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1. Introduction

In the recent years, deep convolutional networks and deep learning methods have be-

come increasingly popular for tackling a wide variety of problems. As the demand for

different types of data used for training deep convolutional models is continuously on

the rise, significant efforts are being put into methods that would allow us to gener-

ate completely new, synthetic data from pre-existing data. One particularly interesting

method is image-to-image translation which aims to take images from one domain and

translate them so they have the characteristics of another domain whilst retaining the

contents of the original images.

The thesis will cover Contrastive Unpaired Image-to-Image Translation [20], a

successor to the CycleGAN [26] method from 2017. This new method harnesses the

use of generative adversarial networks [5] while both improving on training speed and

accuracy on certain problems in comparison to other baseline methods (e.g. CycleGAN

[26], MUNIT [9], DRIT [16], DistanceGAN and SelfDistance [1], and GCGAN [4]).

Generative adversarial networks [5] have proven to be especially useful in the domain

of unsupervised learning i.e. when the data used to train the model is not labeled, which

is the exact case in this kind of scenario.

The implementation details of this particular approach and what differentiates it

from its predecessors will be discussed in more detail in the upcoming chapters. The

basics of deep learning and neural networks are covered in chapter 3. In chapter 4

Contrastive Unpaired Image-to-Image Translation [20] is explained with the chapter 5

showing different experiments and results with proposed modifications to the existing

models.
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2. Related Work

Generative models. Ever increasing demand for data has lead to various methods for

synthetic data generation. Most popular such models that have shown the best results

are Generative Adversarial Networks (GANs) [5], Variational Autoencoders (VAEs)

[14, 24] and, more recently, models based on normalizing flows [15, 23]. This thesis

will be focusing on Generative Adversarial models with a specific approach to achiev-

ing image-to-image translation.

Image-To-Image Translation. A lot of recently developed models have focused on

image-to-image translation, i.e. to learn the mapping between an input and an output

image in a way that the content of the original input image is preserved while char-

acteristics of output image are applied. This includes CycleGAN [26], pix2pix [10],

MUNIT [9], DRIT [16], DistanceGAN and SelfDistance [1], GCGAN [4], etc. More

detailed comparisons and explanations of different implementations available to date

can be found in Image-to-Image Translation: Methods and Applications [19].

Contrastive Learning. For quite some time cross-entropy loss was the main loss func-

tion, especially in the supervised setting. However, recently a new type of loss known

as contrastive loss has lead to state of the art performance both in supervised [12] and

unsupervised [2] settings. This type of loss allows the model to learn an embedding

where associated signals (in our case patches of an image) are brought together while

signals that are not associated to each other are pushed further apart in the embedding

space1.

1a relatively low-dimensional space into which high-dimensional vectors are translated
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3. Brief introduction to Deep Learning

3.1. Deep Learning

Deep learning is a branch of machine learning mainly focused on utilizing algorithms

named artificial neural networks as they were inspired by the functioning of human

brain. The term "deep" stems from the architectural nature of these networks as input

is passed through multiple layers before reaching the output layer. Deep neural net-

works have applications in many fields such as natural language processing, speech

recognition, computer vision, bioinformatics, etc. This thesis will be focusing on their

application in computer vision.

3.2. Artificial Neural Network (ANN)

Artificial Neural Network (ANN) is an artificial intelligence algorithm which vaguely

resembles the functioning of human brain and its neurons.

The neural network consists of an input and an output layer with an arbitrary num-

ber of interconnected hidden layers in-between. Each hidden layer contains neurons

connected to the neurons of the previous and the following layer with each connec-

tion containing its own weight wl
ij (Figure 3.1). Before the outputs of one layer are

passed to another an activation function (e.g. Sigmoid, ReLU, tanh, etc.) is usually

applied which introduces non-linearity to the outputs. This is done in order to enable

the network to learn and perform more complex tasks.

During a forward pass, which results in a prediction, an input vector x is passed

through the network and by performing series of linear and non-linear transformations

an output is calculated (Equation 3.4).

xT = [x1, x2, x3, . . . xn] (3.1)
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y0 = x (3.2)

Wl =









w11 · · · w1n

...
. . .

...

wn1 · · · wnn









(3.3)

yl = σ(Wl · xl−1) (3.4)

Figure 3.1: Simplified scheme of an Artificial Neural Network (ANN) containing 2 hidden,

fully connected1 layers, each comprised of 3 neurons.

3.2.1. Training process

In order to train the neural network we define a loss (cost) function L(ytrue, ypred) which

tells us how far the predicted (output) value is from the true value that the network is

expected to output. During the training our goal is to minimize the loss function. This

is done by adjusting the weights of each layer through a process called backpropaga-

tion.

Each forward pass computes an output used to calculate the loss. Having obtained

the loss, gradient of the loss function (partial derivatives with respect to each of the

1a type of layer in which the neurons from each layer are connected to all the neurons in the following

layer
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weights) is calculated. This tells us how much each of the weights contributes to the

total error. Hereafter, we perform backpropagation by moving backwards, layer by

layer, through the network and adjusting each weight accordingly depending on the

value of its partial derivative.

3.2.2. Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a type of neural network that utilizes con-

volutional and pooling layers.

Convolutional layer is the key component of a CNN. They contain filters (kernels)

with adjustable and learnable parameters. The filter convolves over the input produc-

ing a feature map as an output (Figure 3.3).

Pooling layer contains a window similar to a convolution filter that moves over the

input and produces an output by applying a specified operation (e.g. max pooling, av-

erage, etc.) on sections of an input (Figure 3.2). The goal of such layers is to reduce

the dimensionality of an input without losing too much information.

Figure 3.2: Example of a max pool operation on a 4 × 4 input with a filter size 2 × 2 and a

stride (2, 2). The filter moves over the input in steps of 2, both horizontally and vertically, and

outputs the maximum of each section.
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(a) Convolution output computation example. A set of dot products between each section and the kernel

is calculated producing a feature map which is passed as an output. Source: [6]

(b) An example of a 4× 4 kernel convolving over a 6× 6 input padded with a 1× 1 border. Source: [3]

Figure 3.3: Visual representation of a convolution.
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3.2.3. Residual Neural Network (ResNet)

Residual Neural Network (ResNet) [7] is a neural network containing skip connec-

tions between nonadjacent hidden layers allowing us to train a deeper network. The

skip connections (Figure 3.4) are added to mitigate the vanishing gradient problem2

which often occurs in very deep models and can prevent the network from progressing

further during its training.

Figure 3.4: Skip connection in Residual Neural Network (ResNet). The input x is passed

through a set of transformations, i.e. weight layers, to produce the output. However, before

applying the activation function and passing the output to the next layer, the previous input is

added. The identity mapping ensures that the dimensions of the output and the previous input

are matching.

3.2.4. Generative Adversarial Network (GAN)

Generative Adversarial Network (GAN) [5] is a neural network model based on

adversarial process in which two networks are trained simultaneously.

The model consists of a generative network G and discriminative network D. Dur-

ing the training G is trying to maximize the probability of D making a mistake. More

intuitively, these two networks play a zero-sum minmax two-player game where gener-

ator G is trying to "fool" the discriminator D while discriminator D has to tell whether

the evaluated data sample is real or synthesized. By repeating this process both the

generator G and the discriminator D get better, one at generating synthesized data and

the other at telling which input data is real and which is fake, respectively. Ideally,

2a problem which occurs when the gradients of a loss function approach zero
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Figure 3.5: Structure of a Generative Adversarial Network (GAN).

we want to reach a point where generated data, in our case images, looks deceptively

convincing.

Unlike many other neural network models, where loss is very informative during

the training and can reveal whether the training has converged or not, GANs require

the use of alternative indicators such as IS (Inception Score) [21] and FID (Fréchet

inception distance) [8] as the loss function tends to oscillate quite significantly during

the training process (Figure 3.6).
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Figure 3.6: An example of oscillating loss function during the training of a GAN based CUT

model.

3.3. PyTorch

PyTorch is an open source framework built for Python and primarily used for deep

learning purposes. It enables straightforward creation of different deep neural model

architectures.

A tensor is a fundamental unit of data used in deep learning. Therefore, PyTorch is op-

timized to leverage the capabilities of GPU in order to accelerate operations performed

on tensors.

Another important feature of PyTorch is AutoGrad which gives it an ability to au-

tomatically compute a derivative of any expression. This significantly simplifies the

process of backpropagation. By simply invoking backward() method, a backward pass

is applied during which gradients are computed. The weights of the network are then

adjusted by invoking the step() method.

The framework also has the ability to interoperate with NumPy which further expands

its capabilities.
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4. Contrastive Learning for Unpaired

Image-to-Image Translation

Image-to-image translation aims to take images from one domain and translate them

in such way that they adopt the style or certain characteristics of images from another

domain while simultaneously preserving the contents of the original image. This can

also be viewed as a disentanglement problem where the goal is to separate the content,

which has to be preserved, from the appearance which is supposed to change.

An example of a successful translation can be seen in the Figure 4.1 where the

network was trained using photographs of Parisian streets that represented the input

domain and a set of images showing canals of Burano as the output domain.

The upcoming chapters CUT will review a model for performing image-to-image

translation, including both its architectural details as well as the approach it takes to

overcome the challenges of translation.

Figure 4.1: Example of Image-to-Image Translation achieved by the CUT model [20] -

Parisian streets translated to depict the canals of Burano in Venice. Source: [20]
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4.1. Contrastive Unpaired Translation

Contrastive Unpaired Translation (CUT) [20] is a newly proposed method for image-

to-image translation and a direct successor to the well known CycleGAN [26]. How-

ever this method is a lighter and faster version meaning it requires less time to train

while using less GPU memory in comparison to the CycleGAN.

However, instead of relying on cycle-consistency [26] to preserve the content, this

method uses a new approach based on maximizing the mutual information between

corresponding input and output patches. This approach both improves on the qual-

ity of the outputted image as well as the training times. The reason for this kind of

approach is that the cycle-consistency [26] assumes the relationship between two do-

mains is a bijection which often represents a problem as it is too restrictive. This is due

to the fact that a perfect reconstruction, i.e. translation to the target domain and back

to the original domain, is hard to achieve. Another significant benefit of this method is

the ability to train and perform translations when both the source and output domains

are only a single image. For example, given a realistic image as the input domain and

a piece of art as the output domain, we are able to perform translation in such way that

the realistic image preserves its original content while appearing as if it was created by

the same artist that created a piece of art.

4.2. Methods

Given a dataset of unpaired instances X = {x ∈ X }, Y = {y ∈ Y}, our goal is to trans-

late the images from the input domain X ⊂ R
H×W×C to appear like images from the

output domain Y ⊂ R
H×W×3 while preserving content of the input domain.

Since this method avoids using inverse auxiliary generators and discriminators, the

training procedure is significantly simplified, thus reducing the training times. The

generator function G consists of two components, an encoder Genc followed by a de-

coder Gdec which together produce the output image ŷ = G(x) = Gdec(Genc(x)).

In order to encourage the output to be visually as close as possible to the images con-

tained in the target domain, adversarial loss [5] is used:

LGAN(G,D,X, Y ) = Ey∼Y log(D(y)) + Ex∼X log(1−D(G(x))). (4.1)

Mutual information maximization is achieved by using a noise contrastive estima-

tion [25] and learning an embedding such that we closely associate a "query" and its

"positive" while disassociating the "query" from other points in the dataset referred
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to as "negatives". The query, positive and N negatives are mapped to K-dimensional

vectors υ,υ+ ∈ R
K and υ

− ∈ R
N×K (υ−

n ∈ R
K represents the n-th negative), re-

spectively. Thereafter the vectors are normalized onto a unit sphere which prevents the

space from collapsing or expanding. Afterwards an (N+1)-way classification problem

is set up. The distances between the query and other examples (the positive and nega-

tives) are scaled by a temperature τ = 0.07 and passed as logits. The loss function is

then calculated, which is represented as cross-entropy loss in the original CUT model

[20].

ℓ(υ, υ+
, υ

−) = − log

[

exp(υ · υ+/τ)

exp(υ · υ+/τ) +
∑N

n=1 exp(υ · υ−
n /τ)

]

. (4.2)

Later in chapter 5, the use of focal loss [17] is proposed as an improvement over the

classic cross-entropy loss as it shows performance increase in the scenarios where the

datasets are unbalanced.

The ultimate goal is to form association between the input and output data. The query

refers to output whereas the positives and negatives are the corresponding and noncor-

responding input.

It is important to notice that not only do we want whole images to share content but

also the corresponding patches within the image. For instance, in the Horse→Zebra1

example we should clearly be able to associate the specific body parts of a zebra to the

specific body parts of an input horse more than to the other patches of the input image,

e.g. a leg of a zebra should be more closely associated to the corresponding leg of a

horse than to the other parts of its body. Moreover, colors of a zebra’s body (black and

white) are strongly associable to the color of a horse body rather than the background.

Same analogy can be applied in the case of Satellite→Maps problem covered in chap-

ter 5. Suppose we have a satellite image of an urban environment, after the translation

is performed one should clearly be able to associate the streets seen in the satellite

imagery with the streets visible in the maps representation, while disassociating them

from other parts e.g. bodies of water, green surfaces, etc.

In order to enable achieving this type of correspondence a multi-layer, patch-based ob-

jective is set.

Role of the encoder Genc is to perform the image translation meaning its feature stack

1The dataset consists of a test set containing 120 horse and 140 zebra images, and a train set con-

taining 1067 horse images and 1334 zebra images, respectively. Both datasets are unpaired. Resolution

of each image is 256× 256.
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Figure 4.2: Visual representation of Patchwise Contrastive Loss. Images x and ŷ are encoded

into feature tensors. A query patch is sampled from the output ŷ and compared to a patch

(positive) from the input x at the corresponding location. By sampling additional N negatives

at different locations in the input we form an (N+1)-way classification problem. The encoder

part of the network Genc is reused and a two-layer MLP network is added. We use the MLP

to produce feature stacks by passing feature maps of layers through it. This procedure projects

both the input and the output into a shared embedding space. Source: [20]

is at our disposal and we can make use of it. The feature stack contains layers and

spatial locations representing patches of the input image, where deeper layers corre-

spond to larger patches. L layers of interest are selected and their feature maps are

passed through a two-layer MLP (Multilayer Perceptron) network Hl. This proce-

dure produces a stack of features {zl}L = {Hl(G
l
enc(x))}L, where Gl

enc represents

the output of l-th chosen layer. Layers are then indexed into l ∈ {1, 2, ..., L} and

s ∈ {1, ..., Sl} is denoted, where s represents a spatial location and Sl represents

the number of spatial locations in each of the layers. Corresponding feature is re-

ferred to as zsl ∈ R
Cl while z

S\s
l ∈ R

(Sl−1)×Cl represents the rest of the features,

where Cl is the number of channels at each layer. The output image ŷ is encoded into

{ẑl}L = {Hl(G
l
enc(Gdec(Genc(x))))}L in a similar manner.

Ultimately, our goal is to match corresponding input-output patches at a specific lo-

cation. Other patches from within the input image are leveraged as negatives. As

previously mentioned, we are aiming to achieve shared content not only between the

images as a whole but also the corresponding patches within the image. To achieve

this we use PatchNCE [20] loss:

13



LPatchNCE(G,H,X) = Ex∼X

L
∑

l=1

Sl
∑

s=1

ℓ(ẑs
l , z

s
l , z

S\s
l ). (4.3)

By utilizing all the above mentioned, using Equation 4.1 and Equation 4.3, we form

the following loss function:

L(G,D,X, Y ) + λXLPatchNCE(G,H,X) + λYLPatchNCE(G,H, Y ). (4.4)

In addition to applying PatchNCE loss on images from domain X we also apply it on

images from domain Y (referred to as identity loss) when using Contrastive Unpaired

Translation (CUT) model where λX = λY = 1. This is done in order to prevent the

generator from making unnecessary changes - we calculate PatchNCE loss between

a translated image and a real image taken from the target domain dataset. A lighter

and faster method called FastCUT is also provided in which case λX = 10 in order

to compensate for absence of the regularizer, i.e. for λY = 0. In the experimental

phase we show that although the model is faster and lighter to train, the absence of

the regularizer can result in significant oscillations in model’s performance during the

training and potentially cause it to achieve subpar final results. FastCUT is designed

for usage when time to train is restricted or GPU memory limitations are present as it

can achieve satisfactory results similar to CycleGAN [26], while requiring significantly

less memory and time to train.

14



5. Experiments & results

First section of this chapter covers the experiments and results done on sat2map [26]

dataset and compares them to performance results of a pre-trained CycleGAN [26]

model. Later on we move onto experiments done in a single image translation setting

which are particularly interesting in situations when the available data is limited or, for

instance, we want to apply a certain artistic style to a realistic image and vice versa.

5.1. CUT & FastCUT

5.1.1. Training details

This section covers the performance of CUT and FastCUT models with different losses

against CycleGAN on sat2map dataset.

Sat2map dataset contains test, train and validation sets each containing 1098, 1096,

and 1098 images, respectively. The dimensions of images are 600 × 600 with each

image containing its representation in both domains, i.e. in input domain A and output

domain B. Although the images in the dataset are inherently paired, we preserve the

nature of the unpaired approach as the images are not taken in corresponding pairs, i.e.

the source and target datasets are unaligned, during the training process. Domain A

consists of various satellite images, predominantly those containing dense urban areas,

while domain B contains corresponding representations in the style of street maps.

In order to evaluate the quality of generated images we use Fréchet Inception Dis-

tance (FID) [22, 8] metric:

FID = ‖µX − µY ‖
2 + tr

(

ΣX + ΣY − 2
√

(ΣXΣY )
)

. (5.1)

In short, what this method does is empirically estimates the distribution of real and

generated images in a deep network space and computes the divergence between them.

Ideally, we want to have the lowest possible FID score, which indicates that the gener-

ated images are convincing.

15



The initial CUT model includes ResNet-based generator [11] with 9 residual blocks,

PatchGAN discriminator [10], Least SquareGAN loss [18], batch size of 1 and Adam

optimizer [13] with learning rate of 0.0002 - this is in-line with the original settings

provided in Contrastive Learning for Unpaired Image-to-Image Translation [20] pa-

per. The reason we choose such parameters is to be as close as possible to CycleGAN

[26]. The only difference is is that the ℓ1 cycle-consistency loss1 ([26]) is replaced with

contrastive loss [20].

As previously mentioned, in section 4.2 for CUT model we use λX = λY = 1 whereas

for FastCUT λX = 10 and λY = 0 is used in the loss function (Equation 4.4).

Each CUT experiment is trained up to 400 epochs, where during first 200 epochs the

learning rate is kept constant and throughout the last 200 epochs it gradually decays to

0. Moreover, FastCUT model is trained up to 200 epochs with first 150 epochs keeping

a constant learning rate of 0.0002 and last 50 decaying it at a constant rate. Addition-

ally, flip-equivariance augmentation is applied when training FastCUT as described

in the original paper [20]. For calculating PatchNCE loss we extract features from 5

different layers of the Genc. Namely, RGB pixels, the first and second downsampling

convolution as well as the first and the fifth residual block. These layers correspond to

receptive fields of sizes 1 × 1, 9 × 9, 15 × 15, 35 × 35 and 99 × 99. For each layer’s

features, a 2-layer MLP is applied onto 256 randomly sampled locations in order to

acquire 256-dim final features.

1forward cycle-consistency loss: x → G(x) → F (G(x)) ≈ x

backward cycle-consistency loss: y → F (y) → G(F (y)) ≈ y

16



5.1.2. Experiments

For the first experiment we train the CUT model without any modifications using

methodology explained above, we will refer to it as CUT - CE. While this model al-

ready surpasses the performance of CycleGAN [26] by ∼5% in terms of FID score

(Table 5.1) and is quite good at translating satellite imagery containing exclusively ur-

ban environments (Figure 5.3), severe artifacts and completely incorrect translations

can be seen in some edge cases, e.g. in images that contain bodies of water or green

surfaces (Figure 5.4).

This is most likely caused by the imbalance of the dataset as it contains a plethora of

images containing urban environments while it lacks satellite imagery of green sur-

faces, bodies of water and other similar edge cases that cause problems in translation.

Method FID ↓ sec/iter ↓ Mem(GiB) ↓

CycleGAN 99.28 0.33 9.48

CUT - CE 94.48 0.3 3.39

CUT - Focal (γ = 2, α = 0.25) 91.44 0.3 3.39

CUT - Focal (γ = 3, α = 0.5) 93.24 0.3 3.39

FastCUT - CE 136.98 0.19 2.34

FastCUT - Focal (γ = 2, α = 0.25) 102.41 0.19 2.34

Table 5.1: Comparison of different methods used on sat2map dataset. FID is calculated

using fid-pytorch library [22]. It is calculated between domain B test dataset in sat2map and

500 generated images using a trained model. Testing was done using an NVIDIA Tesla P100

using Google Colab platform.
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In order to alleviate this issue we introduce focal loss [17] (Figure 5.1):

FL(pt) = −α(1− pt)
γ log(pt) (5.2)

This is done by replacing previously used cross-entropy loss within the PatchNCE loss

while keeping other specified training parameters.

Focal loss allows us to penalize difficult, misclassified examples while significantly

reducing the loss for well classified examples. Intuitively, this will allow our model to

focus on edge case scenarios and adjust accordingly to increase its overall performance

while making minimal changes in the scenarios where its performance is already good.

Figure 5.1: Visual representation of focal loss [17] depending on different values of γ. Focal

loss with γ = 0 is a cross-entropy loss. Source: [17]

We proceed to train the model using focal loss with γ = 2 and α = 0.25 and achieve

additional ∼3% boost in FID score compared to regular cross-entropy model, bring-

ing the total performance increase compared to CycleGAN up to ∼8%. An additional

model is trained with γ = 3 and α = 0.5, and, while it still outperforms CycleGAN and

CUT - CE, it fails to outperform the initial configuration using γ = 2 and α = 0.25.

It is clearly visible in Table 5.1 that all the tested CUT models use significantly less

memory (almost 3× less) than CycleGAN, train faster and simultaneously manage to

outperform CycleGAN’s FID scores.
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Figure 5.2: FID scores of FastCUT variants on test set each 5 epochs throughout 200 epochs.

While the performance of both models oscillates due to the missing identity loss, version using

focal loss converges faster reaching a lower final FID score.

Furthermore, same experiment is done on the FastCUT model. First its trained using

Cross-Entropy loss (denoted as FastCUT - CE), and afterwards using focal loss. As

shown in Table 5.1 focal loss version significantly outperforms cross-entropy version

and even comes close to CycleGAN in terms of FID, all while consuming over 4× less

memory and taking ∼40% less time per iteration which brings down the total training

time from ∼37 hours to just ∼11 hours.

19



Figure 5.3: Example of a successful Satellite → Map translation achieved by CUT - CE

model (Target domain (domain B) is represented by the image labeled real_B while the image

labeled real_A represents the source domain (domain A). The result of translation is shown in

the middle image labeled fake_B)
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Figure 5.4: Example of satellite → map edge case translation achieved by CUT - CE model

where the output is severely artifacted. (Target domain (domain B) is represented by the image

labeled real_B while the image labeled real_A represents the source domain (domain A). The

result of translation is shown in the middle image labeled fake_B)
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5.2. SinCUT

In this section we will cover conducted experiments in the scenario when both A and

B domain are a single, high-res image using SinCUT model. The experiments are con-

ducted using two completely different styles of photos as a target domain. Namely,

one drawing is a photorealistic sketch while the other is a more complex and abstract

piece of art. We pick the latter in order to see how well the model is able to capture

specific features and characteristics of artist’s style.

Each image is around the size of 1000 × 1000 and the model is trained on 16 random

crops sized 128 × 128 in each iteration. This has to be done due to the fact that the

whole image of that resolution cannot fit on a commercial GPU. Additionally, to avoid

overfitting, the crops are divided into 64× 64 tiles before being passed to the discrim-

inator.

For the first example shown in Figure 5.5 the model was trained up to 100 000 itera-

tions for each translation direction. We can see that the model performs much better

when converting a real life photo to sketch (Figure 5.5a) than the other way around

(Figure 5.5b).

In the second example the model is initially trained up to 1 epoch (100 000 iterations),

same as in the first example, but then let to train for 16 epochs (1 600 000 iterations)

with first 8 at a constant learning rate and last 8 decaying. While the model manages

to preserve the content and adopts the style to some extent after 1 epoch (Figure 5.6a)

it comes nowhere close to target domain in terms of level of detail and overall quality.

In an attempt to circumvent this issue we train the model for full 16 epochs. In Fig-

ure 5.6b we clearly see that the model was able to pick up specific features of artist’s

style much better than in the first case. However, it only retains the outlines of the

original image and almost entirely fails to preserve the original content.
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(a) Translation from real life photograph to sketch

(b) Translation from sketch to real life photograph

Figure 5.5: Example of photorealistic sketch ↔ photograph translation (Target domain

(domain B) is represented by the image labeled real_B while the image labeled real_A repre-

sents the source domain (domain A). The result of translation is shown in the middle image

labeled fake_B)
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(a) Result after 100 000 iterations (1 epoch)

(b) Result after 1 600 000 iterations (16 epochs)

Figure 5.6: Example of a portrait → abstract painting translation (Target domain (domain

B) is represented by the image labeled real_B while the image labeled real_A represents the

source domain (domain A). The result of translation is shown in the middle image labeled

fake_B)
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6. Conclusion

The main focus of this thesis was image-to-image translation by applying contrastive

learning method. This approach focuses on maximizing mutual information between

corresponding input and output patches in order to form the final output image which

contains the content of input domain and the characteristics of output domain.

By conducting a series of experiments on sat2map dataset using different varia-

tions of the CUT model we compare their performances based on FID, training speeds

and memory usage. Based on the results, an upgraded version of CUT model which

uses focal loss instead of cross-entropy loss within PatchNCE loss is proposed as it

alleviates the imbalance issue of sat2map dataset.

We also show the ability of this model to perform translations when both input

and output domains are a single images. Through several experiments its performance

and ability to capture specific features is tested in cases when the output domain is a

photorealistic sketch and a more abstract piece of art, respectively.

Further improvements could be done in the single image translation domain in

order to make the model perform better when the target domain is a more abstract

piece of art.
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Contrastive Learning for Image-to-Image Translation

Abstract

Image-to-image translation models transfer images from input domain to output

domain in an endeavor to retain the content of the image. Contrastive Unpaired Trans-

lation is one of the existing methods for solving such problems. Significant advantage

of this method, compared to competitors, is the ability to train and perform well in

cases where both input and output domains are only a single image. Another key thing

that differentiates this method from its predecessors is the usage of image patches

rather than whole images. It also turns out that sampling negatives (patches required to

calculate loss) from the same image achieves better results than a scenario where the

negatives are sampled from other images in the dataset. This type of approach encour-

ages mapping of corresponding patches to the same location in relation to other patches

(negatives) while at the same time improves the output image quality and significantly

decreases memory usage as well as the time required to train the model compared to

CycleGAN method used as a baseline. Through a series of experiments we show that

using focal loss in place of cross-entropy loss within the PatchNCE loss can improve

on the model’s performance.

Keywords: deep learning, image-to-image translation, contrastive learning, convolu-

tional neural networks, generative adversarial networks, image generation



Kontrastno učenje modela za prevod̄enje slika

Sažetak

Modeli za prevod̄enje slika pretvaraju sliku iz izvorne domene u odredišnu domenu

i pri tome nastoje sačuvati sadržaj slike. Metoda s kontrastnim učenjem jedan je od

pristupa za rješavanje ovakvog tipa problema. Prednost ove metode je što omogućuje

treniranje u slučaju kada je domena samo jedna slika. Ono što ju razlikuje od prethod-

nika je činjenica da koristi isječke slika prilikom treniranja umjesto cijelih slika. Nadalje,

pokazano je da uzimanje negativa (isječci slike potrebni za izračunavanje gubitka) iz

iste slike postiže bolje rezultate nego kad se negativi uzimaju iz drugih slika u datasetu.

Ovakav pristup potiče mapiranje odgovarajućih isječaka na približno isto mjesto u

odnosu na druge isječke (negative) dok istovremeno poboljšava kvalitetu rezultirajuće

slike i smanjuje količinu memorije kao i vrijeme treniranja u odnosu na baseline Cycle-

GAN metodu. Kroz eksperimente takod̄er pokazujemo da korištenje žarišnog gubitka

umjesto unakrsne entropije unutar PatchNCE gubitka dovodi do poboljšanja perfor-

mansi modela.

Ključne riječi: duboko učenje, prevod̄enje slika, kontrastno učenje, konvolucijske

neuronske mreže, generativne suparničke mreže, generiranje slika
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