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Abstract. Recent success on realistic road driving datasets has increased
interest in exploring robust performance in real-world applications. One
of the major unsolved problems is to identify image content which can not
be reliably recognized with a given inference engine. We therefore study
approaches to recover a dense outlier map alongside the primary task
with a single forward pass, by relying on shared convolutional features.
We consider semantic segmentation as the primary task and perform ex-
tensive validation on WildDash val (inliers), LSUN val (outliers), and
pasted objects from Pascal VOC 2007 (outliers). We achieve the best
validation performance by training to discriminate inliers from pasted
ImageNet-1k content, even though ImageNet-1k contains many road-
driving pixels, and, at least nominally, fails to account for the full diver-
sity of the visual world. The proposed two-head model performs compa-
rably to the C-way multi-class model trained to predict uniform distribu-
tion in outliers, while outperforming several other validated approaches.
We evaluate our best two models on the WildDash test dataset and set
a new state of the art on the WildDash benchmark.

1 Introduction

Early computer vision approaches focused on producing decent performance on
small datasets. This often posed overwhelming difficulties, so researchers sel-
dom quantified the prediction confidence. An important milestone was reached
when generalization was achieved on realistic datasets such as Pascal VOC [13],
CamVid [5], KITTI [14], and Cityscapes [9]. These datasets assume closed-world
evaluation [38] in which the training and test subsets are sampled from the same
distribution. Such setup has been able to provide a fast feedback on novel ap-
proaches due to good alignment with the machine learning paradigm. This fur-
ther accelerated development and led us to the current state of research where
all these datasets are mostly solved, at least in the strongly supervised setup.

Recent datasets further raise the bar by increasing the number of classes
and image diversity. However, despite this increased complexity, the Vistas [35]
dataset is still an insufficient proxy for real-life operation even in a very restricted
scenario such as road driving. New classes like bike racks and ground animals
were added, however many important classes from non-typical or worst-case im-
ages are still absent. These classes include persons in non-standard poses, crashed
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vehicles, rubble, fallen trees etc. Additionally, real-life images may be affected by
particular image acquisition faults including hardware defects, covered lens etc.
This suggests that foreseeing every possible situation may be an elusive goal,
and that our algorithms should be designed to recognize image regions which
are foreign to the training distribution.

The described deficiencies emphasize the need for a more robust approach
to dataset design. First, an ideal dataset should identify and target a set of
explicit hazards for the particular domain [46]. Second (and more important),
an ideal dataset should endorse open-set recognition paradigm [38] in order to
promote detection of unforeseen hazards. Consequently, the validation (val) and
test subsets should contain various degrees of domain shift with respect to the
training distribution. This should include moderate domain shift factors (e.g.
adverse weather, exotic locations), exceptional situations (e.g. accidents, poor
visibility, defects) and outright outliers (objects and entire images from other
domains). We argue that the WildDash dataset [46] represents a step in the
right direction, although further development would be welcome, especially in the
direction of enlarging the negative part of the test dataset [3]. Models trained for
open-set evaluation can not be required to predict an exact visual class in outlier
pixels. Instead, it should suffice that the outliers are recognized, as illustrated in
Fig. 1 on an image from the WildDash dataset.

Fig. 1. The proposed approach for simultaneous semantic segmentation and outlier
detection. Our multi-task model predicts i) a dense outlier map, and ii) a semantic
map with respect to the 19 Cityscapes classes. The two maps are merged to obtain the
final outlier-aware semantic predictions. Our model recognizes outlier pixels (white) on
two objects which are foreign to Cityscapes: the ego-vehicle and the yellow forklift.

This paper addresses simultaneous semantic segmentation and open-set out-
lier detection. We train our models on inlier images from two road-driving
datasets: Cityscapes [9] and Vistas [35]. We consider several outlier detection
approaches from the literature [20, 2, 21] and validate their performance on Wild-
Dash val (inliers), LSUN val [44] (outliers), and pasted objects from Pascal VOC
2007 (outliers). Our main hypotheses are i) that training with noisy negatives
from a very large and diverse dataset such as ImageNet-1k [10] can improve
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outlier detection, and ii) that discriminative outlier detection and semantic seg-
mentation can share features without significant deterioration of either task. We
confirm both hypotheses by re-training our best models on WildDash val, Vistas
and ImageNet-1k, and evaluating performance on the WildDash benchmark.

2 Related Work

Previous approaches to outlier detection in image data are very diverse. These
approaches are based on analyzing prediction uncertainty, evaluating generative
models, or exploiting a broad secondary dataset which contains both outliers
and inliers. Our approach is also related to multi-task models and previous work
which explores the dataset quality and dataset bias.

2.1 Estimating Uncertainty (or Confidence) of the Predictions

Prediction confidence can be expressed as the probability of the winning class
or max-softmax for short [20]. This is useful in image-wide prediction of out-
liers, although max-softmax must be calibrated [16] before being interpreted as
P (inlier|x). The ODIN approach [31] improves on [20] by pre-processing input
images with a well-tempered perturbation aimed at increasing the max-softmax
activation. These approaches are handy since they require no additional training.

Some approaches model the uncertainty with a separate head which learns
either prediction uncertainty [23, 28] or confidence [11]. Such training is able to
recognize examples which are hard to classify due to insufficient or inconsistent
labels, but is unable to deal with real outliers.

A principled information-theoretic approach expresses the prediction uncer-
tainty as mutual information between the posterior parameter distribution and
the particular prediction [40]. In practice, the required expectations are esti-
mated with Monte Carlo (MC) dropout [23]. Better results have been achieved
with explicit ensembles of independently trained models [28]. However, both
approaches require many forward passes and thus preclude real-time operation.

Prediction uncertainty can also be expressed by evaluating per-class genera-
tive models of latent features [30]. However, this idea is not easily adaptable for
dense prediction in which latent features typically correspond to many classes
due to subsampling and dense labelling. Another approach would be to fit a gen-
erative model to the training dataset and to evaluate the likelihood of a given
sample. Unfortunately, this is very hard to achieve with image data [34].

2.2 Training with Negative Data

Our approach is most related to three recent approaches which train outlier de-
tection by exploiting a diverse negative dataset [41]. The approach called outlier
exposure (OE) [21] processes the negative data by optimizing cross entropy be-
tween the predictions and the uniform distribution. Outlier detection has also
been formulated as binary classification [2] trained to differentiate inliers from
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the negative dataset. A related approach [42] partitions the training data into
K folds and trains an ensemble of K leave-one-fold-out classifiers. However, this
requires K forward passes. while data partitioning may not be straight-forward.

Negative training samples can also be produced by a GAN generator [15]. Un-
fortunately, existing works [29, 37] have been designed for image-wide prediction
in small images. Their adaptation to dense prediction on Cityscapes resolution
would not be straight-forward [4].

Soundness of training with negative data has been challenged by [39] who
report under-average results for this approach. However, their experiments av-
erage results over all negative datasets (including MNIST), while we advocate
for a very diverse negative dataset such as ImageNet.

2.3 Multi-task Training and Dataset Design

Multi-task models attach several prediction heads to shared features [7]. Each
prediction head has a distinct loss. The total loss is usually expressed as a
weighted sum [36] and optimized in an end-to-end fashion. Feature sharing brings
important advantages such as cross-task enrichment of training data [1] and
faster evaluation. Examples of successful multi-task models include combining
depth, surface normals and semantic segmentation [12], as well as combining
classification, bounding box prediction and per-class instance-level segmenta-
tion [17]. A map of task compatibility with respect to knowledge transfer [45]
suggests that many tasks are suitable for multi-task training.

Dataset quality is as a very important issue in computer vision research.
Diverse negative datasets have been used to reduce false positives in several
computer vision tasks for a very long time [41]. A methodology for analyzing
the quality of road-driving datasets has been proposed in [47]. The WildDash
dataset [46] proposes a very diverse validation dataset and the first semantic
segmentation benchmark with open-set evaluation [38].

3 Simultaneous Segmentation and Outlier Detection

Our method combines two distinct tasks: outlier detection and semantic seg-
mentation, as shown in Fig. 1. We prefer to rely on shared features in order to
promote fast inference and synergy between tasks [1]. We assume that a large,
diverse and noisy negative dataset is available for training purposes [21, 2].

3.1 Dense Feature Extractor

Our models are based on a dense feature extractor with lateral connections
[25]. The processing starts with a DenseNet [22] or ResNet [19] backbone, pro-
ceeds with spatial pyramid pooling (SPP) [18, 48] and concludes with ladder-style
upsampling [25, 32]. The upsampling path consists of three upsampling blocks
(U1-U3) which blend low resolution features from the previous upsampling stage
with high resolution features from the backbone. We speed-up and regularize the
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learning with three auxiliary classification losses (cf. Fig. 2). These losses have
soft targets corresponding to ground truth distribution across the corresponding
window at full resolution [26].

Fig. 2. The proposed two-head model: the classification head recovers semantic segmen-
tation while the outlier detection head identifies pixels where semantic segmentation
may be wrong. The output is produced by combining these two dense prediction maps.

3.2 Dense Outlier Detection

There are four distinct approaches to formulate simultaneous semantic segmen-
tation and dense outlier detection over shared features. The C-way multi-class
approach attaches the standard classification head to the dense feature extractor
(C denotes the number of inlier classes). The inlier probability is formulated as
max-softmax. If a negative set is available, this approach can be trained to emit
low max-softmax in outliers by supplying a modulated cross entropy loss term
towards uniform distribution [29, 21]. The modulation factor λKL is a hyper-
parameter. Unfortunately, training on outliers may compromise classification
accuracy and generate false positive outliers at semantic borders.

The C-way multi-label approach has C sigmoid heads. The final prediction
is the class with maximum probability max-σ, whereas the inlier probability is
formulated as max-σ. Unfortunately, this formulation fails to address the com-
petition between classes, which again compromises classification accuracy.

The C+1-way multi-class approach includes outliers as the C+1-th class,
whereas the inlier probability is a 2-way softmax between the max-logit over in-
lier classes and the outlier logit. To account for class disbalance we modulate the
loss due to outliers with λC+1. Nevertheless, this loss affects inlier classification
weights, which may be harmful when the negatives are noisy (as in our case).
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Finally, the two-head approach complements the C-way classification head
with a head which directly predicts the outlier probability as illustrated in Fig. 2.
The classification head is trained on inliers while the outlier detection head is
trained both on inliers and outliers. The outlier detection head uses the stan-
dard cross entropy loss modulated with hyper-parameter λTH. We combine the
resulting prediction maps to obtain semantic segmentation into C+1 classes.
The outlier detection head overrides the classification head whenever the outlier
probability is greater than a threshold. Thus, the classification head is unaffected
by the negative data, which provides hope to preserve the baseline semantic seg-
mentation accuracy even when training on extremely large negative datasets.

3.3 Resistance to noisy outlier labels and sensitivity to negative
objects in positive context

Training outlier detection on a diverse negative dataset has to confront noise in
negative training data. For example, our negative dataset, ImageNet-1k, contains
several classes (e.g. cab, streetcar) which are part of the Cityscapes ontology.
Additionally, several stuff classes from Cityscapes (e.g. building, terrain) occur
in ImageNet-1k backgrounds. Nevertheless, these pixels are vastly outnumbered
by true inliers. This is especially the case when the training only considers the
bounding box of the object which defines the ImageNet-1k class.

We address this issue by training our models on mixed batches with approx-
imately equal share of inlier and negative images. Thus, we perform many inlier
epochs during one negative epoch, since our negative training dataset is much
larger than the inlier ones. The proposed batch formation procedure prevents
occasional inliers from negative images to significantly affect the training. Addi-
tionally, it also favours stable development of batchnorm statistics. Hence, the
proposed training approach stands a fair chance to succeed.

We promote detection of outlier objects in inlier context by pasting negative
content into inlier training images. We first resize the negative image to 5%
of the inlier image, and then paste it at random. We perform this before the
cropping, so some crops may contain only inlier pixels. Unlike [3], we do not use
the Cityscapes ignore class since it contains many inliers.

4 Experiments

We train most models on Vistas inliers [35] by mapping original labels to Citysca-
pes [9] classes. In some experiments we also use Cityscapes inliers to improve
results and explore influence of the domain shift. We train all applicable models
on outliers from two variants of ImageNet-1k: the full dataset (ImageNet-1k-full)
and the subset in which bounding box annotations are available (ImageNet-1k-
bb). In the latter case we use only the bounding box for training on negative
images (the remaining pixels are ignored) and pasting into positive images.

We validate semantic segmentation by measuring mIoU on WildDash val
separately from outlier detection. We validate outlier detection by measuring
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pixel level average precision (AP) in two different setups: i) entire images are
either negative or positive, and ii) appearance of negative objects in positive
context. The former setup consists of many assays across WildDash val and
random subsets of LSUN images. The LSUN subsets are dimensioned so that
the numbers of pixels in LSUN and WildDash val are approximately equal. Our
experiments report mean and standard deviation of the detection AP across
50 assays. The latter setup involves WildDash val images with pasted Pascal
animals. We select animals which take up at least 1% of the WildDash resolution,
and paste them at random in each WildDash image.

We normalize all images with ImageNet mean and variance, and resize them
so that the shorter side is 512 pixels. We form training batches with random
512×512 crops which we jitter with horizontal flipping. We set the auxiliary loss
weight to 0.4 and the classifier loss weight to 0.6. We set λKL=0.2, λC+1=0.05,
and λTH=0.2. We use the standard Adam optimizer and divide the learning
rate of pretrained parameters by 4. All our models are trained throughout 75
Vistas epochs, which corresponds to 2 epochs of ImageNet-1k-full, or 5 epochs of
ImageNet-1k-bb. We detect outliers by thresholding inlier probability at pIP =
0.5. Our models produce a dense index map for C Cityscapes classes and 1 void
class. We obtain predictions at the benchmark resolution by bilinear upsampling.

We perform ODIN inference as follows. First, we perform the forward pass
and the backward pass with respect to the max-softmax activation (we use tem-
perature T=10). Then we determine the max-softmax gradient with respect to
pixels. We determine the perturbation by multiplying the sign of the gradient
with ε=0.001. Finally, we perturb the normalized input image, perform another
forward pass and detect outliers according to the max-softmax criterion.

4.1 Evaluation on the WildDash Benchmark

Table 1 presents our results on the WildDash semantic segmentation benchmark,
and compares them to other submissions with accompanying publications.

Table 1. Evaluation of the semantic segmentation models on WildDash bench

Meta Avg Classic Negative
Model mIoU mIoU iIoU mIoU iIoU mIoU

cla cla cla cat cat cla

APMoE seg ROB [24] 22.2 22.5 12.6 48.1 35.2 22.8

DRN MPC [43] 28.3 29.1 13.9 49.2 29.2 15.9

DeepLabv3+ CS [8] 30.6 34.2 24.6 49.0 38.6 15.7

LDN2 ROB [27] 32.1 34.4 30.7 56.6 47.6 29.9

MapillaryAI ROB [6] 38.9 41.3 38.0 60.5 57.6 25.0

AHiSS ROB [33] 39.0 41.0 32.2 53.9 39.3 43.6

LDN BIN (ours, two-head) 41.8 43.8 37.3 58.6 53.3 54.3

LDN OE (ours, C× multi-class) 42.7 43.3 31.9 60.7 50.3 52.8
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Our two models use the same backbone (DenseNet-169 [22]) and different
outlier detectors. The LDN OE model has a single C-way multi-class head. The
LDN BIN model has two heads as shown in Figure 2. Both models have been
trained on Vistas train, Cityscapes train, and WildDash val (inliers), as well as
on ImageNet-1k-bb with pasting (outliers). Our models significantly outperform
all previous submissions on negative images, while also achieving the highest
meta average mIoU (the principal benchmark metric) and the highest mIoU for
classic images. We achieve the second-best iIoU score for classic images, which
indicates underperformance on small objects. This is likely due to the fact that
we train and evaluate our models on half resolution images.

4.2 Validation of Dense Outlier Detection Approaches

Table 2 compares various approaches for dense outlier detection. All models are
based on DenseNet-169, and trained on Vistas (inliers). The first section shows
the results of a C-way multi-class model trained without outliers, where outliers
are detected with max-softmax [20] and ODIN + max-softmax [31]. We note
that ODIN slightly improves the results across all experiments.

Table 2. Validation of dense outlier detection approaches. WD denotes WildDash val.

Model ImageNet AP WD-LSUN AP WD-Pascal mIoU WD

C× multi-class 7 55.65 ± 0.80 6.01 49.07

C× multi-class, ODIN 7 55.98 ± 0.77 6.92 49.77

C+1× multi-class 3 98.92 ± 0.06 33.59 45.60

C× multi-label 3 98.75 ± 0.07 57.31 42.72

C× multi-class 3 99.49± 0.04 41.72 46.69

two heads 3 99.25 ± 0.04 46.83 47.37

The second section of the table shows the four dense outlier detection ap-
proaches (cf. Section 3) which we also train on ImageNet-1k-bb with pasting
(outliers). Columns 3 and 4 clearly show that training with noisy and diverse
negatives significantly improves outlier detection. However, we also note a reduc-
tion of the segmentation score as shown in the column 5. This reduction is lowest
for the C-way multi-class model and the two-head model, which we analyze next.

The two-head model is slightly worse in discriminating WildDash val from
LSUN, which indicates that it is more sensitive to domain shift between Vistas
train and WildDash val. On the other hand, the two-head model achieves better
inlier segmentation (0.7 pp, column 5), and much better outlier detection on
Pascal animals (5 pp, column 4). A closer inspection shows that these advantages
occur since the single-head C-way approach generates many false positive outlier
detections at semantic borders due to lower max-softmax.

The C+1-way multi-class model performs the worst out of all models trained
with noisy outliers. The sigmoid model performs well on outlier detection but
underperforms on inlier segmentation.
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4.3 Validation of Dense Feature Extractor Backbones

Table 3 explores influence of different backbones to the performance of our two-
head model. We experiment with ResNets and DenseNets of varying depths. The
upsampling blocks are connected with the first three DenseNet blocks, as shown
in Fig. 2. In the ResNet case, the upsampling blocks are connected with the last
addition at the corresponding subsampling level. We train on Vistas (inliers)
and ImageNet-1k-bb with pasting (outliers).

Table 3. Validation of backbones for the two-head model. WD denotes WildDash val.

Backbone AP WD-LSUN AP WD-Pascal mIoU WD

DenseNet-121 99.05 ± 0.03 55.84 44.75

DenseNet-169 99.25± 0.04 46.83 47.37

DenseNet-201 98.34 ± 0.07 36.88 47.59

ResNet-34 97.19 ± 0.07 47.24 45.17

ResNet-50 99.10 ± 0.04 56.18 41.65

ResNet-101 98.96 ± 0.06 52.02 43.67

All models achieve very good outlier detection in negative images. There
appears to be a trade-off between detection of outliers at negative objects and
semantic segmentation accuracy. We opt for better semantic segmentation results
since WildDash test does not have negative objects in positive context. We
therefore use the DenseNet-169 backbone in most other experiments due to a
very good overall performance.

4.4 Influence of the Training Data

Table 4 explores the influence of inlier training data to the model performance.
All experiments involve the two-head model based on DenseNet-169, which was
trained on outliers from ImageNet-1k-bb with pasting.

Table 4. Influence of the inlier training dataset to the performance of the two-head
model with the DenseNet-169 backbone. WD denotes WildDash val.

Inlier training dataset AP WD-LSUN AP WD-Pascal mIoU WD

Cityscapes 66.57 ± 0.86 13.85 11.12

Vistas 99.25 ± 0.04 46.83 47.17

Cityscapes, Vistas 99.29± 0.03 53.68 47.78

The results suggest that there is a very large domain shift between Cityscapes
and WildDash val. Training on inliers from Cityscapes leads to very low AP
scores, which indicates that many WildDash val pixels are predicted as outliers
with respect to Cityscapes. This suggests that Cityscapes is not an appropriate
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training dataset for real-world applications. Training on inliers from Vistas leads
to much better results which is likely due to greater variety with respect to
camera, time of day, weather, resolution etc. The best results across the board
have been achieved when both inlier datasets are used for training.

Table 5 explores the impact of negative training data. All experiments feature
the two-head model with DenseNet-169 trained on inliers from Vistas.

Table 5. Influence of the outlier training dataset to the performance of our two-head
model with the DenseNet-169 backbone. WD denotes WildDash val.

Outlier training dataset outlier pasting AP WD-Pascal mIoU WD

ImageNet-1k-full no 2.94 43.13

ImageNet-1k-full yes 45.96 43.68

ImageNet-1k-bb yes 46.83 47.17

The table shows that training with pasted negatives greatly improves outlier
detection on negative objects. It is intuitively clear that a model which never sees
a border between inliers and outliers during training does not stand a chance to
accurately locate such borders during inference.

The table also shows that ImageNet-1k-bb significantly boosts inlier segmen-
tation, while also improving outlier detection on negative objects. We believe
that this occurs because ImageNet-1k-bb has a smaller overlap with respect to
the inlier training data, due to high incidence of Cityscapes classes (e.g. vegeta-
tion, sky, road) in ImageNet backgrounds. This simplifies outlier detection due
to decreased noise in the training set, and allows more capacity of the shared
feature extractor to be used for the segmentation task. The table omits outlier
detection in negative images, since all models achieve over 99 % AP on that task.

4.5 Comparing the Two-Head and C-way Multi-class Models

We now compare our two models from Table 1 in more detail. We remind that
the two models have the same feature extractor and are trained on the same
data. The two-head model performs better in most classic evaluation categories
as well as in the negative category, however it has a lower meta average score.

Table 6 explores influence of WildDash hazards [46] on the performance of the
two models. The C-way multi-class model has a lower performance drop in most
hazard categories. The difference is especially large in images with distortion and
overexposure. Qualitative experiments show that this occurs since the two-head
model tends to recognize pixels in images with hazards as outliers (cf. Fig. 3).

Fig. 3 presents a qualitative comparison of our two submissions to the Wild-
Dash benchmark. Experiments in rows 1 and 2 show that the two-head model
performs better in classic images due to better performance on semantic borders.
Furthermore, the two-head model is also better in detecting negative objects in
positive context (ego-vehicle, the forklift, and the horse). Experiments in row 3
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Table 6. Impact of hazards to performance of our WildDash submissions. The hazards
are image blur, uncommon road coverage, lens distortion, large ego-hood, occlusion,
overexposure, particles, dirty windscreen, underexposure, and uncommon variations.
LDN BIN denotes the two-head model. LDN OE denotes the C-way multi-class model.

Model
Class mIoU drop across WildDash hazards [46]

blur cov. dist. hood occ. over. part. screen under. var.

ldn bin -14% -14% -22% -14% -3% -35% -3% -9% -25% -8%

ldn oe -11% -13% -7% -10% -5% -24% 0% -6% -30% -7%

show that the two-head model tends to recognize all pixels in images with over-
exposure and distortion hazards as outliers. Experiments in rows 4 and 5 show
that the two-head model recognizes entire negative images as outliers, while the
C-way single-head model is able to recognize positive objects (the four persons)
in negative images. These experiments suggest that both models are able to
detect outliers at visual classes which are (at least nominally) not present in
ImageNet-1k: ego-vehicle, toy-brick construction, digital noise, and text. Fig. 4
illustrates space for further improvement by presenting a few failure cases on
WildDash test.

Fig. 3. Qualitative performance of our two submissions to the WildDash benchmark.
Each triplet contains a test image (left), the output of the two-head model (center),
and the output of the model trained to predict uniform distribution in outliers (right).
Rows represent inlier images (1), outlier objects in inlier context (2), inlier images with
hazards (3), out-of-scope negatives (4), and abstract negatives (5). The two-head model
produces more outlier detections while performing better in classic images (cf. Table 1).
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Fig. 4. Failure cases on WD test arranged as in Fig. 3. Top: the two-head model predicts
outliers at trucks. Bottom left: both models fail to accurately detect birds on the road.
Bottom right: both models exchange road and sky due to position bias (late experiments
show this can be improved with training on smaller crops and scale jittering).

4.6 Discussion

Validation on LSUN and WildDash val suggests that detecting entire outlier
images is an easy problem. A useful practical application of this result would be
a module to detect whether the camera is out of order due to being covered, dirty
or faulty. Validation on pasted Pascal animals suggests that detecting outliers in
inlier context is somewhat harder but still within reach of modern techniques.

Evaluation on WildDash test shows that our models outperform previous
published approaches. We note significant improvement with respect to state
of the art in classic and negative images, as well as in average mIoU score.
Our models successfully detect all abstract and out-of-scope negatives [46], even
though much of this content is not represented by ImageNet-1k classes.

Future work should address further development of open-set evaluation data-
sets such as [46, 3]. In particular, the community would benefit from substantially
larger negative test sets which should include diverse non-ImageNet-1k content,
as well as outlier objects in inlier context and inlier objects in outlier context.

5 Conclusion

We have presented an approach to combine semantic segmentation and dense
outlier detection without significantly deteriorating either of the two tasks. We
cast outlier detection as binary classification on top of a shared convolutional
representation. This allows for solving both tasks with a single forward pass
through a convolutional backbone. We train on inliers from standard road driv-
ing datasets (Vista, Cityscapes), and noisy outliers from a very diverse nega-
tive dataset (ImageNet-1k). The proposed training procedure tolerates inliers
in negative training images and generalizes to images with mixed content (in-
lier background, outlier objects). We perform extensive open-set validation on
WildDash val (inliers), LSUN val (outliers), and pasted Pascal objects (outliers).
The results confirm suitability of the proposed training procedure. The proposed
multi-head model outperforms the C-way multi-label model and the C+1-way
multi-class model, while performing comparably to the C-way multi-class model
trained to predict uniform distribution in outliers. We apply our two best models
to WildDash test and set a new state of the art on the WildDash benchmark.
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We use this supplement to further discuss the experiments from Section 4 of
the main paper. We clarify the losses used for training the models and expand on
the quantitative results described in the main paper by offering qualitative anal-
ysis of model outputs. Furthermore, we offer experiments with two additional
outlier detection approaches applied to dense prediction: MC-dropout and train-
able confidence.

In the first section we provide a detailed overview of the training losses. The
results of the additional experiments can be seen at the beginning of the second
section. The rest of the second and all of the third section are dedicated to
illustrating validation experiments on WD-Pascal dataset. WD-Pascal is a set
of images which we create by pasting instances of animals from PASCAL VOC
2007 dataset into WildDash validation images. We show that low AP scores on
WD-Pascal are strongly affected by false positive detections in WildDash images
which occur due to sensitivity to domain shift.

In the fourth section we give more examples of the performance of our sub-
missions to the WildDash benchmark.

1 Review of loss functions

Segmentation can be viewed as multi-class classification. To train it, we use
the negative log-likelihood loss for each pixel of the output. We use the soft-
max activation function on the output of the network. Additionally, as a class
balancing techinque, the loss for each pixel can be weighted depending on the
ground truth label. In our experiments we only used class balancing during the
C+1 way multi-class training by setting the λC+1 to 0.05 to account for the fact
that outlier pixels outnumber inlier pixels for each individual class. In the case of
the model with trainable confidence, the prediction is adjusted by interpolating
between the original predictions and the target probability:

P ′(Yij = yij |x) = cijP (Yij = yij |x) + (1− cij)yij (1)

When considering segmentation as multi-label classification, we perform C
binary classifications. We do this by using sigmoid activation function instead
of the softmax activation function at the output of the network. In this setup,
each sample is simultaneously a positive for its own class and a negative for the
rest of the classes. This setup also allows us to use outliers during training. The
ouliers serve as negatives for all of the C binary classifiers.
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To improve the segmentation, we use auxiliary losses at 4, 8, 16 and 32 times
lower resolutions. The expected output at each resolution is a distribution over
all segmentation classes. We calculate this distribution across the corresponding
window from the ground truth labels at full resolution. We only take into account
pixels that have a valid label. Since we use soft targets at lower distributions,
we use cross entropy loss between the expected distribution and the output of
the network at a given resolution.

The model with trainable confidence is trained by using the confidence loss
alongside the multi-class classifier loss. The confidence loss can be interpreted as
the negative log-likelihood loss where the expected output is always 1, that is to
say, the network is always expected to be confident. [1] show that the confidence
tends to converge into unity and that confidence training tends to be a strong
regularizer. To prevent the former they suggest adjusting λC so that LC tends
toward a hyperparameter β throughout training. To minimize the latter, they
also suggest applying Equation 1 only on half of the batch at each iteration. We
set β to 0.15, and perform Equation 1 on every second batch.

The model with the separate outlier detection head is trained with the ad-
ditional negative log-likelihood loss. This loss is calculated between the output
of the second head and the ground truth labels indicating whether a pixel is an
inlier or an outlier.

The C-way multi-class approach can be trained to emit uniform distribu-
tion at outlier samples. This is done by minimizing the Kullback-Leibler (KL)
divergence between the uniform distribution and the output of the network.

Tables 1 and 2 present an overview of losses used in our experiments. We
use the following assumptions in our notation: x is an input image, y contains
ground truth segmentation into NC classes and z contains ground truth indicat-
ing whether a pixel is an inlier (label 1) or an outlier (label 0).

Some pixels can be ignored during training (e.g.the ego-vehicle). To indicate
that these pixels should be ignored, they are given a label greater than the
number of classes NC in the ground truth segmentation image y and label 2 in
z. When training with ouliers, y can be modified in two different ways: i) in the
C+1-way multi-class setup, NC is equal to C+1, the label of the outlier pixels is
set to C+1, while the label of the ignored pixels needs to be greater than C+1;
or ii) the label of the outlier pixel is set to any number greater NC.
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Table 1. Losses used during training, with the following assumptions: x is an input
image, y contains ground truth segmentation into NC classes and z contains ground
truth indicating whether a pixel is an inlier or an outlier. Dimensions of x, y and z
are H ×W .

Loss Expression

multi-class
classifier loss

LMC = −
∑

i,j∈Gx

λyij [[zij = 1 ∧ yij ≤ NC]] logP (Yij = yij |x),

P (Yij = yij |x) =
exp sijyij (x)∑
c

exp sijc (x)

multi-label
classifier loss

LML = −
∑

i,j∈Gx

Nc∑
c=1

[[yij ≤ NC]]

(
[[yij 6= c ∨ zij = 0]] log

1

1 + exp sijyij (x)

+[[yij = c ∧ zij = 1]] log
exp sijyij (x)

1 + exp sijyij (x)

)

auxiliary loss

LAUX = −
∑
r∈R

∑
i,j∈Gr

x

[[Nr
ij >

r2

2
]]Eyr

ij
[logP (Y r

ij |x)],

yrijc =
1

Nr
ij

ir+r−1∑
l=ir

jr+r−1∑
k=jr

[[ykl = c ∧ ykl ≤ NC]],

Nr
ij =

ir+r−1∑
l=ir

jr+r−1∑
k=jr

[[ykl ≤ NC]]

separate
outlier
detection
head loss

LTH = −
∑

i,j∈Gx

[[zij ≤ 1]] logP (Zij = zij |x)

Kullback
Leibler diver-
gence

LKL =
∑

i,j∈Gx

[[zij = 0]]KL(U ‖ P (Yij |x))

confidence
loss

LC = −
∑

i,j∈Gx

[[yij ≤ NC]] log(cij |x)
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Table 2. Total training losses

Model Total loss

C× multi-class, C+1× multi-class λMCLMC + λAUXLAUX

C× multi-class with confidence head λMCLMC + λCLC + λAUXLAUX

C× multi-label λMLLML + λAUXLAUX

C×multi-class with outliers λMCLMC + λKLLKL + λAUXLAUX

two heads λMCLMC + λTHLTH + λAUXLAUX

2 Validation of Dense Oultier Detection Approaches

Table 3 is an extension of Table 2 from the main paper. It provides results of
outlier detection and semantic segmentation for a model with a separate confi-
dence head [1] and a semantic segmentation model trained using Monte Carlo
(MC) dropout after each of the dense and upsampling layers, with epistemic
uncertainty used as a criterion for outlier detection [3, 2]. The MC-dropout is
also used during the inference phase, meaning that the final output of the model
is the mean value of 50 forward passes. Both of the models trained with dropout
perform outlier detection better than the baseline model. They, however, per-
form worse than any of the models trained with noisy negatives. Out of all of
the tested models, the model with the confidence head provides the worst out-
lier detection accuracy. We observe a drop in semantic segmentation accuracy
on WildDash validation dataset when compared to the baseline model for all of
the additional models.

Table 3. Validation of dense outlier detection approaches. WD denotes WildDash val.

Model ImageNet AP WD-LSUN AP WD-Pascal mIoU WD

C× multi-class, dropout 0.2 7 64.09± 0.97 11.87 49.13

C× multi-class, dropout 0.5 7 63.37± 1.13 13.18 47.25

confidence head 7 54.40± 0.80 4.41 45.38

Figure 1 gives a qualitative insight into the results from Table 2 of the main
paper. It explores validation performance of different outlier detector variants
described in Section 3.2 of the main paper.

Row 1 contains images from WD-Pascal. Each subsequent row shows the
output of a different outlier detector. Row 2 corresponds to the C-way multi-
class model trained without negative samples (baseline). This model assigns high
outlier probabilty at semantic borders. Consequently it detects borders of outlier
patches. It is however unable to detect entire outlier objects. Since the baseline
model with ODIN, the model with the confidence head and the models trained
with dropout perform qualitatively similarly, we omit those results for brevity.
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Row 3 shows the output of the C+1-way multi-class model. This model had
the lowest AP score. Qualitative analysis suggests that this model makes more
false outlier predictions which in turn lowers the AP score.

Row 4 shows the C-way multi-label model and row 5 shows the C-way multi-
class model. They perform similarly, though the C-way multi-label model seems
to be more robust to domain shift (cf. column 4). These models are more suc-
cessful at outlier detection than the baseline model, though they also assign a
high outlier probability to border pixels.

Row 6 shows the output of the two-head model. It is successful at detecting
outliers without falsely detecting borders as outliers. Furthermore, its detections
tend to be coarser than in other models.

All models trained with ImageNet-1k-bb have a problem with large domain
shift as exemplified in column 4. This indicates that it would be very hard to
achieve high AP scores on WD-Pascal since images with large domain shift are
perceived as equally foreign as the pasted Pascal objects. Column 3 shows that
models trained using negative data classify the windshield wiper as outlier. This
is interesting when compared to the model which has seen WildDash validation
during training (row 3 of Figure 6). This is further discussed in Section 3.

3 Influence of the Training Data

Figure 2 illustrates the validation performance of the two-head model depending
on the inlier training dataset, which was shown in Table 4 of the paper. Column
1 shows four validation images.

Column 2 presents the corresponding results of the two-head model trained
on Cityscapes. This model classifies all of the WildDash pixels as outliers. This
indicates that models trained on Cityscapes are very sensitive to domain shift.

Column 3 shows that the two-head model trained on Vistas dataset is sig-
nificantly better at outlier detection. This improvement indicates that models
trained on Vistas show more resilience to domain shift.

Column 4 depicts a model trained on both Vistas and Cityscapes. It performs
similarly to the model trained on Vistas.

Interestingly, the model trained on Vistas shows more resilience to unusual
conditions (dark image in row 4, unusual vehicle in row 3), while the model
trained on combined datasets shows more precision in normal situations (grass
in row 1, road in row 2).

Figure 3 shows the results of the two-head model depending on the negative
training dataset (cf. Table 5).

The first column shows the validation images.
The second column shows the model trained using ImageNet-1k-full without

pasting. It tends to make coarse predictions. Consequently it is unable to detect
small outlier patches.

The third column illustrates the model trained using ImageNet-1k-full with
pasting. It is better at detecting outlier samples. It is however sensitive to domain
shift. This is because of the increased overlap between positive and negative
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Fig. 1. Dense outlier detection with models presented in Table 2. Row 1 shows Wild-
dash val images with pasted PASCAL VOC 2007 animals. Row 2 shows outlier prob-
abilities obtained with the C-way multi-class model trained without negatives. Red
colour indicates a high probability that a pixel is an outlier. Subsequent rows corre-
spond to models trained with noisy negatives: the C+1-way multi-class model (row
3), the C-way multi-label model (row 4), the C-way multi-class model (row 5) and the
two-head model (row 6).

images (in classes such as sky, vegetation or road which appear often in the
backgrounds of ImageNet images).

The last column shows the model trained using ImageNet-1k-bb with pasting
which performs the best both qualitatively and quantitatively.

4 Comparing the Two-Head and C-way Multi-class
Models

Figure 4 accompanies Table 1 of the main paper. It presents the combined output
of the two-head model (column 2) and the C-way model trained with ImageNet-
1k images (column 3) on images from WildDash test set (column 1).

The first four rows show images taken in normal conditions, while the last
two rows show oulier images.
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Fig. 2. Outlier detection with two-head models trained on different inlier datasets.
All models have been trained with pasted noisy negatives from ImageNet-1k-bb as
presented in from Table 4. Column 1 contains Wilddash images with pasted PASCAL
VOC 2007 animals. Columns 2-4 show predictions of models trained on Cityscapes,
Vistas, and Cityscapes and Vistas, respectively. Red colour indicates a high probability
that a pixel is an outlier.

The C-way model tends to classify small objects (cf. poles in image in row
3) as well as distant objects (cf. trucks in the distance in the image in the third
row) as outliers. This model makes more false outlier detections in typical traffic
scenes.

Furthermore, the two-head model performs better in negative images. Output
of the C-way model on negative images contains small patches not classified as
outliers.

Figure 5 further clarifies Table 6 from the main paper. It illustrates impact
of WildDash hazards on the output of the submitted models.

The results show that the two-head model is more sensitive to overexposure
and distortion hazards, though it succeeds when the hazard is not severe (rows
1-4).

Row 5 contains an example of occlusion. Both of the models are able to
successfully segment the torso or the person behind the pole but they struggle
with the lower part. Row 6 contains an example of the particles hazard (rain on
the windshiled), while row 7 contains an example of the variation hazard (with
tank truck being an atypical example of a truck).

Figure 6 expands on the failure cases shown in Figure 4 of the main paper
which are worth exploring in future work.

The first two rows show images with animals on roads. Animals are usually
classified as pedestrians. The two-head model classifies most of the pixels of the
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Fig. 3. Outlier detection with two-head models trained on different negative datasets.
All models have been trained by pasting negatives into inliers from Vistas as presented
in Table 5. Column 1 shows original Wilddash images with pasted PASCAL VOC 2007
animals. Columns 2-4 show predictions of models trained with noisy negatives from
Imagnet-1k-full (without pasting), ImageNet-1k-full (with pasting), and ImageNet-1k-
bb (with pasting), respectively. Red colour indicates a high probability that a pixel is
an outlier.

image in row 1 as outliers. Both of the models fail to classify the animals as
outliers accurately.

The windshield wiper in the row 3 is classified as an inlier. This is because
the submitted models were trained on Wilddash val which contains examples
of images with windshields wipers. Those pixels are ignored during training but
they still influence the features extracted by the dense feature extractor. This
view is supported by Figure 1 where images in column 3 demonstrate that a
model trained only on Vistas classifies windshield wipers as outliers. Handling
ignored training pixels is a suitable direction for future work.
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Fig. 4. Qualitative performance on the WildDash benchmark. Each triplet contains
a test image (left), the output of the two-head model (center), and the output of the
C-way multi-class model trained to predict uniform distribution in outliers (right). The
two-head model does not produce false positives at semantic borders (rows 1-4). Both
models correctly recognize outliers in negative images (rows 5-6).
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Fig. 5. Qualitative performance on WildDash test images with overexposure and dis-
tortion hazards. Each triplet contains a test image (left), the output of the two-head
model (center), and the output of the C-way multi-class model trained to predict uni-
form distribution in outliers (right). The two-head model rejects images with severe
hazards.
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Fig. 6. Qualitative performance of our two submissions to the WildDash benchmark.
Each triplet contains a test image (left), the output of the two-head model (center),
and the output of the model trained to predict uniform distribution in outliers (right).
Rows 1-2 show that our current models are unable to correctly detect small outlier
objects. Row 3 shows that the windshield wiper is recognized as inlier, which occurs
due to its presence in WildDash val (cf. Figure 1).
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