
UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

BACHELOR'S THESIS no. 6347

VISUALIZATION OF CLASS ACTIVATION MAPS
FOR IMAGE CLASSIFICATION

Marijan Smetko

Zagreb, June 2019.

Deep convolutional models are the principal ingredient in many
computer vision applications. However, these models are often criticized for
lack of interpretability, that is, inability to explain their decision to humans.
Consequently, techniques for interpreting and visualizing decisions of
convolutional models represent a very interesting research topic. This thesis
consists of the following tasks. Choosing a framework for automatic
differentiation and getting acquainted with libraries for manipulating matrices
and images. Analyzing and briefly describing existing approaches for
interpreting and visualizing decisions of deep models. Choosing an
appropriate convolutional model, initializing it with public parameters trained
on ImageNet, and fine-tuning it for classification on FGVCx. Evaluating and
presenting the classification accuracy. Interpreting classification decisions on
high-ranked false positives and low-ranked false negatives. Suggest suitable
directions for future work. The thesis is to be accompanied with source code
of developed methods, as well as with employed datasets, instructions and
documentation. The literature has to be properly cited. Received assistance
has to be documented.

2

I want to show my immense gratitude to my parents,
father Damir and mother Dubravka,

for always being supportive in everything I did my whole life.

3

Table of Contents
1 Introduction..1

2 Convolutional neural networks..2

2.1 Artificial neural networks and deep learning..2
2.1.1 Training...2

2.2 Convolutional neural networks (CNN)..3
2.2.1 Convolutions...4
2.2.2 Pooling operation..5
2.2.3 Training...7

2.3 A word on PyTorch..7
3 Modern approaches and state-of-the-art...8

3.1 Adaptive training...8
3.2 Batch normalization..9
3.3 Residual connections...10
3.4 Transfer learning...11

4 Activation map visualization model..12

4.1 Data..12
4.2 The model...12
4.3 The implementation..13
4.4 Training procedure...15
4.5 Activation map visualization...16

5 Experimental results..19

5.1 Classification results...19
5.1.1 FGVCx..19
5.1.2 Pascal VOC 2007...22

5.2 Activation maps..25
5.2.1 FGVCx..25
5.2.2 Pascal VOC 2007...26

5.3 Lowest positives and highest negatives...27
6 Conclusion...29

7 Literature and references..30

8 Summary...31

4

1 Introduction

Computer vision was always an active research field, and with recent
successes of machine learning and deep learning, the results are getting
more impressive with every new day. However, what deep learning models
lack is interpretability – a neural network is given several thousand input
images and output labels, and with some linear algebra and calculus and a
little bit of luck, it finds a global minimum of a loss function and it can start to
classify images. Yet, no one actually knows what exactly is what the model
learns and in what way it really affects the final decision for the class of a
given image. Therefore, if we are to really understand deep neural networks,
we must delve deeper into the models themselves. This thesis uses a basic
type of exploring, using visualizations of feature activation maps for the top
predicted class and how it helps a model learn to classify various images.
The images come from a publicly available, and a bit modified, FGVCx
dataset. The first chapter presents convolutional models for visual
recognition. The chapter introduces the notation, describes the basic building
blocks, presents the typical structure of the model and explains the training
procedure. The second chapter presents the main ingredients of the state-of-
the-art convolutional models such as batch normalization, residual
connections and adaptive training. The third chapter presents the design and
various details of the developed implementation. The most interesting
excerpts from the source code are carefully explained at the level of
individual expressions. The fourth chapter presents experimental results. The
final chapter provides the conclusions and suitable directions for the future
work.

1

2 Convolutional neural networks

2.1 Artificial neural networks and deep learning

An artificial neural network (ANN) is an artificial intelligence model
which was designed after the human brain in the middle of the 20 th century.
Its basic unit is the neuron, a cell which takes an arbitrary number of inputs
and gives only one output by calculating a weighted sum of inputs. In the
early days of the model, the output, or the activation, was a step function
which fired ‘1’ if the weighted sum was over some threshold, but modern era
improvements use other activation functions such as the sigmoid, the
hyperbolic tangent and the rectified linear function, which are all
differentiable. The neurons are grouped into layers – every neuron has a
separate set of weights used for the calculation of the weighted sum, and
each neuron’s inputs are all of the outputs of the previous layer. That kind of
layer is called a Fully Connected (FC) layer1. The output of the whole layer is
elementwise application of the layer’s activation function, which is then fed as
input to the next layer. The depth of the neural network is defined as the
number of layers the network has, and if it is deep enough, we enter a branch
of machine learning called deep learning2.

xT=[x1 x2…xn]

a0=x
(2.1)

W l
=[
w11 ⋯ w1n
⋮ ⋱ ⋮
wm1 ⋯ wmn] (2.2)

zi
l
=∑

j=1

m

w ij
l a j

l−1

zl=W l
⋅a l−1

(2.3)

a l=σ (z l) (2.4)

1 FC layers are the most common, but there are layers which are not fully connected.
Some of them will be presented later.

2 There is no official threshold, but typically neural networks are two to hundreds of layers
deep

2

More formally, a neural network is a list of linear and non-linear
transformations. It is said to be L layers deep if it has L repetitions of linear
and non-linear transformations. The input is an n–dimensional column vector
(2.1), and the l–th (1≤l≤L) neuron layer with n inputs and m outputs is

presented as a matrix W l in (2.2). The weight w ij represents the strength

of the connection between the i-th neuron of this layer and j-th neuron of
previous layer. Although this seems counterintuitive, it allows a compact
notation for the weight matrix. The product (2.3) represents the linear
transformation of the previous layer’s activation, and the layer’s output is
simply an elementwise nonlinear transformation. If the neural network has L
layers, then the final, L-th layer’s output aL is the output of the whole network.

2.1.1 Training

To train a neural network we need to define a loss, also called cost,
function L(ytrue, ypred) (not to confuse with the number of layers L) which tells
us how far away the network’s prediction is from the value it should predict.
The most common loss functions are mean squared error

(f (y , ŷ)=1n∑i=1
n

(y i− ŷ i)
2) , most commonly used for regression tasks, and

2

Figure 2.1: Basic scheme of a fully connected artificial neural network with three inputs
and two hidden layers. As per equation 2.3, the input is first linearly mapped from 3-
dimensional to 2-dimensional space. This vector is acted upon with the first layer’s
activation function, according to 2.4, resulting with a vector which then becomes the input
for the second hidden layer. After repeating the same procedure once again, second
layer’s output becomes the output of the whole network

cross entropy (f (y , ŷ)=1n∑i=1
n

(yi⋅ln(ŷ i)+(1− y i)⋅ln(1− ŷ i))) , most commonly

used for classification tasks. The goal of the training is to optimize the loss
function to be as low as possible, and for that we need to know the
derivatives of the loss function w.r.t. every prediction and the derivatives of
the activation functions w.r.t. both the input vector and the weight matrix. The
algorithm called backpropagation allows us to propagate the error from the
end of a network through the layers back to the start, updating the weights on
the walk back through the layers.

There are two important assumptions for the cost functions: a) it
should be written as an average of the costs for individual examples, and, b)
it must be a function of the network’s outputs. In that way, we can use the
loss function as a measure of “error” the network produces. Loss function is
usually differentiable, and that property is exploited to calculate the vector of
gradients w.r.t. activations for the last layer, the exit neurons (δL vector). The
key concept here is that the δ vector for the last layer can be used not just to
compute the gradient of the weights, but to also compute the δ vector for the
second-to-last layer using the chain rule of differentiation. That δ vector is
further used for the δ vector of the directly previous layer and so on until
every weight of the whole network is updated. The big downside of the
backpropagation algorithm is that all of the temporary inputs need to be
remembered for the correct computation of the backward gradient, which can
require vast amounts of computer resources.

2.2 Convolutional neural networks (CNN)

ANNs and their derivations have proved to be extremely successful for
various tasks such as financial applications, speech synthesis, and video
game AI. Usages of ANNs in computer vision were an improvement over the
usual machine learning methods, e.g., the support vector machine classifier,
but the results were not as spectacular as expected. The problem was how
the network was using its input images, or more precisely, what amount of
input features was taken into consideration. An image is a rectangular grid of
pixels that are only locally correlated. For example, in a typical image of a
cat, the two eyes are close together and the position of a tail has little to do
with the position of eyes. Feeding an image ‘as is’ to the ANN could
potentially make it learn that some distant corner parts are correlated, when

3

they shouldn’t be. The convolutions were invented to prevent that, and to
force image to focus on the small region.

2.2.1 Convolutions

Convolutions are the core building blocks of the CNN. The convolution
kernels3 are small, usually square matrices, that are applied in a special way
to a window of the input image to produce a scalar output. They are applied
elementwise to the values of the pixels of the input image, as shown in figure
2.2. If the input image is grayscale, which means it only has a width and a
height, the applied convolutions are two-dimensional, and if the input image
is in color, which means it has a width and height for each of the three colors,
the convolutions are three-dimensional. In any case, the output of the
convolution operation is a 3D tensor. The purpose of the convolutions is to
detect what features are present in the input image, so there are convolutions
that detect edges, circle parts or any other meaningful combination of pixels.
There are many convolutions per layer, and each convolution is slid across
the whole image, portion by portion, and applied as described, resulting in a
feature map, which is then stacked together with other feature maps to make
the output tensor. Usually, the dimensions of an image get smaller through
layers, and the number of convolution filters gets larger.

3 The convolution kernels are also called feature detectors or filters. These terms will be
used interchangeably

4

More formally, a convolution kernel is an f-by-f for single channel, or f-
by-f-by-c for c channel input tensor, array of weights which is applied as
described to the current portion of the image to produce a scalar which
indicates how strongly the feature is detected. Here f stands for the width and

5

Figure 2.2:[12] An application of 2x2 convolution filter w on 3x3 image x. First, the window is
aligned with the top left corner of the image, and the image values underneath are multiplied
with corresponding filter weights. The sum of partial products are stored in a feature map in
the top left corner. The convolution window is then slid right with stride one, and the
procedure is repeated, with the result being stored in the top right corner. As the window now
reached the end of the image, next iteration will start below, repeating the same procedure
and storing results in appropriate cells.

height of the convolutional filter, as they are usually square. It’s important to
notice that, if the convolution is of the same size as the input image, it
behaves just like the fully connected layer. Each successive application of the
convolution kernel is on a new part of the image moved by s (which stands
for ‘stride’) to the side or down. If we gather all the scalars produced by one
convolution kernel in an array of numbers, we get a feature map for that
convolution. Different convolutions have different feature maps, and they are
stacked together for another important step of the CNNs – the pooling step.

2.2.2 Pooling operation

The pooling step is frequently, but not necessarily, found after the
convolution step. The core pooling operation is similar to the convolution, but
it is used for a different purpose. Images are usually of very large
dimensions, and to process an image in reasonable time we must somehow
downsample the image without losing too much information. Rescaling is
very expensive so pooling was invented as a fast alternative. The idea is to
have a window, just like the convolution, and to calculate the average of the
numbers inside the window. It’s like a convolution with every weight set to 1/
f2, with the difference being that the weights are not learnable. Also, another
important difference is that no pixel can show up in more than one pool,
which is to say pooling operations segment the image in disjunctive areas,
unlike convolution which can have a size of, say, 3x3 but have a stride of 2.
The described pool operation is also known as the average pool (avg pool). It
is mostly replaced by an alternative, max pool which simply takes the
maximum value in the window, as shown in figure 2.3. It is nonlinear and
works better in practice.

6

Pooling layers reduce the memory footprint needed to process an
image by downsampling, as it was already mentioned. They discard the
excess information which could potentially misdirect the next layer, since it’s
more important for the detected features to be in relative position one to
another, than to have an exact location on an image. In the cat image
example, it’s useful for the two detected eyes to be close to the whiskers and
ears as it will allow us to maybe detect the head in the next layer. It was long
thought this was crucial to the success of convolutional models, but invertible
models[3] were invented that retain the whole information and can both
restore the original image and have great accuracy. Nevertheless, the
pooling operation is used very much in practice and yields great results.

The output of the CNN layer (the convolution and pool together) is an
activation function (usually ReLU) applied to the output of the max layer. This
output is the input to the next convolution layer4 and so forth. The output of
the last layer is then fed into the global average pooling module. The
resulting F-dimensional vector is processed by a fully connected layer with
softmax activation which then finally classifies the input image. Convolution
layers here have a role of feature extraction as they are more powerful, in
comparison to ordinary fully-connected networks, and, in practice, perform
with greater accuracy.

4 Usual number of convolution layers is measured in tens

7

Figure 2.3[6]:A visualization of the max pool operation. In this example, the 4x4 image is
sliced in disjunct 2x2 areas, and the maximum number in respective areas are selected and
stored in a new matrix. That matrix is the output of the max pool layer.

2.2.3 Training

The training of convolutional neural networks is very similar to the
training of fully connected networks. It starts the same, by calculating the
value of the loss function and backpropagating the δ vector to the start of the
ANN, and it is then applied backwards through the convolutional layers and
its activation functions. In max pool, only one component of a convolution
window has a gradient, the others have 0. In avg pool, all components of the
convolution window have the same gradient. This gradient is then used to
update all the convolutions, and it can be used to calculate a new δ vector for
the previous convolutional layer. The downside of this algorithm is, still, the
need to remember the temporary inputs, with an amplification, since images
are usually very large, just like the number of convolution operations. For
reference, a famous ResNET 50 convolutional model, which was used for
this thesis’ implementation, has ~500MB of weight tensors by itself, but
during training it requires about 7.5 GB of RAM[10].

2.3 A word on PyTorch
PyTorch is an automatic differentiation framework, written in the

programming language Python. Its core feature is the dynamic creation of
computational graphs in the form of directed acyclic graphs, built out of
nodes which represent the basic operations such as addition, scalar
multiplication, matrix multiplication and so on. PyTorch knows how to
differentiate these elementary operations, and by using the chain rule it can
differentiate any function with respect to any of the input variables or
intermediary results. Simply invoking .backward() method on the PyTorch
variable starts the chain rule propagation of derivatives over all input nodes
over the edges of the graph, as every node remembers the inputs it has
gotten. This proved to be very useful for the implementation of the
backpropagation algorithm, and it was heavily used throughout the practical
work of the thesis. On a final note, .backward() propagates back and
calculates the differentials, but it does not perform an actual weight update.
The update is usually done in special components called optimizers, of which
the most well known is Adam. The Adam optimizer was exclusively used in
the implementation of the thesis, and is explained in section 3.1.

8

3 Modern approaches and state-of-the-art

As the field of deep learning flourished with the exponential increase of
computing power in the late 20th and early 21st century, many new techniques
and procedures were invented to help combat problems models showed in
their infancy. Some solutions were directed towards the problem of the
vanishing gradient. It turned out some activation functions were pushing the
gradient towards zero, and only a few of the last layers were updating their
weights – the norm of the δ vector was too small for the weight updates to be
meaningful, so new activation functions were invented. Other solutions
turned to another frequent issue, the overfitting. The idea of training a
machine learning algorithm is for it to generalize well – to make correct
predictions on input data it never saw – but it’s often the case a model
somehow fails to generalize and instead it focuses on specificities of the
training set, thus learning in a wrong way. This thesis will cover only some of
the improvements which had the greatest effect in improving training and
accuracy of the neural network models, namely adaptive training, batch
normalization, residual connections and transfer learning.

3.1 Adaptive training
The weight updates are rarely done evaluating the whole training set,

but small batches that approximate the correct gradient and allow more
frequent weight updates, thus making a model converge faster. The neuron
cells which contribute the most to the outcome, important neurons, usually
get updated most often, and the ones who don’t, usually get small updates.
But, important neurons should be updated with smaller increments to
stabilize the learning, and less important could be updated with bigger
updates that won’t ruin the stability.

To update weights differently, a new information, beside the global
learning rate, is needed, and it’s how a weight has been updated in the
previous iterations. One way to accomplish that is to accumulate the previous
updates, and then divide the δ vector with it. If the accumulation is big, a
neuron gets a smaller update, and vice versa. This is a description of the
AdaGrad algorithm, with a difference it actually accumulates squares of the
gradient, and divides them with a square root.

The problem with AdaGrad is that the update magnitude decays
exponentially and becomes infinitesimally small as the number of iterations

9

grows, which in practice means the updates stop being meaningful across
the whole network. A better solution comes from Geoffrey Hinton, who
modified rprop algorithm to calculate a moving average over several last
epochs with exponential decay. The global learning rate is then divided by
the square root of the average of squares and multiplied with the δ vector,
hence the name, root mean square prop, or RMSProp. RMSProp calculates
a gradient, it’s square, the new mean and makes the update of weights. The
gradient calculated in this way can make the convergence rather slow, but it
can be improved with Nesterov momentum. After the gradient is calculated
and the weights are updated, another gradient calculation is performed in this
new point, which is then used as a correction for the first gradient. Although
Nesterov momentum introduces some extra computational complexity, it
allows the learning rate to be bigger due to more precise gradient, which
makes the network to converge faster.

Algorithms covered so far only kept track of the mean squared
magnitude of the vector, but not the direction. Algorithm that keeps track both
of the mean gradient and mean momenta is called Adam, and in practice
works the best. The reason is that by calculating a moving exponential decay
average, perturbations of the stochastic gradients cancel out and the net
result is always pointing in the general direction of the slope towards the
minimum, which allows us once more to use a bigger learning rates. The
gradient of one batch is, therefore, used only to update the mean so far, and
in the original paper terminology, is considered as “velocity”. Note that this
can also be combined with Nesterov momentum, creating a variant called
Nadam.

3.2 Batch normalization
When training the ANN, the input data is usually normalized to have a

mean of 0 and variance of 1, so the first hidden layer’s inputs always have
the same distribution. But, other layers as input get the activations of the
previous layers, with the distribution which is changing over time as the
weights get updated throughout the epochs. A small change in the first layers
can get amplified, causing a huge shift before it gets to the last layers. This is
a reason to insert one batch normalization layer after every hidden layer,
which then normalizes a batch of inputs from its mean and variance to some
other μB and σB. They are learnable parameters that also get updated with
gradient descent.

10

It was widely accepted that batch normalization reduces the covariate
shift[7], a change in distribution, but some scholars[4] found out it’s not actually
the case. The covariate shift is still happening, but it’s the objective function
that’s getting smoothed out, which allows a network to converge more easily
with learning rates that don’t have to be as small as before.

3.3 Residual connections
Up until now, this thesis always assumed the input of one layer is only

constituted out of the output of the previous layer. That does not have to be
always the case. We can combine the outputs from two or three layers before
with the outputs of the layer before and feed it in this layer. The type of the
connection that allows this is called residual connection, also known as the
skip connection, as the outputs ‘skip’ a layer or more, as shown in figure 3.1.

The reason behind the name ‘residual’ is, since they as inputs have
both the outputs from a layer and two layers before, is the previous layer only
has to learn a difference, or a residue, between those two vectors. In practice
they improved accuracy and generalization the most in comparison with
Adam or batch normalization. The reason models with residual connections,

11

Figure 3.1: A scheme of a residual, or a skip connection. The first weight layer processes its
input with linear and nonlinear transformation, producing the output. This output is then
linearly transformed, but, before applying the activation function, the previous input is added.
The resulting sum is then acted upon with the layer’s activation function. The output is
composed of the input and the difference from the input and target output, so the layer only
has to learn that difference, or a residue.

or ResNets for short, keep outperforming other models is that they are
effectively making the network more shallow[5], allowing the information to
flow further and simplifying the model. Until 2018, Resnets have been the
most successful models in ImageNet training, and then were superseded by
EfficientNet, which will not be discussed.

3.4 Transfer learning
Training a neural network from the scratch is very difficult due to the

vast hyper-parameter space that needs to searched, even with multiple
acceptable solutions. However it was observed that a network, once trained
for a specific task, can further be used for another similar task, after a bit of
fine tuning for the new task. A good analogy is how us humans use things we
learned in one situation for another situation, e.g. the model that
differentiates home cat species can be later improved to differentiate
between the wild cat species. This observation is called transfer learning.

One explanation for the possibility of transfer learning in the field of
computer vision is that features detected in one type of images usually exist
in other types, such as borders, lines and circles. The new network that
would be trained from start would have to learn those same features all over
again, which is very time costly. Instead, since the feature detectors can
theoretically work with new images, we can adapt the old network in much
simpler and shorter way. This also usually yields greater accuracy.

The important assumption is that the old and the new image datasets
are reasonably similar. Cat classifier will may not transfer successfully
towards skin tumor identification. For this reason, it’s important to train a
network on a general purpose dataset which covers a large number of
various distinct classes, for the network to generalize well. Examples of such
datasets are ImageNet, MNIST, CIFAR, Pascal VOC and many others. This
way, the convolutions really learn to extract the mutual features which appear
in very different contexts, thus generalizing well. Such trained network can
afterwards be fine tuned for a specific use by first adapting the last layers of
the network to the inputs before and ‘locking’ the earlier gradients to zeroes,
and once the saturation point is reached by unlocking the whole model for
training, which further increases accuracy for the specific purpose.

12

4 Activation map visualization model

4.1 Data
To visualize activation maps for images, it’s necessary to have both

the dataset of images and the trained model for image classification. This
thesis is based on two works[1][2] which used The Pascal VOC 2007
dataset[11], that contains just under 10.000 images in 20 classes with an
average of ~2.5 objects per image. In this thesis’ implementation only one of
several possible annotations was actually used. This dataset was only used
as a support for the main dataset, which was the FGVCx dataset with fungi
species, stripped down to 50 most numerous classes, with a little over 13.300
images, 150 for validation and the rest for train. These images were used in
2018 Kaggle competition, and in the original form feature almost 1400
various fungi species, from underground truffles, ordinary ground
mushrooms, hoof mushrooms and lichen, with occasional microscope
imagery or schematic drawing. Extra preprocessing includes square cropping
the images around the center and rescaling them to have an exact
256x256x3 volume, as some images were grayscale.

4.2 The model

13

Figure 4.1: The architecture of ResNet50 model. Input images are 224x224x3 tensors. They
are first processed with 64 7x7 convolutions and 3x3 max pool, that output 56x56 sized
tensor. Resulting tensor is further processed by iterations of 1x1 and 3x3 convolutions with
varying count and channel numbers. After some of the iterations, downsampling is
performed to gradually reduce the tensor size. In the end, entire image tensor is compressed
to 2048 dimensional vector which is then fed to the ordinary ANN with class_count
number of neurons that finally classifies the image.

As it was discussed in the chapter 3.4, convolutional neural networks
are commonly pretrained on a general dataset and then pretrained for the
specific use. This thesis used Residual nets, specifically, ResNet50 model,
whose architecture is shown in figure 4.15. This model proved to be complex
enough to extract meaningful features from the FGVCx images, but not too
complex for it to train or progress slowly. There was no multi-label classifying,
but only one multi-class model with the number of outputs equal to the
number of classes of the dataset (50 for FGVCx, 20 for Pascal VOC 2007).
The loss function this model was optimizing was Cross Entropy Loss. For
weight updates Adam optimizer was used, but without Nesterov momentum.

Initial learning rate was 8.5⋅10−4 but was exponentially decayed after every
epoch with varying intensity.

4.3 The implementation

5 This is an example of the network which reduces image size but increases the number of
channels

14

Figure 4.2: Model training setup with Python programming language and PyTorch
differentiation framework. Entire code was developed, tested and run in Google Colab
environment. The dataset was stored in Google Drive and accessed with gdrive module. The
model architecture is freely available to download, pretrained or not.

To train a neural network using PyTorch, it’s necessary to prepare the
dataset of images, image preprocessing steps, the machine on which the
training will occur, the very model, its loss function, weight optimizer and so
on. As seen in figure 4.2, in line 8, immediately after the imports, the device is
selected. GPU units are preferred over CPU as they can process batches in
parallel which speeds up the training process, but a fallback option is
needed. Next, a model object is instanced by downloading an ImageNet
pretrained copy which is freely available for unrestricted usage. Lines 12 to
20 define a composition of transformations used for preprocessing every
image in batch. Images, represented in memory as PIL.Image objects, are
enhanced by random transformations to augment the dataset.

They could be flipped horizontally, since a mirror image of a
mushroom is still a mushroom, and they could have colors slighty changed,
since darker image is still of the same class (or any other image property
that’s changed) and then transforming the resulting image to PyTorch tensor
with normalization of the red, the green and the blue color channels of the
image, so the input image distribution has zero mean and unit variance. This
transformation composition is given as an argument in the constructor of the
dataset object, whose structure can be seen in figure 4.3. In this figure, lines
15 to 26 are responsible for loading an image, ensuring it’s not grayscale,
and returning a dictionary with the image and corresponding image class.

15

Figure 4.3: Image dataset representation boils down to subclassing a Dataset class, which
abstracts away the details of image handling. Only two methods must be overriden, the
getter of one image and its label, and the dataset size. PyTorch automagically packs multiple
these images to tensors which are then given to the mode as input.

Lines 25 to 28 back in figure 4.2 define DataLoader objects, which
know how to communicate with PyTorch Dataset classes to load them in
multiple threads to batch tensors. Other arguments are the number of images
in one batch and whether or not to immediately push the resulting tensor to a
GPU, and whether or not to read the dataset sequentally. In the last steps,
the model is changed to reflect the classes of FGVCx dataset, and not
ImageNet, and pushed to the GPU for faster computation. The final train
function call is then only preceded by the definition of the optimizer
component, which is Adam, and the loss function, which is CrossEntropy.

4.4 Training procedure
The train_model function accepts the following arguments: a model,

dictionary of data loaders, loss (or criterion) function, optimizer, device object,
the number of epochs and the number of the epoch in which updating only
the last layer stops and updating the whole network begins. As the entire
function has a lot of feedback prints and statistic collection, only the most
interesting excerpt is showed in figure 4.4 that directly updates the model.

Lines 35 to 40 prepare the model for one of two phases, training and
evaluating phase. In the training phase, the partial inputs and the gradients
are remembered, as they are needed for the backpropagation algorithm. In
the evaluation phase, the model is not updated and none of the
forementioned tensors are needed. Next, batch tensors of images and

16

Figure 4.4: Portion of the training procedure

classes are extracted from the data loader. It’s mandatory for the both input
tensors, output tensors and the model to be on the same device, and lines 46
and 47 send the tensors to the same device there the model is. The most
important step is in line 51 where the inputs are finally applied to the model,
giving outputs which are then compared with our criterion function to estimate
the loss. Backpropagating the loss in line 58 computes the derivatives all the
way back to the very first layer (as explained in section 2.3) and then
optimizer updates the weights via method call in line 59.

17

Figure 4.5: OO approach to CAM visualization. The code was adapted from publicly
available repository of the code this thesis is based on.[9]

4.5 Activation map visualization
Activation maps are maps of the activation magnitude in the last

convolutional layer. For the ResNet50 example, the last convolutional layer
has 2048 feature maps which are subsequently reduced to a vector by global
average poooling module. This is output is then linearly mapped to a 50
dimensional space to get the prediction vector. The activation map of the
most probable class, the highest exit scalar, is plotted with a weighted sum of
that neuron’s input weights and 2048 convolution activations. The resulting
array is the activation map of an image for the predicted class. This
procedure is illustrated in figure 4.5.

The code for the generation of the images is borrowed from public
repository[9] and adapted to the object oriented paradigm. Constructor of the
CAMapper class in lines 28 to 39 takes the model as input, and registers a
private list for activations to be put in. This way, every time a picture is sent
through a model the activations can be accessed. The core of the procedure
is in method .process() which takes NumPy array and gives it to the
model, preprocessed or not, to produce outputs and then calls a helper
function to actually a compute the class activation map of the class with the
highest output. The helper function in lines 12 to 24 takes does the matrix
product of weights and activations in line 18, normalizes the result matrix to
be in range [0, 255] in line 22, and then rescales the resulting matrix to be the
same size as the input image in line 23. Afterwards, back in the process
method in line 65, a heat map is taken of the resulting CAM as to show the
activation magnitudes in colors, which is finally interpolated with the input
image in line 66 to produce a visualization.

18

5 Experimental results

The goal of this thesis was to train a neural net classifier, visualize the
class activation maps in convolutional neural networks, and test whether or
not the maps can be used as a localization technique.

5.1 Classification results

5.1.1 FGVCx

FGVCx dataset proved to be very hard for training an artificial neural
network classifier. First of all, the dataset contains very different types of
images, from ordinary mushroom images in nature, over images of
mushrooms that are sliced open, to microscope images of fungi spores or
even hand drawn sketches. With that variety comes another difficulty which is
intrinsic to this dataset, and it’s that many species of fungi share a common
‘mushroom-like’ figure. This is proved experimentally by calculating different
top-k accuracies, where k stands for an integer of how many top probabilities
are taken into consideration. It’s easily seen in figure 5.1, last row, that error
drops from 25% when considering only the top prediction, to less than 10% if
considering top three predictions, and under 5% if considering top 5
predictions. This means the model has a general idea of what the species
does the fungus belongs to, but cannot pinpoint the exact class because the
classes are simply too similar one to each other. Visual representation of this
data can be seen in figures 5.2 and 5.3. The data shows consistent loss
dropping and accuracy raising for train, but not for val, which shows some
noise around the saturation point. Significant differences between accuracy
thresholds can be seen. This is further shown in confusion matrices for the
train and val set in figures 5.4 and 5.5 respectively. It’s also easily seen the
confusion matrices don’t have a strong diagonal, but have a few strong
columns which correspond to the most predicted classes.

19

Figure 5.1: Table of experimental data while training on FGVCx. Training loss is slowly
converging, but validation loss reached a plateau around 1.6. Visual representation of this
table is shown in the next pages.

20

Figure 5.2: Graph of accuracies while training on FGVCx. The gains of taking more than just
the first prediction are significant. Training accuracies are rising steadily over the epochs, but
validation accuracies oscillate around some value.

Figure 5.3: Graph of loss while training on FGVCx. The training loss is consistently
converging, but validation loss is oscillating around 1.6, which is acceptable if we compare
this value with the maximum cross entropy loss for 50 classes (ln(50)=3.912.)

21

Figure 5.5: Confusion matrix on the FGVCx val set. Although it looks similar to the
figure 5.4, the size of validation is very small, which makes many squares zero.

Figure 5.4: Confusion matrix on the FGVCx train set. The numbers are not
normalized per class size, but they show original numbers. Ideally, the diagonal
should be strong, but many of the predictions are dispersed in other classes.

5.1.2 Pascal VOC 2007

Since the original paper this thesis is based on worked on Pascal VOC
2007 dataset, all of the experiments were repeated with it. Multi class
learning was used, as opposed to multi label learning, which means out of
many annotations, only one was used for each image in the training set. The
first thing to notice is that the number of epochs is now much smaller (20 for
VOC as opposed to 75 for FGVCx). Secondly, despite the smaller number of
epochs, the results are much better, both quantitatively, and qualitatively, as it
shall be seen in section 5.2. Here the classes are much more distinct, and
taking more than the top three predictions doesn’t really help the
classification accuracy, as the gain is under 2%, which is shown by the figure
5.7, last row. It can also be seen that the network reaches some sort of a
validation plateau after just a few epochs, while the training loss and
accuracy continue their expected changes.

In this experiment the confusion matrices of the train and validation
set, shown in figures 5.10 and 5.11 respectively, are very similar to each
other. However, they both have noticeable first row and column, which
correspond to the person class, and second-to-last column which
corresponds to the sofa class, and also a very strong diagonal. This
indicates the network doesn’t overfit to the training set and retains its
generalization capabilities, due to the distinction of the classes.

22

Figure 5.7: Table of experimental data while training on Pascal VOC 2007. Here the
results are much better in comparison with the FGVCx dataset

Figure 5.6: Intersection-over-union metric on the Pascal VOC 2007 dataset generated from
confusion matrix on the training and validation image set. Training IoU is consistently greater
than validation IoU, but the two are very correlated.

23

Figure 5.9: Graph of accuracies while training on Pascal VOC 2007. Validation accuracies
reach a certain threshold after 5 epochs and don’t increase, while training accuracies tend to
still increase, although slow. Taking more than three top predictions does not really help the
model as it’s almost sure to guess the correct class in those three tries.

Figure 5.8: Graph of loss while training on Pascal VOC 2007

24

Figure 5.11: Confusion matrix of the Pascal VOC val set. It looks similar to the
figure 5.10, but more dispersed with a strong first column, the person class

Figure 5.10: Confusion matrix of the training set. Once again original numbers,
and not normalized, are plotted. Unlike figure 5.4, here the diagonal is very strong.

5.2 Activation maps

5.2.1 FGVCx

Class activation maps of the FGVCx dataset are shown in figure 5.12.
It can be seen that the forms of the activation heat maps roughly approximate
the shape and the position of the fungi. An interesting phenomenon can be
spotted: some objects are shown to be surrounded by blue with red
background, and some are the direct opposite. Since the heat map maps the
small numbers (by relation, not magnitude) to the blue color, and greater
numbers to the red color, it follows that for some classes the activation
vector’s weights are mostly negative. Nevertheless, the absolute magnitude
approximately localizes the object regions. Also, the heat maps mostly have
irregular and ‘wavy’, dispersed forms. This will be explained in section 5.2.2.

25Figure 5.12: Class activation maps for some images from FGVCx. They are mostly around
the object which is annotated, yet are irregular and ‘wavy’. Some objects are localized with
the blue color (top left) and some with the red color (next one).

5.2.2 Pascal VOC 2007

Class activation maps for Pascal VOC 2007, shown in figure 5.13, are
much more regular and compact. This is also connected to distinction of the
classes. Since Pascal VOC images are very distinct, a model can only mark
a general position as important, since it’s very confident in it’s decision,
resulting in condensed heat maps. This is different from FGVCx where a lot
of classes are mutually similar and the model needs to specify what features
disambiguate an input image, and where they are positioned. This is
analogous to the humans specifying the features a poisonous fungus could
have. These heat maps show once more the nondeterminism of activation
vector’s weights, as some images have the negative blue spectrum as a
central region, and some have the positive red spectrum.

26

Figure 5.13: Class activation maps for some images from Pascal VOC. The same
phenomenon of nondeterministic image localization can be seen. Here the activation maps
are much more compact and surround the object more precisely in comparison with
activation maps of images from FGVCx.

5.3 Lowest ranked false negatives and highest
ranked false positives

The exit of a neural network classifier is the conditional probability of a
class given the image. Lowest ranked false negative for a given class is the
image labeled as that class, for which the model outputs probability that is
lower than any probability outputted for the other images that are labeled as
that very class. Likewise, the highest ranked false positive for a given class is
the image that’s not labeled as that class, but has the highest probability for
that class among any other images that are also not in that class. These
images are usually mislabeled in other datasets, or can be assigned a
different class, but Pascal VOC doesn’t have mislabeled images.

Lowest ranked false negatives for a subset of the Pascal VOC dataset
can be seen in figure 5.14. A quick glance at the feature maps shows that
they are mostly around the object they should recognize, which hint the

27

Figure 5.14: Lowest ranked false negatives of Pascal VOC. For every class an image was
found for which the model outputs the lowest probability. Images are plotted with their
activation maps, true class / predicted class respectively, and true class probability /
predicted class probability respectively. Activation maps are of the class the model predicted,
and not the true class. Only images that are annotated with only one class were considered
for this visualization

model’s certainty in its decision. A more detailed analysis shows how some of
the false classification could be considered as an honest mistake by a model,
e.g. cow class that was annotated as a dog, due to images of dogs on the
beach perhaps, or how the table tennis table looks like a flower pot from that
angle. Other images show how some class predictions depend on the
context in the image, such as the left two images for the person class that
was labeled as a train or boat. It’s easy to imagine a boat making those
waves.

Highest ranked false positives, shown in figure 5.15, have similar
characteristics as lowest ranked positives. The heat maps are also irregular
but more scattered. Since the images are not labeled as the model predicts,
localization is not very precise. Detailed observation once again shows us
how the context influences model’s decision, for example tvmonitor can
really be placed in the blue region in the second image, and train does in
fact resemble the shipyards. One could also notice that some images have
smaller differences between the colors. This is due to low activations across
the whole image as the model is insecure in his predictions. This can be
interpreted that the trained model would successfully combat badly annotated
data if they existed, and would generalize well, as he’s fairly certain image is
of some other class, and not the labeled one.

28

Figure 5.15: Highest ranked false positives for a class, sorted by the predicted class. For
every class only the images not labeled as that class were considered. Among them, the
image with the highest model output for the selected class is shown. CAM’s were plotted for
the labeled class, and not for the predicted, to emphasize the model’s insecurity of the real
class. Many of the mispredictions can be attributed to the image context (aeroplane, boat) or
image resolution (tvmonitor, cow).

6 Conclusion
This thesis focused on convolutional neural networks as image

classifiers. By doing a series of experiments on two different datasets, it
explored what do the convolutional neural networks actually learn. The
experimental results show that if the classes are distinct enough, learning the
model will be quicker and easier, with lower loss, higher accuracy, and
rounder, more compact activation maps. If the classes aren’t distinct enough,
though, the training will last much longer with less of a progress, and the
activation maps become irregular and dispersed. The activation maps are
usually near or around the object that’s labeled in the image, opening up a
usage for object localization. Dispersed activations usually concentrate
around the features of an object that allow the model to infer the correct
class, and not the whole object. Highest ranked false positives show that the
model can sometimes correct a mislabeled picture as it generalizes well.
Class activation maps show that the activations are closer to zero if the
model is unsure about the resulting class, coloring a heat map more
uniformly, as it cannot pinpoint what image features are decisive for the
correct classification.

29

7 Literature and references

[1] Oquab M. Bottou L. Laptev I. Sivic J. Is Object Localization for free:
Weakly-supervised learning with convolutional neural networks, pages
1-10.

[2] Zhou B. Khosla A. Lapedriza A. Oliva A. Torralba A. Learning Deep
Features for Discriminative Localization, CVPR Las vegas 26.06.2016.
pages 1-10.

[3] Jacobsen, J.H. Smeulders, A. Oyallon, E. i-RevNet: Deep Invertible
Networks. International Conference on Learning Representations
(ICLR), 2018. pages 1-11

[4] Santurkar S. Tsipras D. Ilyas A. Madry A. How does batch
normalization help optimization? 29.05.2018. pages 7-9
https://arxiv.org/abs/1805.11604

[5] Veit A. Wilber M. Belongie S. Residual networks behave like
ensembles of relatively shallow networks, 27.06.2016. pages 1-12
https://arxiv.org/pdf/1605.06431.pdf

[6] Anđelić A. Semantička segmentacija slika dubokim konvolucijskim
modelima, bachelor’s thesis, FER, June 2018.

[7] Ioffe S. Szegedy C. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, pages 1-11

[8] 2018 FGVCx Fungi Classification challenge, 22.03.2017.
https://github.com/visipedia/fgvcx_fungi_comp.

• Accesed 04.03.2019.

[9] Sample code for the Class Activation Mapping, Bolei Zhou,
24.08.2017. https://github.com/metalbubble/CAM

• Accessed 12.05.2019.

[10] Why is so much memory needed for deep neural networks?
Jamie Hanlon. https://www.graphcore.ai/posts/why-is-so-much-
memory-needed-for-deep-neural-networks

• Accessed 09.06.2019.

30

https://www.graphcore.ai/posts/why-is-so-much-memory-needed-for-deep-neural-networks
https://www.graphcore.ai/posts/why-is-so-much-memory-needed-for-deep-neural-networks
https://github.com/metalbubble/CAM
https://github.com/visipedia/fgvcx_fungi_comp
https://arxiv.org/abs/1805.11604

[11] The PASCAL Visual Object Classes Challenge 2007,
07.04.2007.
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html

• Accessed 30.05.2019.

[12] https://becominghuman.ai/back-propagation-in-convolutional-
neural-networks-intuition-and-code-714ef1c38199

31

https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199
https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html

8 Summary
This thesis focused on convolutional neural networks as image

classifiers by doing a series of experiments on two different datasets. After a
brief introduction to deep learning discipline, a short overview of the best
practices was given. A pretrained model with residual connections,
ResNet50, was selected, in combination with Adam optimizer. It was trained
for classification in appropriate number of epochs. It was shown it could
guess a correct fungi species, and it classifies general objects with 97% top
three accuracy. Later, if was shown that over similarity of fungi species
inhibits further learning of the network. This type of problems is not found in
Pascal VOC dataset. While learning the classification of the objects, the
network implicitly learned how to a) localize objects themselves and b) how
to localize specific features that distinguish one class from another. It’s been
demonstrated with lowest rated positives and highest rated negatives of the
Pascal VOC validation dataset that the network has problems with
ambiguous classes but generalizes well and can correct mislabeled data.

Keywords: convolutional neural network, deep learning, residual models,
fungi, Pascal VOC, class activation maps, localization, classification

Ovaj završni rad se fokusirao na konvolucijske neuronske mreže kao
klasifikatore slika u nizu eksperimenata na dva različita skupa podataka.
Nakon kratkog uvoda u područje dubokog učenja, dan je kratki pregled
najboljih praksi. Odabran je predtrenirani rezidualni model ResNet50, u
kombinaciji sa Adam optimizatorom. Model je treniran za klasifikaciju u
odgovarajućem broju epoha. Rezultati pokazuju da model predviđa točnu
vrstu gljive, te da može klasificirati općenite objekte sa preko 97%-postotnom
točnosti u najbolja tri pokušaja. Kasnije, dokazano je da prevelika sličnost
različitih vrsta gljiva usporava daljnje učenje i porast točnosti. Ovaj tip
problema nije bio primjećen u Pascal VOC skupu podataka. Tijekom učenja
klasifikacije objekata, mreža je implicitno naučila i a) lokalizirati same objekte
na slici i b) lokalizirati posebne značajke koje razlikuju jedan razred od
drugog. Demonstracija najlošije rangiranih pozitiva i najbolje rangiranih
negativa pokazala je da mreža ima problema sa višeznačnim razredima, no
generalizira dobro i može ispraviti pogrešno označene podatke.

Ključne riječi: konvolucijska neuronska mreža, duboko učenje, rezidualni
modeli, gljive, Pascal VOC, mapa razrednih aktivacija, lokalizacija,
klasifikacija

32

	1 Introduction
	2 Convolutional neural networks
	2.1 Artificial neural networks and deep learning
	2.1.1 Training

	2.2 Convolutional neural networks (CNN)
	2.2.1 Convolutions
	2.2.2 Pooling operation
	2.2.3 Training

	2.3 A word on PyTorch

	3 Modern approaches and state-of-the-art
	3.1 Adaptive training
	3.2 Batch normalization
	3.3 Residual connections
	3.4 Transfer learning

	4 Activation map visualization model
	4.1 Data
	4.2 The model
	4.3 The implementation
	4.4 Training procedure
	4.5 Activation map visualization

	5 Experimental results
	5.1 Classification results
	5.1.1 FGVCx
	5.1.2 Pascal VOC 2007

	5.2 Activation maps
	5.2.1 FGVCx
	5.2.2 Pascal VOC 2007

	5.3 Lowest ranked false negatives and highest ranked false positives

	6 Conclusion
	7 Literature and references
	8 Summary

