Influence of numerical conditioning on the accuracy of relative orientation

Siniša Šegvić, Gerald Schweighofer and Axel Pinz

Vision-based Measurement Group,
Institute of Electrical Measurement and Measurement Signal Processing,
Graz University of Technology
PURPOSE

Effects of **numerical conditioning** in the **essential estimation**
(calibrated, overconstrained, closed-form)

- analyse the **eight-point alg.** \((8\text{pt})\) forward bias
- discuss the conditioning of **five-point alg.** \((5\text{pt})\)
- validation by comprehensive performance evaluation
Why I think this might be of interest to you:

- what causes the 8pt alg. forward bias?
- comparison of known conditioning approaches (8pt alg)
- conditioning the 5pt algorithm
- performance evaluation 5pt vs 8pt vs hg in the overconstrained case
AGENDA

- Introduction (short)
- Analysis of the 8pt forward bias
- Review of the 8pt conditioning (short)
- Conditioning the 5pt algorithm
- Experimental validation
- Conclusion
Context:

- re-estimating **relative orientation** on the set of inliers
- we can’t solve directly for $\mathbf{R, t}$, use intermediate objects
- \Rightarrow calibrated, overconstrained, closed-form $\mathbf{E, H, ...}$
THE ESSENTIAL MATRIX

The recovery approaches rely on two constraints:

- the epipolar constraint:
 \[q_{iB}^T \cdot E \cdot q_{iA} = 0 \]

- the calibrated (5DOF) constraint:
 \[2 \cdot EE^T E - \text{trace}(EE^T)E = 0 \] (v1)
THE ESSENTIAL MATRIX

The recovery approaches rely on two constraints:

- the epipolar constraint:

\[
q_{iB}^T \cdot E \cdot q_{iA} = 0
\]

- the calibrated (5DOF) constraint:

\[
2 \cdot EE^T E - \text{trace}(EE^T)E = 0
\] (v1)

The eight-point algorithm (8ptAlg) employs epipolar constraint:

\[
A_{n \times 9} \cdot e = 0
\]
THE ESSENTIAL MATRIX

The recovery approaches rely on two constraints:

- the epipolar constraint:
 \[q_{iB}^T \cdot E \cdot q_{iA} = 0 \]

- the calibrated (5DOF) constraint:
 \[2 \cdot EE^T E - \text{trace}(EE^T)E = 0 \] (v1)

The eight-point algorithm (8ptAlg) employs epipolar constraint:

\[A_{n \times 9} \cdot e = 0 \]

The five-point algorithm (5ptAlg) enforces the 5DOF constraint on the span of lower 4 right-singular vectors of \(A \):

\[E = a \cdot E_6 + b \cdot E_7 + c \cdot E_8 + d \cdot E_9 \]
THE ESSENTIAL MATRIX

The recovery approaches rely on two constraints:

- the epipolar constraint:
 \[q_{iB}^T \cdot E \cdot q_{iA} = 0 \]

- the calibrated (5DOF) constraint:
 \[2 \cdot E E^T E - \text{trace}(E E^T)E = 0 \] (v1)

The eight-point algorithm (8ptAlg) employs epipolar constraint:
\[A_{n \times 9} \cdot e = 0 \]

The five-point algorithm (5ptAlg) enforces the 5DOF constraint on the span of lower 4 right-singular vectors of \(E \):
\[E = a \cdot E_6 + b \cdot E_7 + c \cdot E_8 + d \cdot E_9 \]

This is equivalent to:
\[e^T \cdot \begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 \end{bmatrix} = 0^T \] (v2)
THE 8PT-ALG FORWARD BIAS

The i-th row of the matrix \mathbf{A}:

$$\mathbf{A}_i = \begin{bmatrix} x_{iB} x_{iA} & x_{iB} y_{iA} & x_{iB} & y_{iB} x_{iA} & y_{iB} y_{iA} & y_{iB} & x_{iA} & y_{iA} & 1 \end{bmatrix}$$
The 8pt-alg forward bias

The i-th row of the matrix A:

$$A_i = \begin{bmatrix} x_{iB}x_{iA} & x_{iB}y_{iA} & x_{iB} & y_{iB}x_{iA} & y_{iB}y_{iA} & y_{iB} & x_{iA} & y_{iA} & 1 \end{bmatrix}$$

Compare "quadratic" (1,2,4,5) and "linear" (3,6,7,8) columns:

$$a_{i1} = \hat{a}_{i1} + \hat{x}_{iB}\Delta x_{iA} + \Delta x_{iB}\hat{x}_{iA} + \Delta x_{iB}\Delta x_{iA}$$

$$a_{i3} = \hat{a}_{i3} + \Delta x_{iB}$$
THE 8PT-ALG FORWARD BIAS

The i-th row of the matrix A:

$$A_i = \begin{bmatrix} x_{iB}x_{iA} & x_{iB}y_{iA} & x_{iB} & y_{iB}x_{iA} & y_{iB}y_{iA} & y_{iB} & x_{iA} & y_{iA} & 1 \end{bmatrix}$$

Compare "quadratic" (1,2,4,5) and "linear" (3,6,7,8) columns:

$$a_{i1} = \hat{a}_{i1} + \hat{x}_{iB}\Delta x_{iA} + \Delta x_{iB}\hat{x}_{iA} + \Delta x_{iB}\Delta x_{iA}$$

$$a_{i3} = \hat{a}_{i3} + \Delta x_{iB}$$

Under default conditions ($\alpha = 45^\circ$):

$$|a_{i1} - \hat{a}_{i1}| < |a_{i3} - \hat{a}_{i3}|$$
THE 8PT-ALG FORWARD BIAS

The i-th row of the matrix A:

$$A_i = [x_i x_i x_i x_i x_i x_i x_i x_i x_i 1]$$

Compare "quadratic" (1,2,4,5) and "linear" (3,6,7,8) columns:

$$a_{i1} = \hat{a}_{i1} + \hat{x}_{iB} \Delta x_i + \Delta x_{iB} \hat{x}_i + \Delta x_{iB} \Delta x_i$$
$$a_{i3} = \hat{a}_{i3} + \Delta x_{iB}$$

Under default conditions ($\alpha = 45^\circ$):

$$|a_{i1} - \hat{a}_{i1}| < |a_{i3} - \hat{a}_{i3}|$$

The deviation ratio can be determined:

$$r_{Eql} = \sqrt{E[\text{var}(a_{i1})]/E[\text{var}(a_{i3})]} = \tan(\alpha/2) \cdot \sqrt{2/3}$$
$$r_{Eql}(\alpha = 45^\circ) = 0,33$$
$$r_{Eql}(\alpha = 102^\circ) = 1$$
THE 8PT-ALG FORWARD BIAS (2)

Estimation favours solutions E with large

\[
\text{conv}(E) = \left| [E_{13}, E_{23}, E_{31}, E_{32}] \right|^{-1}
\]

\[
A \times e = 0
\]

Conditioning in relative orientation: The 8pt-alg forward bias (2) 8/18
THE 8PT-ALG FORWARD BIAS (2)

Estimation *favours* solutions E with large

$\text{conv}(E) = \left| [E_{13}, E_{23}, E_{31}, E_{32}] \right|^{-1}$

For moderate rotations conv attains maximum near the *forward* direction:

$a_m = \arg \max_a \text{conv}([a] \times R) \approx [0 \ 0 \ 1]^\top$

\[A \times e = 0 \]
The 8pt-alg Forward Bias (2)

Estimation *favours* solutions E with large

$\text{conv}(E) = |[E_{13}, E_{23}, E_{31}, E_{32}]|^{-1}$

For moderate rotations conv attains maximum near the *forward* direction:

$a_m = \arg \max_a \text{conv}([a] \times R) \approx [0 \quad 0 \quad 1]^{\top}$

The bias especially affects the *planar case* when the epipolar constraint is *degenerate*: $\mathcal{E}(H) = [a] \times \cdot H, \quad \forall a \in \mathbb{R}^3$,
The 8pt-alg forward bias (2)

Estimation favours solutions E with large $\text{conv}(E) = \left| \begin{bmatrix} E_{13}, E_{23}, E_{31}, E_{32} \end{bmatrix} \right|^{-1}$

For moderate rotations conv attains maximum near the forward direction:

$$a_m = \arg \max_a \text{conv}([a] \times \mathbb{R}) \approx [0 \ 0 \ 1]^\top$$

The bias especially affects the planar case when the epipolar constraint is degenerate: $\mathcal{E}(H) = [a] \times \cdot H, \ \forall a \in \mathbb{R}^3$.

However, the bias also affect the usual 3D contexts, where the distance to the target is much greater than the baseline.
THE 8PT-ALG FORWARD BIAS (2)

Estimation favours solutions \(E \) with large
\[
\text{conv}(E) = \| [E_{13}, E_{23}, E_{31}, E_{32}] \|^{-1}
\]

For moderate rotations \(\text{conv} \) attains maximum near the forward direction:
\[
a_m = \arg \max_a \text{conv}([a] \times \mathbb{R}) \approx [0 \ 0 \ 1]^\top
\]

The bias especially affects the planar case when the epipolar constraint is degenerate:
\[
\mathcal{E}(H) = [a] \times \cdot H, \quad \forall \ a \in \mathbb{R}^3,
\]

However, the bias also affect the usual 3D contexts, where the distance to the target is much greater than the baseline

Here the translation errors can be approximately compensated by slight rotation deviations; small residual changes in the whole translation spectrum!
NUMERICAL CONDITIONING

Review of the 8pt conditioning approaches:

In Hartley’s normalization, we recover $E' = T_2^{-\top}ET_1^{-1}$, relating the transformed points $q'_{ik} = T_kq_{ik}$, $k = A, B$.
Numerical Conditioning

Review of the 8pt conditioning approaches:

In Hartley’s normalization, we recover $E' = T_2^{-T}ET_1^{-1}$, relating the transformed points $q'_{ik} = T_kq_{ik}, k = A, B$

Mühlich considers an equilibrated matrix $A_{eq} = W_L \cdot A \cdot W_R$

The new system is $A_{eq} \cdot e' = 0$, where $e' = W_R^{-1} \cdot e$

The proposed W_R ensures a zero-mean expected error in e'
Numerical Conditioning

Review of the 8pt conditioning approaches:

In Hartley’s *normalization*, we recover $E' = T_2^{-\top}ET_1^{-1}$, relating the transformed points $q'_{ik} = T_kq_{ik}, k = A, B$

Mühlich considers an *equilibrated* matrix $A_{eq} = W_L \cdot A \cdot W_R$

The new system is $A_{eq} \cdot e' = 0$, where $e' = W_R^{-1} \cdot e$

The proposed W_R ensures a zero-mean expected error in e'

Wu et al. have *reformulated* the linear estimation problem: the new matrix has *only* linear entries, but is $4n \times (3n + 9)$

Results similar to equilibration

The procedure is much more computationally demanding
CONDITIONING THE 5PT ALGORITHM

Although the individual right-singular vectors are very sensitive, their span is quite stable!

Deviations $\delta_i = \min(|e_i - \hat{e}_i|, |e_i + \hat{e}_i|)$, sidewise motion, $N=10^4$, $\sigma=1$:

$\alpha_H=45^\circ$, 3D scene $\alpha_H=45^\circ$, planar scene $\alpha_H=120^\circ$, 3D scene
CONDITIONING THE 5PT ALGORITHM

Although the individual right-singular vectors are very sensitive, their span is quite stable!

Deviations $\delta_i = \min(|e_i - \hat{e}_i|, |e_i + \hat{e}_i|)$, sidewise motion, $N=10^4$, $\sigma=1$:

$\alpha_H = 45^\circ$, 3D scene $\quad \alpha_H = 45^\circ$, planar scene $\quad \alpha_H = 120^\circ$, 3D scene

Hence, the conditioning much less beneficial than with 8ptAlg.
CONDITIONING THE 5PT ALGORITHM

Although the individual right-singular vectors are very sensitive, their span is quite stable!

\[
\delta_i = \min(|e_i - \hat{e}_i|, |e_i + \hat{e}_i|), \text{ sidewise motion, } N=10^4, \sigma=1:
\]

\[
\alpha_H = 45^\circ, \text{ 3D scene} \quad \alpha_H = 45^\circ, \text{ planar scene} \quad \alpha_H = 120^\circ, \text{ 3D scene}
\]

Hence, the conditioning much less beneficial than with 8ptAlg.
CONDITIONING THE 5PT ALGORITHM

Although the **individual** right-singular vectors are very sensitive, their **span** is quite **stable**!

Deviations $\delta_i = \min(|e_i - \hat{e}_i|, |e_i + \hat{e}_i|)$, sidewise motion, $N=10^4$, $\sigma=1$:

$\alpha_H = 45^\circ$, 3D scene $\alpha_H = 45^\circ$, planar scene $\alpha_H = 120^\circ$, 3D scene

Hence, the conditioning much less beneficial than with **8ptAlg**.
EXPERIMENTS

Parameters of the artificial experimental setup:

- geometric: $\phi, \theta, \text{distance}, \text{depth}, \text{slant}$
- imaging: $\alpha_H, \sigma, \text{resolution}^\dagger$ for $\alpha_H=45^\circ$ is 384×288

\[
\begin{align*}
\alpha_H &\quad \phi \\
\text{distance} &\quad \text{depth} \\
\text{slant} &\quad \text{resolution}^\dagger
\end{align*}
\]
EXPERIMENTS (2)

We consider the **accuracy** of the recovered epipole t in variants *standard*, *hartley* and *muehlich*

We perform 10^4 experiments with 50 random points and observe:
EXPERIMENTS (2)

We consider the accuracy of the recovered epipole t in variants standard, hartley and muehlich

We perform 10^4 experiments with 50 random points and observe:

- Spherical distribution of the epipole t (the arrow denotes \hat{t})
EXPERIMENTS (2)

We consider the **accuracy** of the recovered epipole t in variants **standard**, **hartley** and **muehlich**

We perform 10^4 experiments with 50 random points and observe:

- Spherical distribution of the **epipole** t (the arrow denotes \hat{t})
- Distribution of the **angular epipole error** $\Delta t := \angle(t, \hat{t})$

![Spherical distribution of the epipole](image1.png)

![Distribution of the angular epipole error](image2.png)
Experiments (2)

We consider the accuracy of the recovered epipole t in variants standard, hartley and muehlich.

We perform 10^4 experiments with 50 random points and observe:

- Spherical distribution of the epipole t (the arrow denotes \hat{t})
- Distribution of the angular epipole error $\Delta t := \angle(t, \hat{t})$
- Dependence of $med\{\Delta t\}$ on different parameters of the setup
Experiments (3)

8pt-standard epipoles in **degenerate** and **noisy** datasets:

Common: distance=10, $\alpha_H=45^\circ$
Top: depth=0, $\sigma=0$. Bottom: depth=5, $\sigma=1$.
Left: $\theta=(120^\circ, 180^\circ)$, $\phi=0^\circ$. Right: $\theta=135^\circ$, $\phi=(-20^\circ, 20^\circ)$.

The **shifted modes** clearly reflect the forward bias.

Backward motion ($|\theta|>90^\circ$) produces t with positive z.
EXPERIMENTS (4)

The bias goes away for large α_H, low σ, low distance or conditioned data:

Common: $\text{distance}=10$, $\text{depth}=5$, $\theta=135^\circ$, $\phi=0^\circ$, $\alpha_H=45^\circ$, $\sigma = 1$

Top: $\alpha_H=60^\circ,90^\circ,100^\circ,120^\circ$

Bottom: $\sigma=0,2$, $\text{distance}=3$, normalization, equilibration.
Normalization and equilibration perform similarly, except for forward motion:

Common: $\text{distance}=10$, $\text{depth}=5$, $\theta=170^\circ$, $\phi=0^\circ$, $\alpha_H=45^\circ$
Left: $\sigma=0.5$, Right: $\sigma=1.0$
Top: normalization, Bottom: equilibration
EXPERIMENTS (6)

5pt vs 8pt for 3D scenes ($\text{med}\{\Delta t\}$, distance=10, depth=5)

\[\sigma=1,0; \alpha_H=45^\circ. \]

5pt disambiguation relies on the total reprojection error.

Conditioning helps more 8pt than 5pt.
Experiments (7)

5pt vs hg for planar scenes ($med\{\Delta t\}$, distance=10, depth=0)

σ=1,0; $\alpha_H=45^\circ$

5pt and hg disambiguation uses groundtruth!

5pt conditioning always improves the results

hg always better than 5pt
DISCUSSION

The addressed issues:

- 8pt forward bias
- 5pt numerical conditioning
- experimental validation
The addressed issues:

- 8pt forward bias
- 5pt numerical conditioning
- experimental validation

Conclusions:

- 8pt-standard performance strongly depends on α_H
- 5pt conditioning less beneficial than 8pt conditioning
- 5pt better than 8pt for:
 - shallow scenes
 - small number of points
 - break-even point: 20 (45°), 50 (90°)
- Model selection required for best results