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1. Introduction

Introduction of deep learning to the field of computer vision brought unprecedented

success and continues to move the boundaries of possible, surpassing the points deemed

unreachable just a few years back. Nowadays, with sufficient data, it is possible to de-

velop systems that classify images, detect objects, recognize faces, hallucinate dreams,

paint pictures in predetermined styles and so on. Some of these problems are basically

solved, and some are on the sole threshold of solving, mostly due to the advances in

tools, computing power and, most importantly, available data.

It is relatively easy to label data for the classification: it takes one look to the pic-

ture to identify the dominant object and assign it a class. If this is done some million

times, a very good learning dataset is obtained, and rather quickly. Face recognizers

work just the same, usually with a twist that there are less data but more classes (identi-

ties). Object detection systems require a special box around the object determining its

location, together with a class of an object. There can be multiple objects in an image

so special care should be taken not to miss anything important.

All these problems are relatively common, so naturally, there are a lot of orga-

nized, annotated and publicly available data to help solve them. However, there is a

special hard problem in image processing which is far from solved due to the sheer

unavailability of quality and/or vast data - that problem is image segmentation.

Image segmentation is an old problem that has been gaining some traction lately,

largely because of the interest for the segmentation of camera feeds of autonomous

vehicles for the automotive industry. Image segmentation can be considered pixelwise

classification: for every pixel the system should decide which class does it belong to.

Immediately we arrive at several difficulties. First and foremost, there isn’t a simple

and straightforward to determine a class for a pixel based solely on its color or position.

A green pixel can be a part of the grass, green car, green shirt, a frog, or possibly even

a part of a socially frequent representation of a particular visitor from outer space.

What the image segmentation system needs for the successful segmentation is a broad

view of the image for it to be able to divide the input signal into regions that are
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specific enough, yet not too small and unimportant. Furthermore, it is not enough to

reduce an image to a single class or several axis-aligned bounding boxes. To train

an image segmentation system, it is required to obtain data which has every single

pixel annotated. This operation is very time consuming, error prone, and resource

hungry. During inference, the system battles against having too little representation

power coming from too small inputs or not enough data, and too large inference time,

coming from too large inputs or a lot of computation.

There are still difficulties. The specific one this thesis is concerned with is the

implication that all the classes for all pixels are known beforehand. For example, con-

sider the segmentation of road vehicle camera feeds. There are some classes which are

present almost always, such as the road, the sky, other vehicles, road asphalt, trees,

pedestrians and so on. After spending some time, one could come up with more

classes for, say, dogs and cats crossing the road, and maybe road signalization such

as semaphores and road signs. If we built the image segmentation system with these

classes it would (mostly) correctly segment the camera feeds until some rare events

happened, such as a car crash (which shouldn’t be labeled as another car!) or road

work, where the bagger would either be recognized as something else (which is dan-

gerous), or wouldn’t be recognized at all as the system never saw it (which is even

more dangerous).

There are two canonical solutions to this rather serious problem. The first one is

to try to come up with every single class there can exist in the images. This would

work in theory, but at the expense of costly obtaining of a large and diverse enough

dataset, very prolonged computation time and radically increased resource demand,

as the resources for the image segmentation scale with both image dimensions and

the number of classes. There may even be laws against collecting the data of some

class, such as government or military vehicles, or car crashes. The other solution is

to admit that collecting every single possible class, along with appropriate annotations

is unrealistic, and the effort should concentrate on the collection of the most probable

classes, together with a special class representing "other" or "unknown". This setup is

the most reasonable with respect to the cost and resources.

This thesis follows the second approach in detail, from defining and obtaining the

appropriate dataset, defining models, metrics and results, all applied to the problem of

road vehicle camera feed segmentation. It is mostly based on the work [3] but brings a

few advancements.
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2. Elementary concepts

2.1. Image segmentation

Image segmentation1 is a computer vision processing technique which divides (seg-

ments) the input image into some disjunct regions.2 These regions usually represent

some semantic categories, e.g. various classes which can be found while driving a

vehicle for the autonomous vehicle case. Mathematically, the process of image seg-

mentation is described by the eq. (2.1)

Y = fIS (X) ,X ∈ RC×H×W ,Y ∈ NH×W
0 (2.1)

where X represents an input image of width W , height H and the number of chan-

nels C (most oftenly C = 3 for RGB images, but not necessarily), Y represents the

output called the segmentation map where for every input pixel Xij there is a cor-

responding scalar Yij unambiguously representing some class, and fIS is the image

segmentation function which is, in this case, represented with a deep learning model.

1There are two main types of image segmentation, semantic segmentation and instance segmentation.

They differ in the range they operate: semantic segmentation classifies every pixel in the input image,

while instance segmentation separates some instances of some classes from the image, leaving other

pixels unprocessed. From this point on, only semantic segmentation is considered, and is referred to as

image segmentation
2There are some instances of image segmentation where the regions need not be disjunct. However,

this form of multi-label image segmentation is not considered here at all
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Figure 2.1: An example of image segmentation in the area of vehicle dashboard camera feed

processing. This image pair comes from the KITTI semantic segmentation challenge and

dataset. The upper image is a real world image of a street in Karlsruhe which serves as an

input to the model. The lower image is the model’s target output, a semantic map in which

every pixel is assigned an integer denoting a class. In this image, there are 7 classes as per leg-

end, which is a small subset of all the classes contained in the dataset. The classes are usually

denoted by integers, and here every integer was assigned a random color. Image taken from

[19]

Since the image segmentation is an old problem, there are a lot of different ap-

proaches developed, differing in the assumptions they assume. Most of techniques

employ a notion of similarity between pixels. For instance, the pixels can be seg-

mented using histogram approaches, where the pixels are implicitly grouped by their

light intensity or color components[26]. The image can be first segmented in one way,

and then every segment can be further split into more regions in another way, possibly

even merging some of the clusters. Similarly, if a difference between pixels is defined

in terms of their position, color, texture, intensity etc., a clustering approach can be

used to cluster the pixels, resulting in groups of similar pixels[25][1]. The drawback

is that the defined similarity of pixels may not really reflect reality, so the resulting
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segments won’t represent semantic categories. Another drawback is that changing the

lighting, shadows, contrast, or camera focus can completely change the clustering out-

put, rendering such methods unstable or limited to very specific problems.

Completely other family of algorithms replaces the assumption about the similarity

of the pixels with the assumption that the resulting segments are usually separated in

input image with well defined edges[20]. This in turn delegates the problem to the

well-developed field of edge detection algorithms in image processing, and focusing

on the smart way to combine the regions in between the detected edges. There is a

plethora of edge detection algorithms that won’t be covered in detail, so the interested

reader is instructed to learn about them elsewhere, but the two most basic algorithms

are described here for the completion. Gradient methods work by computing the mag-

nitude of the color gradient for every pixel in the image. The gradient is defined as the

difference in the color between neighboring pixels. The edges usually have a property

that they are areas with large color gradient. Most important gradient edge detection

algorithm is Canny edge detector [7]. This approach has a problem with relatively

wide edges. To improve this, second order gradient information can be used, because

maximal gradient usually correspond to the inflection point of the function, which can

be found by finding the root of the second order gradient [23]. This approach, however,

is quite sensitive to the noise. No matter the algorithm, the detected edges are usually

augmented to form closed loops, and then the regions are combined to form semantic

segments.

With the rise of deep learning techniques these "hand-assembled" algorithms fell

out of favor solely due to their inferiority. It can be empirically shown that deep convo-

lutional neural networks can learn to reproduce the annotated targets in much greater

accuracy than any approach before. This is done by collecting and precisely annotating

a large amount of images. By converting the Yij from RH×W to RC×H×W where C

stands for the number of classes there are in the problem (not related to the number

of channels in the input), which means expanding every pixel from an integer to the

vector representing one-hot encoded class, the convolutional neural net model can be

trained to output a class distribution for every pixel which minimizes some measure

of distribution difference such as cross entropy [3][2]. And while these systems are

generally inexplicable in how they make a decision about segmentation, it turns out

this is not usually a constraint, so thanks to the superiority in segmentation quality of

deep learning models, this is the approach taken in this thesis.
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2.1.1. Image segmentation metrics

While there are CH·W different segmentation maps3, only a small subset of them is

actually any good to the human eye. Since the eye is not much of a precise instrument,

there is a need for more numerical measure of the goodness of segmentation.

Pixel accuracy

The easiest metric to come up with is a classification equivalent of accuracy, called

the pixel accuracy. In simplest terms, it’s a ratio of correctly classified pixels and the

total number of pixels in the image. Its virtues are that it is easy to understand, easy

to implement, and it does not depend on the number of classes. When that number is

low, the model definitely performs horribly. But, high values do not necessarily mean

the segmentation system performs well. To understand why, imagine a segmentation

system in a vehicle which only outputs the upper half as a sky class and the lower half

as a road class. This system could easily obtain 80% of accuracy by being nothing

more than a dumb baseline, which is fundamentally flawed. The core problem of the

accuracy metric is the class imbalance. The sky and the road are in the largest patches

of the images, so small patches do not get enough opportunity to bring the accuracy

down as all pixels are considered the same. There is no penalty for the size of the

predicted patch. While improvements for the pixel accuracy do exist (usually in the

form of pixel-weighted or class-weighted accuracy), there is a better solution.

3Short proof: for each of the H ·W independent pixels, C classes can be chosen
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Intersection-over-Union and F1

Figure 2.2: Visual aid in understanding the intersection over union. This visualization il-

lustrates the hypothetical calculation of Intersection-over-Union with two square regions. The

intersection is then the set of pixels contained in both square regions, and the union is, naturally,

the set of pixels contained in either square region. Image taken from [8].

If we compare a patch of image of some class C and a different patch of image where

the model predicts the same class C, we can consider how much correspondence there

is between those two patches. This correspondence is a ratio between the number of

pixels which are correctly predicted (the true positive count) and the total number of

pixels both actually, and, predicted as C, the number which can be decomposed into

three different numbers: the true positive count, the false positive count, and the false

negative count. If we consider the image patches as sets of pixels, correctly predicted

can be thought of as an intersection of the two sets, the metric can be represented

as in Figure eq. (2.2) called Intersection over Union, or historically, a Jaccard index

[18]. It’s a much better metric because, unlike accuracy, it penalizes the size of the

predicted patch. Furthermore, it just as easy to understand, easy to implement, but it

also reflects the human segmentation grading more closely. One little flaw is that it’s

not agglomerative as the pixel accuracy since it can really only be defined in a per-

class basis. The usual remedy is to take a (weighted) mean4 of all the IoU’s for all the

unique target classes, a single metric called mIoU. Alternative to an IoU metric is a

slight variation called a segmentation F1 metric, shown in the equation eq. (2.3). F1

metric is really similar to IoU (and is, in fact, positively correlated with it), but the

4The means of the pre-class IoU’s should not ever be weighted by the patch size, since this formu-

lation is actually an alternate definition of pixel accuracy. Usually all the weights are 1 or are fixed

per-class over all the images.
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main difference is that IoU tends to penalize bad classes more than F1, so optimizing

IoU tends to produce better results.5

IoUi =
|A ∩B|
|A ∪B|

=
TP

TP + FP + FN
(2.2)

F1 =
2|A ∩B|
|A|+ |B|

=
2TP

2TP + FP + FN
(2.3)

Panoptic quality

However, even with a robust metric such as Intersection-over-Union defined in sec-

tion 2.1.1, the numbers can sometimes seem too high in comparison with what we

expect. Therefore, yet stronger metric is needed, and that is Panoptic Quality[21]. It

is designed to correspond more to how a human would rate a prediction, which boils

down to measuring the IoU value of all TP pixels, weighted down by the size of TP,

FP, and FN sets.

While the equation shown in eq. (2.4) seems simple, it demands explanation. TP,

FP and FN sets are now defined as sets of pairs (p, q) where p is a feature map for

some class C the model outputs, and q is a target map for the same class C. Pair (p, q)

is in TP set if and only if IoU(p, q) ≥ 0.56. Summing the IoU’s of patches over all

the classes and dividing it by something connected to the number of patches is akin to

taking an average. But, just with pixel accuracy, big patches are not penalized, so the

metric is weighted down by the sizes of FP and FN sets of corresponding pairs. An

astute reader will recognize a connection with the F1 metric, and it can mathematically

be shown that PQ is actually an F1 metric scaled down by the mean of all IoU’s in

the TP set. The final PQ metric is obtained by averaging out all the PQi over all the

classes.

PQi =

∑
(p,q)∈TPi

IoU(p, q)

|TPi|+ 1
2
|FPi|+ 1

2
|FNi|

(2.4)

While simple at first, and possibly convoluted underneath the surface, PQ is actu-

ally a good measure of semantic segmentation performance which aligns more closely

5F1 metric is actually a family of metrics Fβ , parameterized by β which denotes a tradeoff between

the precision and the recall. F1 in particular weights them equally[29]
6It can be mathematically proven that there can be only one pair of p and q for any class C such that

the IoU is greater than or equal to 0.5; this proof is out of scope of this thesis but interested reader is

instructed to study the details of [21]
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with how humans rate semantic segmentation output. The part of a reason is that is

was tailored for that by the authors of [21].
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2.2. Transfer learning

Due to the complexity of functions represented by neural networks, there is usually no

(tractable) way to compute the optimal set of weights in a closed form, mostly due to

the nonconvexness of the problem formulation. Therefore, all deep learning models are

almost universally trained by gradient descent. In all generality, gradient optimization

procedures take into the consideration the information about the gradient of a function

they optimize. The gradient, which is in this case computed by a special algorithm

called backpropagation, is a vector which points in the direction of biggest increase

of a function. Since the function optimized is usually a loss function we attempt to

minimize, all the weights are modified in such a way that a step is taken in the opposite

direction from the gradient, as to minimize the loss function by the greatest magnitude.

The problem is, however, where to start optimizing, that is, what initial set of

weights to use. In the past, deep learning models were trained for a specific problem

from scratch, usually from randomly initialized weights. However, a starting point

for the model’s weights can have a huge impact on the model’s characteristics such as

maximal performance and convergence speed (or convergence in general!). Naturally,

the best starting point is in the optimum itself, but it’s highly unlikely to aprori know

where the optimum is; if that was the case, no learning procedure is needed at all. The

second best starting point is, then, in a vicinity of the optimum. Now, it is still hard to

tell where the optimum lays for a specific problem that is being solved, but in practice

in turns out different problems can be averaged out in the parameter space so as to

obtain a probability distribution of local optima. Starting somewhere in this region

will perform good in a variety of problems. Some of the initialization methods are

Xavier uniform/normal[12] and Kaiming uniform/normal[16], both of which sample

the starting weights from a probability distributions the weights are observed to follow

in practice.

10



Figure 2.3: An illustration of transfer learning. The model which is well trained for image

classification or object detection is being reused as a feature extractor for the semantic image

segmentation. As both problems are in the domain of traffic, it is expected that the weights of

a feature extractor will extract good features for the segmentation. This, however, should not

be confused with incremental learning from section 2.3 as the tasks (classification / detection

vs. segmentation) are different. Image taken from [13]

Remarkably, it also turns out we can use a model already pretrained to solve one

problem as a starting point of solving another, similar problem. It has been shown in

practice that using a pretrained model as a backbone of a model for the current problem

improves both the rate of the model improvement and the end performance. This is

easily explained if we look at the pretrained backbone as a feature extractor for the

problem at hand. Instead of learning all the low-level features from scratch and slowly

combining them into higher order features, the pretrained backbone is already yielding

higher order features, which helps the model. Usually, the backbone itself is not trained

at all until a certain convergence plateau is reached (also called locking the backbone),

as that would destroy the learned features. A few extra points of performance can,

then, be obtained by unlocking the weights of the backbone after the plateu so as to

finetune the weights of the backbone to extract features more aligned for the problem.

Alternatively, the backbone can be given substantially lower learning rate to change

its weights more slowly, in the hope it’ll align its features with the problem at hand
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simultaneously with the untrained model segment.

Transfer learning is especially useful tool for solving problems that have scarce

data, such as the segmentation of medical images in the search for malign tumors,

which are hard to obtain due to patient privacy laws, or the segmentation of aerial

images of the ground, which are hard to obtain due to the price required for their

capture. In both cases, and much more, using a pretrained backbone usually performs

much better and generalizes well in comparison with training the model from scratch.
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2.3. Incremental learning

Transfer learning solved quite a few problems in the period when both data and models

were scarce. However, with time, the number and availability of both data and models

rapidly increased. People started solving various problems, producing a spectrum of

solutions. Yet, most of these solutions broke under new data. A trivial solution is to

retrain the model from scratch, but one can do better with incremental learning. The

idea behind the incremental learning is similar to transfer learning: to take a pretrained

model which solves a problem with the hope it’ll help solve the problem at hand.

The main difference is that, in incremental learning, the problem the pretrained model

solves is exactly the problem at hand. The pretrained model is often times the same

model, it’s just provided with more data, which helps fill the gaps in the knowledge it

had.

Training the models incrementally is powerful as it can be regarded as the usage of

a really good feature extractor, one which misses the local optimum by a small margin.

It is especially useful in the case where the original data is no longer available, just

the recent data. One peculiarity is that models trained in this way sometimes have a

tendency to forget the knowledge they had, a phenomenon which should ideally be

avoided at all costs, usually by decreasing learning rate or by using dataset augmenta-

tions.

The incremental learning is somewhat similar to curricular learning, in which the

model is presented with easier examples at first, and then the examples get harder and

harder. Just as with incremental learning, the model can still be occasionally shown

easier examples to slow down the forgetting. The curricular learning can be thought

of as a subset of incremental learning as curricular learning doesn’t ever change the

model architecture, but incremental can, and does sometimes.

The core idea in this thesis is applying incremental learning for image segmen-

tation. First, using transfer learning, a model pretrained for classification is used as

a starting point of a model performing image segmentation on several datasets con-

taining only inlier classes, providing estimates for the pixel class probabilities using a

prediction head. Then, the trained model is further incrementally trained for prediction

on outlier classes using a separate prediction head, but it is forced to retain the knowl-

edge it had by exploiting the fact the old data is still present, and feeding the model

data it should already know how to solve.
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2.4. Public datasets

All machine learning systems are in need of a large quantity of (quality) data, and

semantic segmentation systems take this requirement to the next level. Therefore, it

is not surprising how the attempts of solving this generated several publicly available

datasets, containing images and labels for both training and validation. Some of the

below-mentioned datasets are showed in fig. 2.4. One of the oldest datasets is Pascal

VOC (Visual Object Classes) [10], usually used for classification and detection, but

which obtained the segmentation labels in 2009. The latest version of the dataset

is from the 2012 and contains 1464 images in the train set and 1449 images in the

validation set, with the test set hidden in private. The dataset has started as an official

dataset for the VOC object recognition competition of the PASCAL organization from

the University of Southampton. It is a general purpose dataset with 20 classes of the

general world, such as people, animals (cat, dog, bird etc.), vehicles (car, boat, train

etc.) and indoor objects (tv, chair, bottle etc.).

Another general purpose image segmentation dataset is Microsoft COCO (Com-

mon Objects in Context) [22]. It’s a quite large dataset with more than 118K labeled

images in the training set and 5K images in the validation set in more than 80 diverse

classes, covering everything in the Pascal VOC and much more. It has multitude of

labels: the same dataset can be used for instance segmentation, panoptic segmentation,

human pose estimation and human keypoint localization.

There is a lot of interest for the semantic segmentation of images in the scope of

self driving vehicles, so naturally some public datasets containing dash camera feeds

appeared. One of the most famous representative of such is the CityScapes dataset[9].

Its fine grained image segmentation collection contains 2975 training images, 500 vali-

dation images and 1525 testing images. The segmentation maps cover 30 classes found

in usual traffic (such as person, road, car, wall, traffic light etc).

There is no doubt that CityScapes is invaluable to the semantic segmentation field,

but with time appeared the need for larger and more comprehensive datasets. One of

such is definitely Mapillary Vistas[24] dataset with 667 classes over 25,000 images.

And while the CityScapes isn’t really as diverse as it should be (only 50 cities, mostly

German, good weather conditions, similar cameras), the Vistas creators went out of

their way to make it as diverse as they can (images from all 6 inhabited continents, in

various lightning and weather conditions, and taken by mobile camera, action camera,

professional equipment etc). It also features both coarse and fine annotations.

7for version 1.2; this number climbs to 124 in v2.0 od the dataset
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There are other datasets as well. KITTI [11] dataset is a another small German

dataset. It contains 8008 frames in the training set and 10173 frames in the test set

over the 19 CityScapes’ classes. It’s relatively new. CamVID [5][6], on the other

hand, is one of the oldest car dashcam video datasets. While historically important, it

only has 7̃00 labeled images which is way too small for any important real world usage.

Another relatively small dashboard camera segmentation dataset is WildDash[30]. It

has only 4256 labeled frames, but instead of the quantity, the authors rather focused

on the variety in the images, such as weather conditions, locations, vehicle types, road

types, camera distortions etc.

Figure 2.4: Example images (left in any pair) and their target segmentation maps (right in any

pair) of various semantic segmentation datasets described in this section. Top left is an exam-

ple image from Pascal VOC[10] featuring two classes, namely person and motorcycle,

whereas everything else is labeled as background which denotes the absence of a particular

class. Top right is one of the tamer images from Vistas[24] dataset featuring several classes,

the largest of which are road, sky, vehicles and vegetation. Bottom left comes from

the COCO[22] dataset, and contains a cute cat near a keyboard. The bottom right is wide-

resolution and fine-grain labeled image of a German city Tübingen from CityScapes[9]. The

image is populated by more than 10 classes, but the largest are road, person, building,

vegetation and sidewalk. These examples show how the differences between, but also

some similarities across the datasets.
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3. Method

The goal of this thesis is to successfully train a deep learning system which will seg-

ment the dashboard camera feed in real time, but also provide an estimate of its un-

certainty. This is accomplished by extracting features and then feeding them to two

separate heads, one which performs the segmentation of the input image, and the other

which assesses the confidence of the segmentation predictions.

3.1. Model architecture

3.1.1. Feature extractor

The feature extractor is based in the DenseNet-121. DenseNets[17] can be thought of

as an upgrade of Residual Networks (ResNet’s [15]). ResNet architecture introduced

a novel concept of skip connections in the models, which facilitate information flow

deeper in the model. These skip connections manifest as elementwise addition between

the layer’s input and output - instead of the features themselves, the layer in ResNet

learns the difference in the features, also called the residual. This seemingly simple

trick is very effective accross all deep learning fields, including computer vision and

natural language processing.

However, a layer in the ResNet only ever takes the previous layer’s input, which

still doesn’t let the features flow deep enough . To promote the information flow even

further, one layer of DenseNet (in one dense block) takes as input all the outputs of the

previous layers, and its output is feeded to all the next layers. An important note is that

the previous inputs aren’t summed in an elementwise fashion. They are, instead, con-

catenated. Along with the information flow, DenseNets are more parameter efficient as

the convolution layers don’t have to have as much channels as they had to have before.

The only downside is that DenseNets use more memory as they have to store all the

layer outputs of a block.

Nevertheless, DenseNets are powerful feature extractors. The architecture of one
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DenseNet block is shown in fig. 3.1. Every layer takes as input the concatenated activa-

tions of all the layers before it. Despite the need to retain all the activations, DenseNet

block layers actually have less parameters since they don’t have to have as much ker-

nels - it’s usual to have a ResNet with 256 kernels, but here every layer in a block adds

only 4 more features. DenseNet architectures, such as DenseNet-121, usually have 4

dense blocks, with 3 transition layers between them consisting of 1 × 1 convolution

and a pooling layer, which downsamples the signal by half.

Figure 3.1: The architecture of a DenseNet block. The i-th layer takes as input all the acti-

vations of layers 0..i− 1. In the original paper, every layer performed the BatchNorm-ReLU-

Conv operation. Every layers adds k new features, usually k = 4. Here in the figure, there are

5 layers in a block, but in the paper that number can be up to 64. The resulting tensor is then

transformed and scaled down for the input into the next dense block. Image taken from [17]

3.1.2. Spatial pyramid pooling

The output of the last dense block DB4 is then fed into a special layer performing

spatial pyramid pooling. Spatial pyramid pooling was first introduced in [14] as a

simple way to represent the whole input signal with a fixed number of features. One

simple way to do this is to split the signal into N2 equal patches and perform a pooling
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operation (e.g. a max pool) over every patch1. This can usually be performed for

every input dimension, provided that N divides the height/width dimension of the

signal. Doing this several times with different Ni corresponds to different "attentions":

a small Ni means splitting the image into less patches which are larger, providing the

large scale features, and large Ni means splitting the image into more small patches,

providing the small scale features.

This procedure is very appropriate for the image segmentation problem due to its

side effect: it increases the receptive field of the model. Image segmentation models

have to be aware of both the high level context of the image, and the low level features

such as edges and shapes. The SPP block fulfills this requirement perfectly.

Figure 3.2: The schema of the Spatial Pyramid Pooling (SPP) layer from [14]. The input

signal is split into patches in multitude of ways (12, 22 and 42 patches in the figure) and a

pooling operation is performed upon every single patch. Since there is a constant number of

patches w.r.t the scale factors, the SPP always produces the output of the same size. Also, it

summarizes the input signal across several scale levels, increasing the receptive field of the

model, which is necessary for successful image segmentation. Image taken from [14]

The models in this thesis use SPP with Ni = 1, 2, 4, 8. For every input image the

model outputs
∑4

i=1N
2
i = 85 features per input channel.

1While this operation summarizes the activations in the patch to a single number, it keeps the chan-

nels separated, meaning a C ×H ′×W ′ dimensional patch is always going to be reduced to C × 1× 1.
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3.1.3. The upsampling

While there are dozens of layers in the downsampling and feature extraction path, there

are only few upsampling layers, concretely 3. These upsampling layers are structured

similarly as U-net[27] architecture, which is most easily explained with a ladder anal-

ogy: the activation after every block in the DenseNet feature extractor is saved, and

used in reverse order during upsampling. In this way, the model extracts high order

features at its end, but is reminded of the lower order features with the correspond-

ing block activation while restoring the input resolution, which is used to restore the

segmentation maps in significantly higher detail.

To speed up the training process, three auxiliary losses are defined after every

upsampling block. They act as a regularizers and help propagate the training signal

deeper into the network. These auxiliary losses target the downsampled segmentation

distribution at lower resolution, to ease up the upsampling. The details are in fig. 3.3.

Figure 3.3: The architecture of the two headed model

3.1.4. The segmentation and confidence heads

The output of the last upsampling layer is a tensor of logits for pixel level classification.

These logits are usually fed into a special layer which outputs a distribution across the

classes, called a segmentation layer, or a segmentation head. This approach, however,

doesn’t really perform when there are objects of an outlier class in the image.

Therefore, another layer is introduced, with the same input, parallel to the segmen-

tation head, which has a sole purpose of determining if the pixels in the image are a

part of outlier objects or not. The output of this head is O ∈ [0, 1]H×W which is inter-
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preted as a posterior probability that the given pixel at some location is an outlier. It is

important to note that sharing the input is not a strict requirement but an inductive bias

that the output upsampled tensor contains enough information for both the segmenta-

tion and outlier detection. Luckily, that bias turns out to be correct, and the results will

show that effective outlier detection is obtained "for free" when performing semantic

segmentation .

3.2. Experiments

Usually, the weights used for transfer learning are the weights learned after training

some model architecture on the ImageNet[28] classification tasks. The hypothesis this

thesis tests is that this may, in fact, be suboptimal. Since the classification and the

segmentation tasks are quite different, it could happen that the weights in the feature

extractor sometimes specialize in extracting unimportant or unnecessary features from

the image, resulting in lower accuracy, mIoU and other important metrics.

To combat this, the idea is to pretrain the feature extractor on a different image

segmentation task, and then use this as a (hopefully) better basis for the task at hand.

These pretraining segmentation tasks should be simpler, to speed up the learning pro-

cess, but also diverse, as the model should not be overfit for that task, but should ex-

tract important and useful features. This thesis achieves that by pretraining the model

on CityScapes and Vistas features for the inlier classes, which is assumed will boost

the performance for the outlier class detection.
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4. Experiments

4.1. Experiment setup

All experiments were performed on the faculty’s train machine containing nVidia

GeForce GTX1070 (8GB) and nVidia GTX980 (4GB) graphics cards. Batch size was

tuned to decrease the training time as much as possible without hurting the metrics,

and typically ranges between 32 and 64.

For the first part of the incremental learning training process, the only augmentation

is the input size jitter. From the input images with varying dimensions, random patches

were cropped out and rescaled such that the longer side is 768 pixels, which makes the

other side in range of 384 to 960, analogous to [3] with a smaller resolution. The

training on CityScapes and Vistas datasets ran for 50 epochs which took 1 day and 3

days, respectively. The starting learning rate was 4 · 10−4 for the untrained upsampling

path and 1·10−4 for the pretrained feature extracting backbone. No learning rate tuning

was performed in any time. An epoch in this part was a simple pass through a training

dataset while updating the model, and a simple pass through the validation dataset

while not updating the model but only evaluating it.

For the second, incremental learning step of the training process, a different ap-

proach is taken. After augmenting the model with another head which is to specifically

predict outliers, the whole model is then trained on a combination of CityScapes, Wild-

Dash and Vistas datasets. In addition to standalone negative images, mixed-content

images are obtained by pasting random ImageNet outliers into random patches within

an inlier image (together with appropriate scaling of course). However, due to the is-

sues related with the training resources and extremely large training time which would

render this thesis indefensible, the resolution was further downsampled by a factor of

2. This type of training took 4-7 days for 10 epochs. The epoch here is a simple pass

of the CityScapes and Vistas datasets together with the ImageNet portion, the one that

has bounding boxes.
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4.2. Pretraining results

The results of the CityScapes- and Vistas-pretraining phase are shown in table 4.1 and

figures fig. 4.4 and fig. 4.1, respectively. The feature extractor weights were pretrained

on an ImageNet classification task and then finetuned for two segmentation tasks by

means of transfer learning.

Dataset batch size resolution Max validation mIoU At epoch

CityScapes 64 W/4 64.28% 50
CityScapes 32 W/4 63.89% 50

CityScapes 32 W/8 63.2% 49

Vistas 32 W/4 60.99% 47
Vistas 64 W/4 60.3% 50

Vistas 32 W/8 59.7% 48

Table 4.1: The table of the experiments performed for the pretraining step. Validation metrics

were performed on the validation sets of the respective datasets, since these models were only

trained for the semantic segmentation. The total of 6 pretraining experiments successfully

finished with varying hyperparameters. The resulting validation mIoU is shown with respect

to the training process parameters. Bolded rows are the best experiments, which are then used

for the incremental learning step.

4.2.1. CityScapes pretraining results

The training metrics progression of the CityScapes experiment is shown in fig. 4.1.

The shape of the curves is quite peculiar, with two distinct performance degradation

of unknown origin in epochs 8 and 24. Nevertheless, the model ends up having more

than 93% pixel accuracy and more than 64% validation mIoU at the end of the training.

Another curiosity is the extent of the bad performance at the beginning of training, at

least in comparison with fig. 4.4. This could indicate that the starting feature extractor

isn’t really well suited for the extraction of features on the CityScapes dataset. Luckily,

the performance at the start improved rapidly.
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Figure 4.1: Training progression while training on the CityScapes dataset. The metrics show

a quite low starting point, but a large raise over 50 epochs. The pixel accuracy (dashed lines) is

at 94.4% in train time (93.5% in validation time), and the mean Intersection-over-Union (solid

lines) is 66.7% in train time (and 64.3% in validation time) at its best, which is in epoch 50.

Small relative differences between training and validation metrics also show the model was not

overfitting and appears to retain the ability to generalize well. However, this training progres-

sion implies that the feature extractor wasn’t particularly good for this dataset, but luckily the

data of the CityScapes dataset itself is easier to learn than the data of Vistas.

Good examples of the CityScapes pretrained model are shown in fig. 4.2. Examples

are row-wise, where the left column is the input image, the middle column is the target

segmentation map, and the right column is the predicted segmentation map. The model

seems to be recognizing the class of the small objects, such as semaphore poles and

distant objects. Model also seems to have an understanding of common scenes, such as

that the light green color (denoting grass vegetation) is often times near a deep purple

color (denoting the road). The model is also very good at recognizing the car class

(dark blue). The model shows signs of a mild overfit in the fourth example, where the

Mercedes sign is confused with a bicycle (deep red).
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Figure 4.2: Hand picked examples of the CityScapes pretraining task, on which the model

performed well. It is worth paying attention to how the model successfully segments tiny

image patches, such as traffic light poles, people and cars in distance and some small vegetation.

Interestingly enough, second and fourth examples were segmented quite well despite the visible

corruptions.1

Bad examples of the CityScapes pretrained model are shown in fig. 4.3. They

mostly reveal the instability of the model’s predictions such as emergence of nonexis-

tent classes (false positives) and the disappearance of existent classes (false negatives).

For example, a gray color (denoting a building) and a blue color (the car) appear in

the middle of the road, which isn’t really physically possible. This is due to the dash-

board’s reflection on the windshield, which interferes with the model’s predictive ca-

pabilities. Other mistakes are the disappearance of the sidewalk (pink color) in the

second example, hallucination of a car in the third example, and a total overlook of

humans (red), which renders such model as dangerous.

1These corruptions aren’t really much of a problem since they originate from a decoding mistake.

The only way to obtained the original image the model saw was to "denormalize" the input tensor with

the RGB mean and variance. However, the original image mean and variance were lost so the dataset

mean and variance were used as a proxy. While generally similar enough, sometimes the decoded values

exited the 0-255 range, which tends to cause these artefacts.
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Figure 4.3: Hand picked examples of the CityScapes pretraining task, on which the model

performed poorly. The model seems to be having problems with the hallucination of nonexis-

tent classes, such as cars and buildings, and disregarding other classes, such as sidewalk and

human. This is, however, mostly due to the interference of reflections (first example), col-

ors(second example) and shadows (third example).
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4.2.2. Vistas pretraining results

The metrics on the Vistas segmentation dataset show a slow and steady rise in per-

formance over 50 epochs. The pixel accuracy (dashed lines) is at 94% in train time

(93% in validation time), and the mean Intersection-over-Union (solid lines) is 62.7%

in train time (and 61% in validation time) at its best, which is ubiquitously in epoch

47. Small relative differences between training and validation metrics show the model

was not overfitting and still retains the ability to generalize well. The starting mIoU

of 40% and the uplift of 20% hint towards the conclusion that the feature extractor is

well suited for this problem, but that the dataset is not particularly easy to learn.
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Figure 4.4: Training progression while training on the Vistas dataset. The results indicate that,

unlike 4.1, the pretrained prior weights extract good enough features in the beginning of the

training. This can be seen from the rather high starting point in the training process with around

40% of mIoU. The best epoch across all metrics was epoch 47 with 93% of validation pixel

accuracy (dashed lines) and 63% of validation mIoU (solid lines). This graph as well shows no

visible signs of overfitting, just like 4.1.

The examples on which the model performs well are shown in fig. 4.5, in which

the model seems to have a considerable understanding of the scene, as it consistently

labels the pixels correctly, even the small image portions, similar to CityScapes model,

with a specially good performance at segmenting other road vehicles such as cars and

trucks. The largest differences seem to be some false negatives on the vegetation class
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at Example 4 and some sidewalk uncertainties at Example 3.

Figure 4.5: Hand picked examples of the Vistas pretraining task, on which the model per-

formed well. Similar to the model pretrained on CityScapes, this model also segments the road

vehicles very well, along with extra fine segmentation of road signs. The only large visible dif-

ferences are the lack of recognition for a sidewalk in the Example 3 and some false negatives

in the vegetation in Example 4. Note that the decoding artifacts appeared once again (e.g. the

sun in Example 3) yet they proved not to be a challenge to the model.

Bad examples of the Vistas pretraining tasks are shown in fig. 4.6. Although the

results superficially look good enough, closer look reveals serious drawbacks. For

instance, the model mistook the bicycle bell and the handlebar for a car. Then, in

Example 3, the model completely confused the tramway with a truck. The worst of

all is a complete disregard of people in the Example 4, together with loss of the de-

tails, which is in contrast with the capabilities shown fig. 4.5. All in all, the resulting

model has some degree of scene understanding but, just like the resulting model from

the CityScapes pretraining task, lacks prediction stability and does not concentrate on

details enough.
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Figure 4.6: Hand picked examples of the Vistas pretraining task, on which the model per-

formed poorly. The same model as in fig. 4.5 exhibits unwanted behaviors, such as not rec-

ognizing people at Example 4, disregarding all the small details across all the examples, hav-

ing trouble discerning the road from the sidewalk, and total misclassification of the incoming

tramway (dark cyan) for a truck (grayish blue).

4.3. Two head model results

Base model batch size resolution Max validation mIoU At epoch

CityScapes @ 50 64 W/8 65.15% 10
Vistas @ 47 64 W/8 65.31% 10

Table 4.2: The table of the experiments performed for the two head step. Due to the hardware

constraints, only two experiments finished successfully in reasonable time. Another conse-

quence is the reduced input image resolution from W/4 to W/8. The "@" sign denotes the

epoch from the pretraining task from which the model was taken.

4.3.1. CityScapes

The results of the two head model pretrained on CityScapes are shown in fig. 4.7.

After only 10 epochs the mIoU jumped for more than 15 points, and already high pixel
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accuracy of 90.67% climbed further up to 93.69%. The model seems to be performing

quite well as the validation curve is almost indiscernible from the training curve. This

points to the hypothesis that this incremental learning pipeline could be really potent.
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Figure 4.7: The progress of the second phase of incremental learning of the model pretrained

on CityScapes. The models gets a boost of more than 15 points of mIoU in 10 epochs, resulting

with 65.15%. The validation curve closely follows the training curve which is indicative of a

potent model.

Some good examples are shown in fig. 4.8. The behavior of the model after incre-

mentally training it on the ImageNet seems similar to the behavior before (the details,

the road vehicle segmentation quality), with an emphasis on a correct and well behaved

segmentation of a jaywalking person, which is of utmost importance in real life.
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Figure 4.8: Hand picked examples of the two head model pretrained on CityScapes, on which

the model performed well. The model continues to show great performance at segmenting road

vehicles and picking up small details of traffic lights. However, it shows increased mistakes in

detecting the vegetation class.

However, bad examples in fig. 4.9 show a peculiar degradation of performance. The

number of false positives and negatives skyrocketed. It seems that the introduction of

a different dataset for the incremental learning step confused the model completely,

which now sees buildings (gray) and sidewalks (pink) all over the image, even in areas

they do not usually appear. The most disturbing is the apparent loss of the model’s

ability to identify people (red), which are now predicted only sporadically.
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Figure 4.9: Hand picked examples of the two head model pretrained on CityScapes, on which

the model performed poorly. In contrast with what this model presented earlier, it seems that it

had some its knowledge destroyed, especially the vegetation recognition and human recogni-

tion, together with a severely degraded sidewalk prediction performance.

This degradation of performance after introducing outlier images indicates that the

features the model had learned weren’t, in fact, expressive enough. One could say the

model learned to extract the wrong features, in the sense that the recognition of the

strongest signal in the CityScapes dataset does not generalize well to other types. The

model trained on the Vistas, as it’ll be shown next, has it marginally better.

4.3.2. Vistas

The results of the two head model pretrained on Vistas are show in fig. 4.10. Curiously

enough, the plot itself looks a lot like the plot fig. 4.7, with only slight deviations. The

origin of the similarity is uncertain. Nevertheless, this mIoU also jumped for more

than 15 points to just over 65%, and the pixel accuracy obtained high 93.66%, both on

the validation set.
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Figure 4.10: The progress of the second phase of incremental learning of the model pretrained

on Vistas. Uncannily, this experiment progressed almost identically to the experiment with the

model pretrained on CityScapes as shown on fig. 4.7. This model, too, gets a boost of more

than 15 points of mIoU in 10 epochs, resulting with 65.31%.

Some example images on which the model performed well can be seen in figure

fig. 4.11. The model shows more stable outputs and similar performance on small

image patches in comparison with both the base model pretrained on Vistas, and the

two-head model pretrained on CityScapes. Once again, the model does a great job

segmenting the road vehicles and road signs, and slightly worse job segmenting the

vegetation.
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Figure 4.11: Hand picked examples of the two head model pretrained on Vistas, on which the

model performed well. The model shows a competence in segmenting cars, traffic lights and

building. A cute false positive appears in Example 1 in which the clouds are confused with

buildings.

Bad examples are shown in fig. 4.12. Similarly to all the other models, there is

some detail losing and prediction instability, especially with the vegetation class. How-

ever, after a closer look it can be asserted that these images are actually not that easy

to recognized in the first place. The center right tree in Example 1 image isn’t really

obvious, and some humans (including the author) would’ve said that the label is wrong

before a careful look at the image at the original resolution. Together with that, the

people in the Example 4 image are not obvious at first due to the shadow, and the

model reasonably predicted a building class (gray) for that image patch. Example 2

predictions are quite messy, though, and one possible explanation is that the image has

more color contrast than other images, which confuses the model. Other predictions

show the model does a good job at grouping semantically connected pixels. An in-

teresting phenomenon is exhibited in the Example 3, where a car’s reflection on the

hood of the car with the dahsboard camera is segmented as a car (dark blue). While it’s

technically incorrect to label reflections of objects as the object’s class, it does show a

model has a somewhat generalization ability.
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Figure 4.12: Hand picked examples of the two head model pretrained on Vistas, on which the

model performed poorly. These prediction maps are, at first, riddled with false positives and

negatives, however a closer look explains some of the model’s decisions. For example, the

missing people in the Example 4 are sort of hard to detect, just like the bicycles on the right. In

the Example 1, the model should have predicted a vegetation, however the branches are hardly

visible, while the building far away is quite visible. Example 2 seems challenging on its own

solely due to strong color differences in the image, which trick the model. The author can not

find an explanation for the sidewalk in the middle of the tree in Example 1, though. On the

other hand, a cute phenomenon is exhibited in the Example 3, where a car’s reflection on the

hood of the car with the dashboard camera is segmented as a car (dark blue).

All in all, the two head model pretrained on the Vistas dataset shows a modest

improvement in comparison with the two head model pretrained on the CityScapes

dataset, which is most easily seen in the prediction stability. This points to the conclu-

sion that the diversity of the Vistas dataset is actually useful for this task, allowing the

feature extractor to learn better features which are well suited for the diversity of the

ImageNet dataset.

However, these segmentation results, while important, are actually of a second

importance in this thesis. The most important results are on the detection of outliers in

the images, which will be shown in the upcoming section.
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4.4. OOD results

4.4.1. Quantitative comparison of the models

In the table 4.3 there are 2 measurements of the average precision for the two mod-

els trained for the outlier detection. The evaluation was performed on the entire

Fishyscapes lost and found dataset [4], since the model never saw them, and two syn-

tetic datasets: WD-LSUN and WD-Pascal. They are synthetised by pasting the outliers

(such as animals from Pascal, or random objects from LSUN) to the inliers of Wild-

Dash. It seems that the two head model pretrained on Vistas does significantly better

than the two head model pretrained in CityScapes. One possible explanation for that

is that the variety of the Vistas dataset helps the model to generalize and allows it to

detect more inliers, while the specificity of the CityScapes dataset allows the model

to overfit to it, hindering the ability for the model to recognize when something is an

inlier.

Model AP @ FSLF AP @ WD-LSUN AP @ WD-Pascal

TwoHead CityScapes @ 50 22.91% 21.47% 48.02%

TwoHead Vistas @ 47 24.15% 22.42% 49.06%

Table 4.3: The table of results of models evaluation on the Fishyscapes Lost and Found (FSLF),

WildDash-LSUN combination (WD-LSUN) and WildDash-Pascal combination (WD-Pascal).

WD-LSUN and WD-Pascal are both created in the same way: the outliers of LSUN and Pascal,

respectively, are pasted into the inliers of WildDash. The model pretrained on Vistas seem so

perform better than the model pretrained on CityScapes. These numbers inform that the second

model is, on average, less eager to label inlier pixels as outliers. This can be explained by the

Vistas’ more diverse images. Note that the base models cannot be compared for an OOD

detection as they weren’t, in fact, even trained for that.

In the following images, the examples are row wise, such that the first column

was the input image and the second column is the output outlier prediction, where the

predicted outlier pixel is denoted with the white color, and the predicted inlier pixel

is denoted with the black color. The targets mappings aren’t shown as the reader is

presumed to be perfectly capable of figuring the outliers out.
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4.4.2. CityScapes

The predictions of the out-of-distribution head are shown in fig. 4.13. The model seems

to be quite good at detecting the outliers, such as Example 1 & 2, but it sometimes it

wrongly labels some inliers as outliers, for instance the reflections in Example 3 and

the back of a truck in Example 4. It is possible that the model is slightly overfit to the

geometry of the pasted outliers, as the back of a truck resembles axis aligned box, just

as all the pasted images. A future work may include pasting geometrically transformed

images as well, such as rotated and perspective-warped images.

Figure 4.13: The predicted outlier maps of the model pretrained on CityScapes. The model

is quite certain about the outliers but tends to produce false positives on the inliers, especially

if the pixels are a part of an axis aligned rectangle, just like the pasted outliers. One possible

solution is to paste geometrically transformed images.
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The bad predictions of the model pretrained on CityScapes are in fig. 4.14. Similar-

ity to the fig. 4.13, all the outliers are correctly labeled as outliers, however the number

of false positives skyrocketed. A quick glance doesn’t reveal any connection between

the outlier label and the original image part, except that the outliers tend to follow the

geometry in the images.

Figure 4.14: The poorly predicted outlier maps of the model pretrained on CityScapes. Just as

in fig. 4.13, the true outliers are detected correctly and never missed, but the inliers are heavily

misclassfied as outliers.

4.4.3. Vistas

The predictions of the out-of-distribution head are shown in fig. 4.15. The model does

a good job segmenting the outliers, such as the entire Example 1, and obvious parts
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of Examples 2 & 3. However, the model tends to produce quite a few false positives,

labeling inlier pixels as outliers, such as a road sign and the dashboard in Example

2 and a traffic column in Example 4. The results are obtained by using the default

decision threshold of 0.5, but some other decision threshold could in fact improve the

performance.
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Figure 4.15: The well predicted outlier maps of the model pretrained on Vistas. The model is

quite certain about the outliers but tends to produce false positives on the inliers. The possible

solution is to increase the decision threshold.

Bad predictions of the outliers of the model pretrained on Vistas are in the figure

fig. 4.16. Once again, the outliers are predicted with no or small error, but the false

positives count is too high. The situation seems marginally better than of the model
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pretrained on CityScapes, as the outliers now follow the image geometry more (mean-

ing the shapes in the input image and output map resemble each other). Still, that’s not

enough to conclude what in the input pixels pushed the model to label them as outliers.

One solution is to train the models for longer than 10 epochs, which could shift the

other activations towards inliers.

Figure 4.16: The poorly predicted outlier maps of the model pretrained on Vistas. While the

performance seems slightly better than the CityScapes-pretrained model, at least in terms of

label accuracy, there are still significantly more outliers falsely labeled in these images. A

possible solution is to just train for more epochs.
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5. Conclusion

The results of the experiments provided enough data for some conclusions to be made.

First and foremost, it is possible to apply incremental learning for the task of seman-

tic segmentation of the dashboard camera video feeds. However, once again it’s been

proved that the data the model is trained on is of utmost importance. CityScapes dataset

is less diverse than the Vistas dataset, so, naturally, the model didn’t have the opportu-

nity to "prepare" for the upcoming task of outlier detection. Since the images weren’t

augmented in any way, future work may include experimenting with augmentations of

images (some color augmentations, e.g. color jitter or JPEG compression simulation)

or image/target semantic map pairs (some geometric augmentations, e.g. perspective

transformations and warps).

Due to the insufficient resources, two head experiments were performed on a sub-

sampled resolution in comparison with the pretraining task. This tends to, and did,

hurt the performance of the semantic segmentation head, but not as much. The outlier

detection head detects the outliers well, which indicates that the outlier detection on

the extracted features is an easy problem. To confirm this hypothesis, the same set of

experiments should be performed at a full resolution to notice if there is any significant

improvement in the model performance.

And while the outlier detection head rarely misclassifies the outlier pixels as inliers,

it does seem eager to unnecessary label pixels as outliers. In future, this may improve

with data augmentations, larger resolution and longer training times, but a threshold

tuning might be needed.
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6. Summary

The goal of this thesis was to successfully train a deep learning system which will

segment the dashboard camera feed in real time, but also provide an estimate of its

uncertainty. This was attempted by using incremental learning. Incremental learning

is a technique of training deep learning algorithms in which the model is prepared for

the final task in phases. It is a form of transfer learning, in which the model trained

for one task is used for another task, with the belief that such model is a good starting

point for the task at hand.

After an overview of the semantic segmentation field and obsolete methods, deep

learning concepts are introduced, and several of the most important datasets are de-

scribed. Next, the core method and its building blocks are described in detail, following

a precise description of the experiments to be performed. Next, described experiments

are reviewed, first quantitatively, in terms of training progressions and maximal met-

rics, and then qualitatively, by showing hand picked examples of good and bad model

performance and their analysis. Afterwards, the same qualitative analysis is done for

the outlier maps, with the addition of proposing solutions.
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Incremental open-set recognition for semantic segmentation

Abstract

Semantic segmentation is an important task of computer vision with many interest-

ing applications. Currently, the state of the art in the field is achieved by discriminative

convolutional models. Unfortunately, discriminative models are prone to unwarranted

optimism. Consequently, outliers are often misclassified with very small uncertainty.

This thesis attempts to solve the problem by incremental learning with respect to a

noisy negative set that approximates distribution of the entire visual world.

Keywords: Image segmentation, open set, out of distribution, incremental learning,

deep learning

Inkrementalno učenje semantičke segmentacije nad otvorenim skupom razreda

Sažetak

Semantička segmentacija slika važan je zadatak računalnog vida s mnogim zan-

imljivim primjenama. U posljednje vrijeme najbolji rezultati u tom području postižu

se diskriminativnim konvolucijskim modelima. Med̄utim, diskriminativni modeli su

skloni neopravdanom optimizmu, što znači da primjerci izvan domene ekspertize mod-

ela često bivaju neispravno klasificirani s vrlo malom nesigurnošću. Ovaj rad proučava

mogućnost rješavanja tog problema diskriminativnim učenjem s obzirom na šumoviti

negativni skup koji aproksimira distribuciju cjelokupnog vizualnog svijeta.

Ključne riječi: Segmentacija slike, otvoreni skup, izvandistribucijski primjeri, inkre-

mentalno učenje, duboko učenje
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