sum of forces that are applied at one particle, we can use the Newton’s
second law of motion stated as

F = ma (5.7)

to find the particle’s acceleration.

5.1.1. Simulating the dynamics of a single particle

Here we consider a single particle changing its position through time due to the
forces applied to the particle. If we know the particle’s mass m, its position x(t),
velocity v(t) and the values of the forces F i applied to it at time t, we can use
the following procedure to find its position and velocity at time t+ ∆t.

First, we will find the total force F total applied at the particle by simply
summing all of the forces F i acting on the particle

F total =
∑
i

F i. (5.8)

After that we can use the Newton’s second law of motion (5.7) to get the particle’s
acceleration

a(t) = F total

m
. (5.9)

To find the current particle velocity and its location, we just have to solve the
integrals defined in (5.5) and (5.6). In our work we chose the Euler’s method [14]
as a method of numerical integration, which approximates the particle’s velocity
and location at time t+ ∆t as

v(t+ ∆t) = v(t) + a(t)∆t (5.10)

and
x(t+ ∆t) = x(t) + v(t+ ∆t)∆t. (5.11)

The same steps are repeated in the future everytime when t increases by ∆t.
The Euler’s method was chosen as a method for numerical integration because
of its simplicity. Other methods such as the Runge Kutta method or the Verlet
integration method could also be used instead [13].
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5.2. The physics behind a spring

Let us consider a spring with a particle on one end, connected to a wall on the
other end as shown in Figure 5.1. If we now apply some force to the particle to
change the spring’s length from the initial l0 to l0 + ∆l, the spring will react by
pulling the particle back towards its starting location with a force F spring. This

l0 ∆l

b
b

Figure 5.1: A spring in its resting position with a length of l0 and the same spring
after expanding its length to l0 + ∆l.

force can be found by using the Hooke’s law, which can be stated as

F spring = −kspring∆l, (5.12)

where ∆l represents the difference between the current spring’s length and its
initial length, and kspring is the spring’s constant. We can see that the force
F spring tries to restore its initial length by acting in the opposite direction of the
force that caused the change of the length. If we tried to contract the spring by
pushing the particle in Figure 5.1 to the left, the force described by the Hook’s
law would push the particle back to the right.

If we tried to simulate a spring described only by (5.12) using the methods
described in the Subsection 5.1.1, the particle would undergo a simple harmonic
motion, oscillating infinitely around its starting position. To change this be-
haviour, we must add an another force that will add some friction to our system.
The frictional force that we will add is called the damping force, and it is described
by the following equation

F damping = −bv′, (5.13)

where v′ represents the velocity of the particle v projected onto the vector point-
ing into the direction of the spring, and b is the damping ratio.

Combining the two forces described in (5.12) and (5.13), we can see that the
total force acting on a particle connected to a spring can be stated as

F total = −kspring∆l − bv′ + F external, (5.14)

where we have used F external to mark the external force acting on the particle.
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5.3. A system of masses and springs

Now let us consider a system of multiple particles connected by springs, as shown
in Figure 5.2. The particles are labeled as p1, p2 and p3 and the springs as si,j,
where i and j represent the indices of the particles connected by this spring. We

p1 p2

p3

s1,2

s1,3 s2,3

b b

b
(a) Initial system.

p1

p2

p3

s1,2

s1,3

s2,3

b b

b
(b) After moving the first
particle.

Figure 5.2: A system of three particles connected by springs. The first subfigure
shows the initial state of the system and the second subfigure shows the state of the
system after we moved the first particle a bit.

are interested in finding the forces that are acting on the particle p1. If we mark
the position of the particle pi as xpi

, then, we can write the vector pointing into
the direction of the spring s1,2 as

e1,2 = xp2 − xp1

||xp2 − xp1||
. (5.15)

The force F s1,2 acting on the particle p1, caused by the spring s1,2, can be then
written as

F s1,2 = −ks1,2∆l1 = −ks1,2(l01,2 − l1,2)e1,2, (5.16)

where we used l01,2 to mark the initial length of the spring s1,2, l1,2 to mark its
current length and ks1,2 to mark its spring constant. The damping force acting
on the particle p1 caused by the spring s1,2 can be calculated as

F d1,2 = −b1,2(v′1 + v′2), (5.17)

where v′1 and v′2 represent the speeds of particles p1 and p2 projected onto the
vector e1,2, defined in (5.15). The above equation can be rewritten as

F d1,2 = −b1,2(v1 · e1,2 + v2 · e1,2)e1,2, (5.18)
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where v1 and v2 are the speed vectors of the particles p1 and p2 and · marks the
vector dot product. If we use the same principles as described above, we can find
the forces F s1,3 and F d1,3 also acting on the particle p1, but caused by the spring
s1,3. The total sum of forces acting on the particle p1 can then be calculated as

F total1 = F s1,2 + F d1,2 + F s1,3 + F d1,3 + F external1 . (5.19)

The total force acting on the i-th particle can more generally be written as

F totali =
∑
j

F si,j
+
∑
j

F di,j
+ F externali , (5.20)

where the forces F si,j
and F di,j

are calculated for every spring si,j connected to
the particle pi.

5.3.1. Simulating the dynamics of the whole system

The simulation of the dynamics of the whole mass-spring system is simple. All
we have to do is calculate the total forces acting on each of the particles in the
system, calculate their accelerations using the Newton’s second law of motion
(5.7) and then use the methods described in the Subsection 5.1.1 to find their
velocities and new positions.

5.4. Integrating the mass-spring system with the
tracker

In order to integrate the mass-spring system defined in the previous sections with
our intensity-based tracker, we must first define its particles and how they will
be connected with springs. As the idea is to constrain the movement of control
points to prevent their unnatural arrangements, we will use the control points
as the particles in our mass-spring system. The control points in the tracker in
our work are initialized in a three-dimensional grid, so some of the possible ways
to connect them with springs are shown in Figure 5.3. By combining these nine
types of connections, we can get 512 different mass-spring system structures, each
of which will cause different behaviour of the system when forces are applied to
its particles.

The intensity-based tracker was described in detail in Chapter 3 and is sum-
marized in the Subsection 3.2.2. As it can be seen from the equation (3.26), the

30



motion parameter vector is increased at every iteration of the tracker by the vec-
tor vµτ . The changes we have to make in the tracker to include our mass-spring
system constrains are simple. Let’s repeat that the motion parameter vector is
a vector that contains the locations of control points, as defined in (3.2). So,
adding the vector vµτ to the vector µ means that we move each of the control
points ci by some offset contained in vµτ . Let us denote the offset of each of the
control points ci as ∆ci.

Instead of just moving each of the control points ci by ∆ci as it is done in the
original tracker, we will think about the offset ∆ci as a force and apply it to the
particle pi in our mass spring system. To make the system more configurable,
the force ∆ci can be scaled by a force scale constant before applying it to the
particle. After applying the forces, we will simulate the dynamics of the mass-
spring system for a number of iterations, as it is described in Subsection 5.3.1.
The positions of the particles at which the simulation has ended will be considered
as the new control point locations. This process is repeated at each step of the
tracker.
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(a) Only in x direction. (b) Only in y direction. (c) Only in z direction..

(d) Only first diagonals in
x direction.

(e) Only first diagonals in y
direction.

(f) Only first diagonals in z
direction.

(g) Only second diagonals
in x direction.

(h) Only second diagonals
in y direction.

(i) Only second diagonals
in z direction.

(j) All directions at once.

Figure 5.3: The nine basic options of connecting springs in a three-dimensional grid
are shown in subfigures a) to i). By combining these options we can get different kinds
of mass-spring system structures. The last subfigure shows the spring connections in a
system where all nine types of connections are used at once.
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6. Experimental results

In order to test the developed tracking methods, we have generated a small se-
quence of deforming ultrasound volumes using the methods described in Chapter
4. As the sequence was generated artificially, we know the exact positons the con-
trol points should take in every volume in the sequence, which is used as ground
truth data in our experiments. The accuracy of our tracking method is measured
by calculating the average of the Euclidean distances of each of the control points
from their real locations. We have added different amounts of noise to the gener-
ated sequence of volumes to see how the tracker behaves in different conditions.
The used sequences are briefly described in the following section.

6.1. The used volume sequences

The first volume sequence is a generated sequence of 10 ultrasound volumes,
without any added noise. Some of the volumes from this sequence are shown in
Figure 6.1.

The other used sequences are the same as the sequence mentioned above, but
with some noise added. The values of noise added to each voxel in a volume
are taken from the normal distribution with the parameters µ and σ, where µ
denotes the mean and σ denotes the standard deviation of the distribution. Each
of the voxels in the volume can have an intensity value from the interval [0, 255].
If some values are less than 0 or greater than 255 after adding the noise, we just
set them to 0 and 255 respectively.

Four additional sequences with noise have been generated. The noise parame-
ters used were µ1 = 20, σ1 = 10, µ2 = 20, σ2 = 20, µ3 = 20, σ3 = 30 and µ4 = 20,
σ4 = 40. Some of the volumes from these sequences are shown in Figure 6.2.
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(a) Volume number 1. (b) Volume number 9.

Figure 6.1: Two volumes from the sequence without any added noise.

6.2. The used tracker parameters

The tracker depends on the following parameters. First we have to specify the
number of control points in x, y and z directions, the size and location of the
three-dimensional grid formed by this number of control points and the dimen-
sions of the chosen tracking region. Next we have to choose the number of tracker
iterations, τ used in (3.26) and λ used in (3.17). If we want to add some reg-
ularization we have to specify the regularization parameter λreg used in (3.27).
We have the choice to decide if the mass-spring system is used or not and choose
the nine different parameters describing the structure of the mass-spring system
as shown in Figure 5.3. The other parameters of the mass-spring system are
the spring stiffness constant, the spring damping constant, the spring system
simulation time step, the particle mass, the force scale constant mentioned in
Section 5.4 and the number of iterations used when simulating the behaviour of
the mass-spring system.

As the number of parameters that the tracker depends on is very big and
every one of them has an impact on the tracker accuracy, it is hard to find the
best configuration. Some combinations of the tracker parameters that have been
tested are shown in the following section.
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(a) Volume with added noise, µ = 20, σ = 10. (b) Volume with added noise, µ = 20, σ = 20.

(c) Volume with added noise, µ = 20, σ = 30. (d) Volume with added noise, µ = 20, σ = 40.

Figure 6.2: The same volume with four different quantities of noise added.
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(a) Initial volume. (b) Iteration number 10. (c) Iteration number 20.

Figure 6.3: An example of tracking of an region in a generated sequence of 20 volumes,
without any added noise. The points marked in red color are the control points and the
lines are used to show the deformation of the tracked region. When this sequence was
generated the control points on the left were fixed in place, which is why they aren’t
moving during the tracking.

6.3. The results

It this section we will show some of the tracker testing results. The accuracy of
the tracker was measured as the average Euclidean distance of control points from
ground truth control point locations. As the differences between these values are
hard to visualise graphically, here they will be shown in table format. In order
to show how the tracking looks like, an example of tracking in a sequence of 20
deformed ultrasound volumes can be seen in Figure 6.3. If not stated differently,
the tracker parameters τ used in (3.26), λ used in (3.17), and the number of
tracker iterations are set as τ = 0.7, λ = 0.5 and nit = 15 in all of the tests
described here.

The first five tables (6.1, 6.2, 6.3, 6.4 and 6.5) will show the results of tracker
testing on the volume sequences described in Section 6.1 with different values of
the TPS regularization parameter λreg, described in Subsection 3.4.1. The tested
values of the regularization parameter were 0, 2, 5, 10 and 15. As it was expected,
the tracking accuracy increased with the regularization parameter in cases when
sequences with high noise were used. In the tests with low noise, setting λreg to
lower values caused better results.

The following two tables (6.6 and 6.7) show the results of testing the tracker
with the mass-spring system constraints turned on. The tracker parameters τ ,
λ and nit remain the same as before and the other parameters related to the
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Table 6.1: Tracker error in the volume sequence without added noise, with different
values of the regularization parameter λreg.

λreg iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 6 iter. 7 iter. 8 iter. 9
0 2.36802 1.73567 1.70777 2.90666 2.44047 2.93724 2.96127 2.43656 2.93394
2 2.36738 1.73547 1.70764 2.90631 2.44026 2.93707 2.96112 2.43639 2.93387
5 2.36662 1.73581 1.70782 2.90626 2.4404 2.93725 2.96113 2.43644 2.93407
10 2.36555 1.73632 1.70803 2.9067 2.44101 2.93791 2.96128 2.43701 2.93484
15 2.36544 1.74224 1.72158 2.93412 2.51744 3.10657 3.36753 3.40863 4.71218

Table 6.2: Tracker error in the volume sequence with noise parameters µ = 20, σ = 10,
with different values of the regularization parameter λreg.

λreg iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 6 iter. 7 iter. 8 iter. 9
0 2.35134 1.75782 1.72794 2.85068 2.4504 2.92386 2.95976 2.46321 2.933
2 2.35064 1.75744 1.72781 2.85048 2.45036 2.92364 2.95969 2.46322 2.93287
5 2.34971 1.75681 1.72794 2.85066 2.45073 2.92393 2.96026 2.46371 2.93316
10 2.34857 1.75568 1.72844 2.852 2.45291 2.92607 2.96325 2.46719 2.93563
15 2.34822 1.7545 1.73082 2.85908 2.47118 2.95095 3.00284 2.53393 3.0161

Table 6.3: Tracker error in the volume sequence with noise parameters µ = 20, σ = 20,
with different values of the regularization parameter λreg.

λreg iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 6 iter. 7 iter. 8 iter. 9
0 2.2746 1.79773 1.73104 2.66682 2.43624 2.86136 2.95435 2.49595 2.87106
2 2.27322 1.79687 1.72948 2.66656 2.43687 2.86196 2.9554 2.49798 2.872
5 2.27161 1.79484 1.72696 2.66599 2.43827 2.86413 2.95817 2.50207 2.87507
10 2.26942 1.79088 1.72308 2.66446 2.44125 2.86918 2.9669 2.51665 2.88857
15 2.27 1.78859 1.71977 2.66316 2.44457 2.87881 2.98472 2.55306 2.93087

Table 6.4: Tracker error in the volume sequence with noise parameters µ = 20, σ = 30,
with different values of the regularization parameter λreg.

λreg iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 6 iter. 7 iter. 8 iter. 9
0 2.10299 1.8431 1.78313 2.30884 2.26711 2.65693 2.84579 2.57209 2.83097
2 2.10007 1.83968 1.7806 2.30808 2.26632 2.65724 2.84723 2.57418 2.83467
5 2.0966 1.83435 1.77647 2.30708 2.26544 2.65946 2.85168 2.5782 2.84098
10 2.09275 1.8266 1.76968 2.30622 2.26686 2.66664 2.86446 2.59281 2.85902
15 2.09233 1.8246 1.76806 2.3112 2.27724 2.68375 2.89362 2.62971 2.89933

Table 6.5: Tracker error in the volume sequence with noise parameters µ = 20, σ = 40,
with different values of the regularization parameter λreg.

λreg iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 6 iter. 7 iter. 8 iter. 9
0 1.97111 1.89677 1.89267 2.23442 2.25727 2.49449 2.64669 2.56163 2.73404
2 1.96609 1.8927 1.88885 2.22581 2.25127 2.49173 2.64731 2.56127 2.73507
5 1.95971 1.8886 1.88411 2.21649 2.24385 2.48825 2.64789 2.56042 2.73702
10 1.95293 1.88546 1.88001 2.2094 2.24147 2.48979 2.65371 2.56776 2.75032
15 1.9525 1.88873 1.88549 2.21826 2.2594 2.5109 2.67959 2.60481 2.79653
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mass-spring system are set as follows. The spring damping constant is set to 0.2,
the simulation time step is set to 0.3 and the structure of the mass-spring system
is as the last one shown in Figure 5.3, with all the connections in use. In these
two tests we wanted to see how the spring stiffness and particle mass affect the
accuracy of the tracker. As it can be seen from the tables, the results were better
as the spring stiffness constant was lower.

Table 6.6: Tracker error in the volume sequence without added noise, with the mass-
spring system turned on, force scale constant=1, particle mass=1 and different values
of the spring stiffness.

stiff. iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 6 iter. 7 iter. 8 iter. 9
0.01 2.51485 1.66474 1.71794 3.17036 2.35339 3.02459 2.97796 2.34677 3.09712
0.05 2.52134 1.66726 1.72824 3.17228 2.3651 3.05382 2.97535 2.39056 3.1013
0.1 2.53446 1.66551 1.73247 3.1943 2.38197 3.06715 3.00399 2.43077 3.12276
0.2 2.57009 1.65558 1.74268 3.25147 2.39633 3.08636 3.06153 2.48576 3.16865
0.5 2.7139 1.60016 1.7763 3.47168 2.34806 3.13813 3.17863 2.53755 3.27049

Table 6.7: Tracker error in the volume sequence without added noise, with the mass-
spring system turned on, force scale constant=1, particle mass=0.5 and different values
of the spring stiffness.

stiff. iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 6 iter. 7 iter. 8 iter. 9
0.01 2.4457 1.67885 1.71168 3.05238 2.38944 3.01294 2.96078 2.39881 3.01952
0.05 2.44506 1.68896 1.71344 3.05419 2.41641 3.0101 2.9886 2.43364 3.03461
0.1 2.45352 1.69463 1.71944 3.06525 2.43534 3.02697 3.01359 2.47558 3.06791
0.2 2.48094 1.69047 1.73388 3.09765 2.45135 3.06747 3.04678 2.53738 3.13173
0.5 2.57032 1.64903 1.75845 3.21817 2.45069 3.17303 3.0959 2.60925 3.29262

The following five tables (6.8, 6.9, 6.10, 6.11 and 6.12) show how lowering
the spring stiffness affected the accuracy of the tracker, tested in all five of the
available sequences. First two rows of each of these tables show the results when
particle mass is set to 1 and the last two rows show the results with particle mass
set to 0.5. As it can be seen from the tables, the results were almost always better
when spring stiffness was set to 0.01 than when it was set to 0.05. Setting the
particle mass to 1 had slightly better results than when it was set to 0.5.

The last five tables (6.13, 6.14, 6.15, 6.16 and 6.17) show the results of tests
where we tested the effects of different values of the force scale constant combined
with two different values of the regularization term λreg. Other tracker parame-
ters were fixed with the following values: particle mass=1, spring stiffness=0.01,
spring damping=0.2 and the simulation time step=0.3. As it can be seen from
the tables, in all of the tests the best results were acquired when the force scale
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Table 6.8: Tracker error in the volume sequence without added noise, with the mass-
spring system turned on, force scale constant=0.5, particle mass=1 (first two rows) or
0.5 (last two rows) and different values of the spring stiffness.

m stiff. iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 6 iter. 7 iter. 8 iter. 9

1
0.01 2.17152 1.88037 1.69286 2.5975 2.6133 2.75246 3.00807 2.56255 2.76617
0.05 2.17801 1.88214 1.70874 2.62019 2.61697 2.80143 3.04624 2.62643 2.85401

0.5
0.01 2.22595 1.79159 1.73451 2.72945 2.45184 2.8672 2.94581 2.5091 2.89739
0.05 2.22796 1.80209 1.74892 2.73466 2.48011 2.90192 2.98289 2.58543 2.95506

Table 6.9: Tracker error in the volume sequence with noise parameters µ = 20, σ = 10,
with the mass-spring system turned on, force scale constant=0.5, particle mass=1 (first
two rows) or 0.5 (last two rows) and different values of the spring stiffness.

m stiff. iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 6 iter. 7 iter. 8 iter. 9

1
0.01 2.12454 1.92117 1.71584 2.45342 2.5867 2.75238 2.98249 2.62956 2.7771
0.05 2.13076 1.92023 1.73603 2.48996 2.59797 2.79765 3.04734 2.72346 2.89268

0.5
0.01 2.18921 1.81924 1.75383 2.60644 2.45369 2.81712 2.95189 2.56581 2.88675
0.05 2.19161 1.82677 1.77571 2.61717 2.48193 2.87029 3.00222 2.66711 2.98586

Table 6.10: Tracker error in the volume sequence with noise parameters µ = 20,
σ = 20, with the mass-spring system turned on, force scale constant=0.5, particle
mass=1 (first two rows) or 0.5 (last two rows) and different values of the spring stiffness.

m stiff. iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 6 iter. 7 iter. 8 iter. 9

1
0.01 2.00883 1.94708 1.78397 2.24327 2.44745 2.68381 2.91723 2.7209 2.80214
0.05 2.01353 1.94707 1.7909 2.26777 2.46715 2.72055 2.98853 2.84151 2.96168

0.5
0.01 2.07295 1.87108 1.7784 2.37054 2.39712 2.70187 2.90087 2.65249 2.86006
0.05 2.0757 1.87403 1.78999 2.3854 2.41453 2.75303 2.9689 2.77631 3.01232

Table 6.11: Tracker error in the volume sequence with noise parameters µ = 20,
σ = 30, with the mass-spring system turned on, force scale constant=0.5, particle
mass=1 (first two rows) or 0.5 (last two rows) and different values of the spring stiffness.

m stiff. iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 6 iter. 7 iter. 8 iter. 9

1
0.01 1.87957 1.89878 1.8317 2.04689 2.19574 2.43517 2.70141 2.68911 2.78239
0.05 1.88222 1.89956 1.84032 2.07626 2.24273 2.49306 2.77755 2.80292 2.94484

0.5
0.01 1.92412 1.86007 1.81451 2.10467 2.19198 2.46722 2.70853 2.63332 2.79307
0.05 1.9254 1.86213 1.82943 2.13446 2.23478 2.52528 2.78357 2.75762 2.96535

constant was set to 0.05. The results were usually better when no regularization
was used, except in some cases with sequences with high values of noise. For
example, see Table 6.17, where the tracking was the best with the regularization
parameter set to 5. After four iterations the tracking without regularization had
better results. This could perhaps be explained by the low number of tracking
iterations preventing the control points to converge in the volume sequence with
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Table 6.12: Tracker error in the volume sequence with noise parameters µ = 20,
σ = 40, with the mass-spring system turned on, force scale constant=0.5, particle
mass=1 (first two rows) or 0.5 (last two rows) and different values of the spring stiffness.

m stiff. iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 6 iter. 7 iter. 8 iter. 9

1
0.01 1.80556 1.87698 1.90019 2.04571 2.15808 2.30673 2.48279 2.55133 2.6688
0.05 1.80635 1.8734 1.89556 2.04717 2.1745 2.34364 2.54296 2.64682 2.80263

0.5
0.01 1.83844 1.87163 1.8861 2.06804 2.15522 2.31648 2.49008 2.53025 2.67837
0.05 1.83709 1.86486 1.88416 2.07545 2.1738 2.35804 2.55368 2.63478 2.8151

high noise present.
Finally, if we compare the results shown in the first five tables (6.1, 6.2, 6.3,

6.4 and 6.5) where the mass-spring system was not used with the results shown
in the last five tables (6.13, 6.14, 6.15, 6.16 and 6.17) where the tracking was
tested with the mass-spring system turned on, we can see that the constrained
tracking almost always resulted in better accuracy. By testing other combinations
of tracker parameters, even better results should probably be obtained.

Table 6.13: Tracker error in the volume sequence without added noise, with the mass-
spring system turned on, particle mass=1, spring stiffness=0.01, λreg = 0 (first four
rows), λreg = 2 (second four rows) or λreg = 5 (last four rows), with different values of
the force scale constant.

λreg force iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 6 iter. 7 iter. 8 iter. 9

0

0.5 2.17152 1.88037 1.69286 2.5975 2.6133 2.75246 3.00807 2.56255 2.76617
0.2 1.88881 1.89782 1.80872 2.16523 2.40556 2.61605 2.80744 2.71477 2.76037
0.1 1.79111 1.82941 1.82068 2.02266 2.20793 2.40267 2.59209 2.64357 2.73043
0.05 1.74366 1.77945 1.80453 1.93848 2.07949 2.23851 2.40538 2.51277 2.63818

2

0.5 2.17094 1.88077 1.69189 2.59566 2.61581 2.75284 3.00679 2.56429 2.76676
0.2 1.8888 1.89836 1.80961 2.16604 2.40767 2.61971 2.81157 2.72039 2.76657
0.1 1.79117 1.82991 1.82183 2.02455 2.21116 2.40747 2.5987 2.65286 2.74189
0.05 1.74371 1.77978 1.80537 1.94009 2.08235 2.24284 2.41145 2.52159 2.6494

5

0.5 2.17034 1.88188 1.69165 2.59344 2.62098 2.75498 3.00575 2.5684 2.76971
0.2 1.8889 1.89934 1.81163 2.16848 2.41236 2.62716 2.82029 2.73212 2.77958
0.1 1.79132 1.83076 1.82394 2.02808 2.21711 2.41611 2.61047 2.66947 2.76251
0.05 1.74381 1.78031 1.80683 1.94278 2.0872 2.24999 2.42131 2.53588 2.66773
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Table 6.14: Tracker error in the volume sequence with noise parameters µ = 20,
σ = 10, with the mass-spring system turned on, particle mass=1, spring stiffness=0.01,
λreg = 0 (first four rows), λreg = 2 (second four rows) or λreg = 5 (last four rows), with
different values of the force scale constant.

λreg force iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 6 iter. 7 iter. 8 iter. 9

0

0.5 2.12454 1.92117 1.71584 2.45342 2.5867 2.75238 2.98249 2.62956 2.7771
0.2 1.86912 1.89953 1.82984 2.11978 2.33474 2.55317 2.76481 2.73308 2.79745
0.1 1.78196 1.8266 1.83018 2.00455 2.16959 2.35355 2.54387 2.62588 2.73754
0.05 1.73949 1.77738 1.80818 1.93006 2.06129 2.21285 2.37722 2.49726 2.63567

2

0.5 2.12396 1.92199 1.71614 2.4516 2.58952 2.75536 2.98275 2.63202 2.78025
0.2 1.86905 1.89998 1.83124 2.12144 2.3375 2.55761 2.77052 2.74103 2.80692
0.1 1.78199 1.82692 1.83132 2.00641 2.17268 2.35825 2.55037 2.63506 2.74916
0.05 1.73953 1.77758 1.8089 1.93133 2.06358 2.21634 2.38206 2.50421 2.64462

5

0.5 2.1234 1.9235 1.71723 2.44989 2.59489 2.76175 2.98517 2.63813 2.7875
0.2 1.86904 1.90087 1.83377 2.12483 2.34303 2.56606 2.78143 2.75581 2.82466
0.1 1.78206 1.82746 1.83309 2.00945 2.1779 2.36616 2.56133 2.65035 2.7686
0.05 1.73958 1.7779 1.80997 1.93332 2.06724 2.22192 2.3898 2.51528 2.65881

Table 6.15: Tracker error in the volume sequence with noise parameters µ = 20,
σ = 20, with the mass-spring system turned on, particle mass=1, spring stiffness=0.01,
λreg = 0 (first four rows), λreg = 2 (second four rows) or λreg = 5 (last four rows), with
different values of the force scale constant.

λreg force iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 6 iter. 7 iter. 8 iter. 9

0

0.5 2.00883 1.94708 1.78397 2.24327 2.44745 2.68381 2.91723 2.7209 2.80214
0.2 1.81944 1.86109 1.83689 2.04129 2.21283 2.4157 2.62907 2.6795 2.78328
0.1 1.75747 1.79744 1.81781 1.954 2.09088 2.25458 2.43383 2.54474 2.68141
0.05 1.7275 1.76059 1.79684 1.89994 2.01549 2.15407 2.30915 2.43844 2.58615

2

0.5 2.00771 1.94776 1.78382 2.24205 2.44898 2.68732 2.92139 2.72772 2.80943
0.2 1.81921 1.86124 1.83759 2.04221 2.21477 2.41895 2.63404 2.68767 2.79385
0.1 1.75743 1.79756 1.8183 1.95488 2.09265 2.25729 2.43768 2.55094 2.68971
0.05 1.7275 1.7607 1.79716 1.90054 2.01671 2.15588 2.31159 2.4423 2.59125

5

0.5 2.00688 1.94843 1.78346 2.24131 2.45232 2.69444 2.92989 2.74034 2.8231
0.2 1.81917 1.8617 1.8388 2.04414 2.21852 2.42511 2.64316 2.70173 2.8119
0.1 1.7575 1.79789 1.8192 1.95652 2.09585 2.26214 2.44444 2.56126 2.70335
0.05 1.72757 1.76094 1.79774 1.9016 2.01878 2.15893 2.31567 2.44851 2.59933
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Table 6.16: Tracker error in the volume sequence with noise parameters µ = 20,
σ = 30, with the mass-spring system turned on, particle mass=1, spring stiffness=0.01,
λreg = 0 (first four rows), λreg = 2 (second four rows) or λreg = 5 (last four rows), with
different values of the force scale constant.

λreg force iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 6 iter. 7 iter. 8 iter. 9

0

0.5 1.87957 1.89878 1.8317 2.04689 2.19574 2.43517 2.70141 2.68911 2.78239
0.2 1.76817 1.81234 1.8286 1.94925 2.06965 2.23708 2.42956 2.53666 2.66591
0.1 1.73255 1.76936 1.80565 1.90056 2.00777 2.14708 2.30676 2.43478 2.57769
0.05 1.71531 1.74611 1.78911 1.87138 1.97071 2.09499 2.2374 2.37171 2.51901

2

0.5 1.87856 1.89811 1.83177 2.04814 2.19868 2.43893 2.70586 2.69682 2.79239
0.2 1.76793 1.81201 1.82894 1.9506 2.07233 2.24062 2.43395 2.54311 2.67481
0.1 1.73248 1.76921 1.80581 1.90128 2.00938 2.14928 2.30951 2.4388 2.58313
0.05 1.71529 1.74606 1.78921 1.87179 1.97162 2.09624 2.23894 2.37392 2.52195

5

0.5 1.87769 1.89778 1.83209 2.05055 2.20364 2.44564 2.71394 2.70946 2.80898
0.2 1.76782 1.81192 1.8296 1.95277 2.07651 2.24627 2.44102 2.55328 2.68867
0.1 1.73249 1.76922 1.80621 1.90259 2.01202 2.15285 2.31395 2.44507 2.59145
0.05 1.71531 1.74609 1.78944 1.87251 1.97309 2.09824 2.24141 2.37735 2.52639

Table 6.17: Tracker error in the volume sequence with noise parameters µ = 20,
σ = 40, with the mass-spring system turned on, particle mass=1, spring stiffness=0.01,
λreg = 0 (first four rows), λreg = 2 (second four rows) or λreg = 5 (last four rows), with
different values of the force scale constant.

λreg force iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 6 iter. 7 iter. 8 iter. 9

0

0.5 1.80556 1.87698 1.90019 2.04571 2.15808 2.30673 2.48279 2.55133 2.6688
0.2 1.73891 1.78942 1.83886 1.94114 2.04465 2.17109 2.31712 2.43671 2.57742
0.1 1.71821 1.75623 1.80694 1.89371 1.99198 2.11046 2.24566 2.37518 2.52106
0.05 1.70824 1.73926 1.78885 1.86728 1.96195 2.07575 2.20545 2.33919 2.48695

2

0.5 1.8041 1.87505 1.89888 2.04464 2.15874 2.30958 2.48674 2.55799 2.67749
0.2 1.73861 1.78877 1.83816 1.94064 2.04514 2.1727 2.31939 2.44042 2.58258
0.1 1.71812 1.75598 1.8066 1.89345 1.99228 2.11137 2.24701 2.37738 2.52398
0.05 1.70822 1.73916 1.78869 1.86715 1.96209 2.07618 2.20613 2.3403 2.48841

5

0.5 1.80201 1.87225 1.89699 2.04413 2.16107 2.31459 2.49343 2.56872 2.69166
0.2 1.73816 1.78788 1.83714 1.94031 2.04646 2.17565 2.32346 2.44654 2.59068
0.1 1.71798 1.7556 1.80605 1.89322 1.9929 2.11281 2.24915 2.3807 2.52832
0.05 1.70816 1.73901 1.78844 1.86705 1.96242 2.07691 2.20724 2.34203 2.49063
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7. Conclusion

In this work we have reimplemented the methods for intensity-based tracking of
soft tissues in sequences of three-dimensional ultrasound images, as described in
[9]. Two new methods were added to the previous work in order to improve the
robustness of the tracking. The first method is regularization of the thin-plate
spline warp used as a motion model in the tracker, and the second method is
adding of a mass-spring system used for physically constraining the movement of
the control points.

The performed tests have shown that the tracker performed better when the
developed mass-spring system was used, compared to when no physical con-
straints were added to the control points at all. The use of regularization of
the TPS warp has shown slight improvements in tests performed on volume se-
quences with high noise present.

As the new developed methods for tracking depend on a large number of
parameters, only a few of their combinations have been tested. Further testing
and optimization of the used parameters could result in significant improvements
of the tracking accuracy.

In the future, the described tracking method could be reimplemented for the
GPU in order to achieve real-time performance. The described method for de-
formed volume generation should also be reimplemented, maybe with the use of
external libraries such as CGAL [17] in order to speed it up. Other future work
could contain a simpler method for selecting the tracked area in the initial volume
in the sequence and a simpler way of choosing the positions of the initial control
points.
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Appendix A
Implementation details

In this chapter we will describe the most important functionalities of the classes
developed in this work. All the implementation was done using the C++ pro-
gramming language. For more details refer to the source codes.

A.1. ImageVolume class

The ImageVolume class is used to store all the voxel intensities of one volume.
The intensities are internally stored in an volumeSizeX × volumeSizeY × volumeSizeZ

array of unsigned chars, where the voxel at the coordinates (x, y, z) is placed
at index z*volumeSizeX*volumeSizeY+y*volumeSizeX+x in the array. An object of
type ImageVolume can be created by using the default constructor which creates
an empty volume, by using an another constructor which creates a volume of
given dimensions, or by using the constructor shown below. This last constructor
prepares the volume to be loaded from a given directory which contains the
volume slices stored in image files.
ImageVolume(const std:: string& folderLocation_ ,

const std:: string& sliceName_ ,

const unsigned int idLength_ ,

const std:: string& extension_ );

If the slices are stored in a directory with the path /path/to/folder/ and the names
of the slice images are slice0000.png, slice0001.png, . . . , then the arguments of
the constructor would be: folderLocation=“/path/to/folder”, sliceName=“slice”,
idLength=4 and extension=“.png”. When this constructor is used, the dimensions
of the volume in given folder are found automagically, by examining the number
of slice images and their dimensions. After creating the object using this con-
structor, we have to call the following function in order to load the intensities
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from the images into our array.
void loadVolume ();

We can get a reference to the intensity stored at the coordinates (x, y, z) in our
volume by using the following operator. Notice that this operator accepts only
integer values of the coordinates as it returns the intensity data as it is stored
internally in the object. If an voxel outside of the volume is accessed, a dummy
with the value of 0 is returned.
inline unsigned char& operator ()( const unsigned int x,

const unsigned int y,

const unsigned int z) const;

If we are interested in finding an intensity at a subvoxel location, i.e., at some
real valued coordinates (x, y, z), the following function can be used. This function
returns the interpolated value calculated using trilinear interpolation from the
eight known surrounding intensity values.
unsigned char getInterpolatedIntensityAtPoint(const double x,

const double y,

const double z);

The following three functions are used to obtain the slice images we would get if
we cut the volume at the specified position. For example, getImageX called with
index=50 would cut the volume along the plane x = 50 and return the slice image
in imageX. These functions are useful when we want to display a volume.
void getImageX(const unsigned int index ,

vpImage <unsigned char >& imageX) const;

void getImageY(const unsigned int index ,

vpImage <unsigned char >& imageY) const;

void getImageZ(const unsigned int index ,

vpImage <unsigned char >& imageZ) const;

To get the gradient values at a given vector of points, we use the following func-
tion. The values of the gradient in x direction at the given points will be stored
in the array gX, and similarly, the gradients in y direction will be stored in gY and
the gradients in z direction will be stored in gZ. Interpolated values of intensities
are used when calculating the gradients. The Point class used here is just a simple
struct containing the x, y and z coordinates of a single point.
void getGradientsAtPoints(const std::vector <Point >& roiPoints ,

int* gX, int* gY , int* gZ) const;
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To get an array of intensities at a given vector of points we use the next function.
Similarly to the previous function, the intensities will be stored in the array
intensities. Also, for the points that are located at real valued coordinates,
trilinear interpolation is used.

void getIntensitiesAtPoints(const std::vector <Point >& roiPoints ,

unsigned char* intensities) const;

In order to save a volume to the disk as a set of slice images we must first set
the output file information, which is done using the following function. The
parameters of this function have the same format as the ones in the previously
described constructor.

void setOutputFileInfo(const std:: string& folderLocation_ ,

const std:: string& sliceName_ ,

const unsigned int idLength_ ,

const std:: string& extension_ );

After the output file information are set, we save the volume by calling the func-
tion saveToDisk().

void saveToDisk ();

If we want to add some noise to a volume, we can use the following function.
The parameters of the function are sigma and mean; the standard deviation and
the mean of the normal distribution from which the noise values added to every
voxel are chosen. If the value of a voxel’s intensity is bigger than 255 or lower
than 0 after adding the noise, we set those values to 255 and 0 respectively.

void addNoise(const double sigma , const double mean);

A.2. Tps class

The Tps class implements the thin-plate spline warp described in Chapter 2. The
object of Tps type is initialized by calling the following function. The first pa-
rameter is an enum TpsType that can take the values TPS_2D or TPS_3D allowing
us to chose whether we want to use the warp in the two-dimensional or three-
dimensional case. The next parameter is a vector of points whose locations we
want to change later according to the changes of control point locations. The
control points vector is the third parameter, and the last parameter is the regu-
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larization term λreg described in Subsection 3.4.1. By default, the regularization
term is set to 0, i.e., no regularization is used.

void initTPS(TpsType type ,

const std::vector <Point >& roiPoints ,

const std::vector <Point >& controlPoints ,

const double regularizationLambda =0.);

The initTPS function explained above initializes the matricesM , andK∗ used by
the TPS warp. These matrices are accessible by their getter functions, getMatrixM
and getMatrixsubKreginv. If the matrixK∗ without the added regularization term
is needed, it can be access by the function getMatrixsubKinv. When the new control
point locations are known and we want to update the positions of points we used
to initialize the Tps object, we can use the following function. The first parameter
is a vector of points that we are updating, and the second parameter is a vector
of control points at new locations.

void updatePositions(std::vector <Point >& roiPoints ,

const std::vector <Point >& newControlPoints );

A.3. Deformer class

The Deformer class is used to generate deformed volumes from a given initial
volume, as it was described in Chapter 4. An object of Deformer type is initialized
by using the following function. The first parameter is a vector of control points
that we will move in order to deform the volume. The second parameter is a
pointer to the initial volume that we want to deform and the last parameter is a
pointer to an ImageVolume object in which the deformed volume will be stored.

void init(const std::vector <Point >& controlPoints ,

ImageVolume* volume_ ,

ImageVolume* deformedVolume_ );

The following function is used to load the deformer vector information described
in Section 4.2.

void loadDeformerVectors ();

The format of the file containing the vector information is simple. For each of
the control points used in the deformer we store the x, y and z components of the
vector the point will move on, its length l and its parameter α, described in the
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section mentioned above. All these parameters are written in one line for each
control point, separated by spaces.

The following function increases the α value of each of the control points,
divides the given volume into smaller volumes of dimensions sizeX×sizeY×sizeZ,
deforms each of them by using the methods described in Chapter 4 and joins
them to get the final deformed volume.

void nextStepDivided(std::vector <Point >& controlPoints ,

int sizeX , int sizeY , int sizeZ );

The current implementation used for generating deformed volumes is rather slow,
taking about 20 minutes to generate one volume, so reimplementing it should be
considered.

A.4. MassSpringSystem class

The MassSpringSystem class implements the mass-spring system described in Chap-
ter 5. The parameters of the mass-spring system can be set by using the function
setParameters. The parameters we can change are springStiffness, springDamping,
springSimulationTimeStep and particleMass. In the current implementation all the
parameters will be set the same for the whole system, i.e., all the particles will
have the same mass, all the springs will have the same stiffness constants, etc.

void setParameters(const double springStiffness_ ,

const double springDamping_ ,

const double springSimulationTimeStep_ ,

const double particleMass_ );

To add particles to our mass-spring system we can use the following function in
which we pass a vector of control points.

void addParticles(std::vector <Point >& points );

The particles can be connected by springs by using the function connectParticlesAt,
where the argumens are the indices of particles we want to connect.

void connectParticlesAt(const unsigned int index1 ,

const unsigned int index2 );

Another way of connecting the particles is by using the following function. The
areguments of this function are the number of control points in the x, y and z

direction and nine boolean variables. The nine boolean variables are explained
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best in the Figure 5.3. By combining these boolean variables we can get 512
different system configurations.

void connectParticlesWithSprings(const unsigned int numControlX ,

const unsigned int numControlY , const unsigned int numControlZ ,

const bool connectSpringsInXDirection ,

const bool connectSpringsInYDirection ,

const bool connectSpringsInZDirection ,

const bool connectSpringsInXDirectionDiagonal1 ,

const bool connectSpringsInYDirectionDiagonal1 ,

const bool connectSpringsInZDirectionDiagonal1 ,

const bool connectSpringsInXDirectionDiagonal2 ,

const bool connectSpringsInYDirectionDiagonal2 ,

const bool connectSpringsInZDirectionDiagonal2 );

Applying a force at a particle can be done by the function applyForceAtParticle

where the only argument is the index of the particle the force is applied on.

void applyForceAtParticle(const unsigned int index ,

vpColVector& force );

The last important function in the massSpringSystem class is used for simulating
the behaviour of the system for the given number of iterations. If no number is
given, the behaviour is simulated only for one iteration.

void simulatePhysicsForNIterations

(const unsigned int numIterations =1);

A.5. Tracker class

The Tracker class implements the intensity-based tracking method described in
Chapter 3. The initialization of the tracker is done using the following function.
The first argument is the initial volume at which the tracking is started. The
second argument is the enum that can take the values TPS_2D or TPS_3D, depending
on if we are tracking in two or three dimensions. The next two arguments are a
vector of points forming the tracking region, and a vector containing the control
points. The last parameter is the value of the regularization parameter λreg.

void initTracker(const ImageVolume& volume_ , TpsType type ,

const std::vector <Point >& roiPoints ,

const std::vector <Point >& controlPoints ,

const double tpsRegularizationLambda );
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To set include the mass-spring system into the tracker, we have to pass an object
of MassSpringSystem type using the following function.

void setMassSpringSystem(MassSpringSystem& massSpringSystem_ );

When the mass-spring system is included into the tracker, it can be switched on
and off by the function toggleIgnoreMassSpringSystem. The return value of this
function is true if the mass-spring system is currently used and false otherwise.

bool toggleIgnoreMassSpringSystem ();

The last and the most important function of the Tracker is the track function.
The first argument of this function is the current volume in the sequence. The
next two arguments are a vector of the points forming the tracking region and a
vector of control points. The rest of the arguments are the tracker λ and τ and
the number of tracking iterations.

void track(ImageVolume& newVolume , std::vector <Point >& roiPoints ,

std::vector <Point >& controlPoints , const double lambda ,

const double tau , const int numIterations =1);

A.6. Compiling and running the examples

This work comes with a DVD containing a few example projects showing how
the implemented classes described above are used.

Two external libraries are needed in order for the example projects to be
compiled successfully. The first one is the VISP library1, and the second one is
the OpenGL library2 used for displaying purposes.

Each of the projects comes with an intructions file describing how to compile
it using the CMake tool3 and a file containing the instructions on how the built
projects are run.

1VISP stands for the Visual Servoing Platform, a library developed by the Lagadic team at
INRIA, Rennes. http://www.irisa.fr/lagadic/visp/

2Open Graphics Library. http://www.opengl.org/
3CMake. http://www.cmake.org/
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Visual tracking of soft tissue targets in sequences of 3D ultrasound
images

Abstract

This work considers tracking of deforming soft tissues in sequences of three-
dimensional ultrasound images. The chosen approach to the tracking is based
on modeling the deformations using the thin-plate spline warp. In practice, the
tracking is reduced to the estimation of the changes in control point locations by
examining the intensity changes of neighbouring three-dimensional images in the
sequence. The problem this approach faces is its low robustness to ultrasound
noise, preventing the correct evolution of the deformation model.

In this work, the basic method for tracking of the deforming soft tissues
was implemented, along with two new methods used for improving of the basic
method’s robustness. The two new methods used were the regularization of the
thin-plate spline warp used as the motion model, and the adding of a mass-spring
system used for physically constraining the movement of the control points.

The new used methods are described and the results acquired by performing
tests on simulated sequences of deforming three-dimensional ultrasound images
are discussed.

Keywords: ultrasound, soft tissue tracking, thin-plate spline, TPS, regulariza-
tion, mass-spring system, constrained motion



Vizualno praćenje mekanog tkiva u slijedu 3D ultrazvučnih slika

Sažetak

Rad razmatra praćenje deformirajućeg mekanog tkiva u slijedu trodimenzion-
alnih ultrazvučnih slika. Odabrani pristup praćenju temelji se na modeliranju de-
formacija poliharmoničnim interpolacijskim plohama thin-plate spline. U praksi
se praćenje svodi na procjenjivanje promjena lokacija kontrolnih točaka analizom
promjene intenziteta susjednih slika iz 3D ultrazvučnog slijeda. Glavni problem
ovog pristupa je nedovoljna robustnost na ultrazvučni šum, što sprječava korektnu
evoluciju modela deformacija.

U okviru rada, implementiran je osnovni postupak praćenja mekanog tkiva,
uz dvije nove dodatne metode korištene za poboljšavanje robustnosti osnovnog
postupka. Te dvije nove korištene metode su dodavanje regularizacije modelu
deformacija i dodavanje sustava masa i opruga u svrhu fizičkog ograničavanja
kretanja kontrolnih točaka.

Razvijene metode su opisane zajedno s rezultatima dobivenim testiranjem
razvijenih metoda na simuliranim sljedovima deformirajućih trodimenzionalnih
ultrazvučnih slika.

Ključne riječi: ultrazvuk, praćenje mekanog tkiva, thin-plate spline, TPS, reg-
ularizacija, sustav masa i opruga, ograničeno kretanje
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