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ETF-u (1996.), gdje je i magistrirao (2000.) i doktorirao (2004.) te se zaposlio kao docent 2006.

godine.
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(2007. – 2008.). Vodio je tri istraživačka projekta Hrvatske zaklade za znanost (MultiCLOD,

MASTIF, ADEPT) te više industrijskih istraživačkih projekata koje su financirale tvrtke Ri-
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Abstract

Open-set recognition simulates real-world settings by introducing outlier samples into model

evaluation. This problem is more complex in the dense prediction setting because input can

contain a mix of in-distribution and out-of-distribution segments. Open-set recognition tasks

can be approached through simultaneous classification and anomaly detection. This work in-

vestigates methods for open-set prediction which are trained by means of negative examples.

We assume that we train domain-specific models and can thus sample negatives from large and

diverse datasets (e.g. ImageNet). These types of negatives introduce additional noise into train-

ing because they may also contain some positive content. This thesis will investigate various

facets of training on noisy negative samples: from choosing the best architecture and loss to

different methods of combining positive and negative samples during batch formation. The

presented experiments validate our contributions on standard open-set recognition benchmarks.

Keywords: semantic segmentation, outlier detection, open-set recognition



Segmentacija slika nad otvorenim skupom razreda putem neg-

ativnih primjera

Prepoznavanje nad otvorenim skupom razreda simulira rad modela u stvarnim uvjetima uvod̄en-

jem izvandistribucijskih primjera u evaluaciju modela. U gustoj predikciji postoji i dodatna raz-

ina složenosti jer ulazni primjeri mogu biti mješavina unutardistribucijskih i izvandistribucijskih

segmenata. Problem prepoznavanja nad otvorenim skupom razreda možemo rješavati mode-

lima koji istovremeno provode klasifikaciju i detekciju anomalija. U ovome ćemo radu istražiti

metode za gustu predikciju nad otvorenim skupom razreda uključivanjem negativnih primjera

u postupak učenja. Pretpostavljamo da su modeli koje učimo specijalizirani zbog čega se kao

negativi mogu koristiti primjeri iz velikih, raznolikih skupova slika (npr. ImageNet). Takvi

negativi unose šum u treniranje s obzirom da mogu sadržavati i unutardistribucijske uzorke.

Disertacija će proučiti postupak uključivanja šumovitih negativa u postupak treniranja - od od-

abira arhitekture modela i gubitka do kombiniranja pozitivnih i negativnih primjera prilikom

učenja. Doprinosi će biti vrednovani na standardnim skupovima za validaciju guste detekcije

izvandistribucijskih primjera.

U nastavku donosimo sažetak rada po poglavljima.

Uvod

Semantička segmentacija je složen zadatak prepoznavanja koji se odnosi na klasifikaciju svakog

pojedinog piksela u jedan od poznatih semantičkih razreda. Razvoj računarstva posljednjih god-

ina omogućio je značajan skok u kvaliteti dubokih modela za semantičku segmentaciju. Time su

ovi modeli napredovali od početnih primjena na jednostavnijim problemima do napredne razine

izvedbe nad vrlo kompleksnim skupovima podataka kao što su Vistas ili ADE20K. Ovakav im-

presivan razvoj ukazuje na mogućnost korištenja dubokih modela u mnogim stvarnim primje-

nama poput autonomne vožnje i medicinske dijagnostike. Med̄utim, duboki se modeli danas

uglavnom testiraju nad zatvorenim skupom podataka gdje slike za testiranje sadrže isključivo

one klase koje su vid̄ene u skupu za treniranje. U stvarnom je pak svijetu moguće da se na

ulazu nad̄e nešto s čime se model nije susreo prilikom treniranja - to može biti slika s nepoz-

natom klasom objekata, ili slika čija je kvaliteta narušena problemima sa sklopovljem ili lošim

uvjetima snimanja poput mraka i magle. Iz ovoga se može zaključiti da velika većina trenutnih

ispitnih skupova loše modelira stvarne uvjete rada modela.

Predikcija nad otvorenim skupom razreda adresira navedene nedostatke evaluacijom modela

nad slikama koje odstupaju od distribucije skupa za treniranje. Pritom se od modela očekuje

da strane primjere identificira kao nepoznate i odbije izvršiti klasifikaciju. Jasnije rečeno, od

modela se očekuje da klasificira ulazne primjere u skup semantičkih razreda koji je proširen s



dodatnom "nepoznatom" klasom. Identifikacija izvandistribucijskih uzoraka tijekom korištenja

modela može dovesti do otkrivanja rubnih primjera te poboljšavanja trenutno korištenih skupova

podataka i njihovih taksonomija.

Gusta predikcija nad otvorenim skupom razreda izazovniji je problem u odnosu na predik-

ciju na razini slike jer sadržaj slike može biti u potpunosti nepoznat, u potpunosti poznat ili

kombinacija poznatih i nepoznatih dijelova. Posljedično, ispitni skupovi usredotočeni na detek-

ciju negativnih slika ne omogućavaju mjerenje napretka modela za predikciju na razini piksela.

Zbog toga je u zadnjih nekoliko godina stvoren niz ispitnih skupova podataka usmjerenih prema

segmentaciji nad otvorenim skupom razreda, posebice u domeni obrade slika iz vožnje. Ispitni

skupovi WildDash, Fishyscapes i SegmentMeIfYouCan nude različite, med̄usobno komple-

mentarne pristupe prikupljanju, označavanju i evaluaciji modela za rad nad otvorenim skupom

razreda te ukazuju na potrebu za daljnjim istraživanjem ovog problema.

Duboki modeli za gustu predikciju

Umjetne neuronske mreže su modeli strojnog učenja inspirirani strukturom i funkcijom bi-

oloških neuronskih mreža. Procesni element unutar neuronske mreže prima ulazne signale,

obrad̄uje ih i proizvodi izlazni signal. Postoje različite vrste elemenata koji se koriste unutar

neuronske mreže, uključujući potpuno povezane slojeve, konvolucijske slojeve i slojeve saži-

manja. Elemente umjetnih neuronskih mreža možemo organizirati u slojeve, gdje izlaz jednog

sloja služi kao ulaz za sljedeći sloj. Zahvaljujući toj organizaciji, neuronsku mrežu možemo

formalno gledati kao kompoziciju jednostavnijih funkcija:

F(x,Θ) = o(fL(fL−1(· · ·(f1(x,Θ1)), · · ·),ΘL−1),ΘL).

Duboke neuronske mreže karakterizirane su velikim brojem slojeva, što im omogućuje

učenje hijerarhijskih reprezentacija ulaznih podataka. U računalnom su vidu posebno popu-

larne konvolucijske neuronske mreže jer su prilagod̄ene topološki organiziranim podacima te

omogućavaju invarijantnost na operaciju translacije. Ovo je posebno bitno pri razumijevanju

slika iz stvarnog svijeta, u kojima je raspored objekata relativno slobodan. Konvolucijske se

mreže primarno sastoje od slojeva konvolucije na koje se nadovezuju nelinearne prijenosne

funkcije. Uz konvoluciju, često je potrebno u modele uključiti i slojeve sažimanja za povećanje

receptivnog polja modela te slojeve normalizacije za stabilniju optimizaciju. Med̄u najvažije

konvolucijske pristupe za klasifikaciju slike ubrajamo arhitekture ResNet i DenseNet, koje su

ostvarile uspješne rezultate na nizu ispitnih skupova. Modele za klasifikaciju slike moguće je

prilagoditi za problem guste predikcije dodavanjem puta naduzorkovanja koji vraća rezoluciju.

Ladder-DenseNet je primjer modela za gusto izvlačenje značajki koji uparuje odabranu kon-

volucijsku okosnicu s memorijski učinkovitim, ljestvičasto povezanim putom naduzorkovanja.
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Gusta predikcija nad otvorenim skupom razreda

Zadatak klasifikacije nad otvorenim skupom razreda možemo definirati kao klasifikaciju nad

zatvorenim skupom razreda koja je proširena sa zadatkom detekcije anomalija. Neke metode

unutar područja detekcije anomalija temelje se na postojećim klasifikatorima (poput onih koji

koriste procjenu nesigurnosti) i stoga bi se mogle smatrati metodama za raspoznavanje nad

otvorenim skupom podataka, iako ta veza često nije izričito prepoznata. Stoga su u sklopu

ovog rada, osim metoda klasifikacije nad otvorenim skupom razreda, razmatrana i druga usko

povezana područja poput detekcije izvandistribucijskih primjera, istovremenog treniranja više

zadataka te učenja na više skupova podataka.

Detekcija izvandistribucijskih primjera često se temelji na modeliranju distribucije skupa

podataka za treniranje. Jednom naučena distribucija omogućava procjenu vjerojatnosti novih

ulaznih podataka, pri čemu bi nepoznati primjeri trebali imati manju vjerojatnost od poznatih.

Modeliranje ulazne distribucije obično se radi generativnim modelima. Med̄utim, ti pristupi

nisu jednostavno izvedivi ili uspješni u području obrade slike. Postoje strategije za poboljšanje

rada tih modela, primjerice prijenosom znanja iz diskriminativnih modela dijeljenjem značajki

prilikom učenja.

Raspoznavanje nad otvorenim skupom podataka izvorno se definiralo se kao minimizacija

rizika nad otvorenim prostorom podataka pronalaskom funkcije koja može značajno udaljiti

nepoznate od poznatih primjera. Odabir latentnog prostora je proizvoljan te su rani radovi

su razmatrali obično značajke koje prethode logitima. Ova definicija pretpostavlja da se un-

utardistribucijski primjeri dokazano javljaju u ograničenom potprostoru latentnih značajki. S

obzirom da je ova definicija vrlo uska, u ovom se radu vodimo novijim radovima koji tu vrstu

raspoznavanja definiraju kroz prizmu ostvarivanja primarnog cilja, a to je klasifikacija prim-

jera uz odbacivanje nepoznatih ulaza. Ovo nam omogućava razmatranje šireg spektra metoda

za detekciju izvandistribucijskih primjera, osobito onih koje se može učinkovito kombinirati s

diskriminativnim modelima. Ovo znači da možemo razmotriti i metode temeljene na procjeni

nesigurnosti koje odbaciju primjere koji se klasificiraju uz nisku procjenu pouzdanosti predik-

cije.

Metode temeljene na nesigurnosti lako se prilagod̄avaju za problem guste predikcije nad

otvorenim skupom podataka. S druge strane, jedna je od karakteristika guste predikcije visoka

razina nesigurnosti, osobito na semantičkim granicama, gdje susjedni pikseli mogu imati vrlo

slične vizualne značajke, a pripadati različitim klasama.

Jedan od načina za poboljšanje detekcije jest proširivanje skupova za učenje dodatnim prim-

jerima. Učenje na dodatnim primjerima može proširiti znanje modela o vizualnom svijetu izvan

primarne domene skupa podataka. Nadalje, dodatnim se primjerima mogu poboljšati procjenu

nesigurnosti u diskriminativnim modelima i modeliranje gustoće vjerojatnosti podataka kod

generativnih modela. Takod̄er, veći skupovi za učenje mogu smanjiti osjetljivost modela na po-
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mak domene i poboljšati postupak izvlačenja značajki. Pritom podaci kojima proširujemo skup

za učenje ne moraju nužno biti stvarni, već mogu biti i sintetički generirani.

Treniranje modela za gustu predikciju putem negativnih primjera

Prepoznavanje nad otvorenim skupom možemo promatrati kao klasifikaciju u kojoj odbacu-

jemo predikcije koje se ne uklapaju u unaprijed definirane kriterije. Na primjer, izlaz standard-

nih modela klasifikacije može se tumačiti kao vjerojatnost da ulazni uzorak pripada odred̄enoj

klasi. Ako je ta vjerojatnost niska, to može ukazivati na to da model gleda strani uzorak i da

bi predvid̄anje trebalo odbaciti. Ovaj se pristup pokazao učinkovitim u klasifikaciji slika i lako

se prilagod̄ava semantičkoj segmentaciji. Med̄utim, predvid̄anje je nesigurnosti osobito iza-

zovno na semantičkim granicama gdje susjedni pikseli mogu imati gotovo identične značajke,

ali pripadati različitim klasama.

Alternativno, problem prepoznavanja nad otvorenim skupom možemo promatrati kao sposob-

nost modela da kaže da piksel ne pripada niti jednoj od poznatih klasa. Med̄utim, to nije moguće

sa standardnim klasifikatorima koji koriste funkciju softmax na svom izlasu s obzirom da ta

funkcija uvijek ima pobjedničku klasu. Drugim riječima, softmax ne može proizvesti vjerojat-

nost 0 za sve klase. Da bi se to riješilo, model se može modificirati zamjenom softmaxa nad

C klasa s C sigmoida, pri čemu svaka sigmoida predstavlja binarni klasifikator odgovoran za

identifikaciju jedne klase. Svaki binarni klasifikator implicitno koristi preostale klase iz skupa

podataka za treniranje kao negativne uzorke. Ako nijedan binarni klasifikator ne da predik-

ciju veću od praga, možemo pretpostaviti da je uzorak nepoznat. Med̄utim, ovaj pristup ima

smanjuje kvalitetu primarne segmentacijske zadaće i ne radi dobro kada je treniran samo na

unutardistribucijskim slikama.

Kao što je ranije navedeno, prepoznavanje nad otvorenim skupom može se prikazati kao

klasifikacija, gdje je taksonomija proširena dodatnom "nepoznatom" klasom. Stoga se model

može trenirati za predvid̄anje K+1 razreda proširene taksonomije. Med̄utim, ovaj pristup ima

ograničenje da zahtijeva uključivanje uzoraka za "nepoznatu" klasu u skup za treniranje, što

možda nije uvijek lako dostupno ili jednostavno za prikupljanje.

Konačno, prepoznavanje nad otvorenim skupom možemo promatrati i kao istovremenu

klasifikaciju i otkrivanje izvandistribucijskih primjera. Izvandistribucijske primjere možemo

otkriti evaluiranjem gustoće izglednosti p(x), što može biti računalno složeno, teško se kom-

binira s primarnim segmentacijskim zadatkom te ne daje dobre rezultate na složenijim skupovima

za treniranje kao što su primjerice skupovi s prikupljenim slikama cestovnog prometa. Stoga

razmatramo jednostavan diskriminativni pristup gdje detektor izvandistribucijskih primjera ob-

likujemo kao binarnu klasifikacijsku glavu koji radi paralelno s primarnim glavom klasifikatora

s više razreda. Oba klasifikatora mogu dijeliti guste značajke što olakšava njihovu integraciju.

Kao i prethodni pristup koji koristi proširenu taksonomiju, diskriminativni pristup detekciji
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anomalija pretpostavlja postojanje negativnih uzoraka u skupu za treniranje.

Pokazuje se da uključivanje negativnih primjera u postupak učenja značajno poboljšava rad

svih prethodno razmatranih pristupa prepoznavanju nad otvorenim skupom razreda. Negativni

se uzorci mogu dobiti uzorkovanjem nekog raznovrsnog pomoćnog skupa za učenje kao što

je ImageNet-1k ili ADE20K. Obično nisu dio originalnih podataka za učenje i većinom su

izvan distribucije skupa za treniranje. Uključivanje je negativnih uzoraka bitno jer smanjuje

vjerojatnost urušavanja značajki. Nadalje, u kontekstu ansambla binarnih klasifikatora, dodatni

negativni uzorci povećavaju i poboljšavaju skup protuprimjera za svaki pojedini klasifikator. Za

pristupe koji eksplicitno definiraju odvojenu "nepoznatu" klasu, negativni su uzorci nužni kako

bi model mogao naučiti izgled "nepoznate" klase i time ju odvojiti od unutar-distribucijkih

uzoraka.

Odabir negativnih uzoraka i odred̄ivanje najboljeg načina njihovog uključivanja u postu-

pak učenja ključno je za učinkovito gusto prepoznavanje nad otvorenim skupom podataka.

Za specijalizirane domene poput vožnje cestom, opći skupovi podataka poput ImageNet-a ili

ADE20K-a mogu se koristiti za uzorkovanje negativnih isječaka. Med̄utim, tako dobiveni neg-

ativni isječci mogu biti šumoviti i ponekad sadrže unutardistribucijske dijelove. Ovaj problem

možemo ublažiti odgovarajućim strategijama uzorkovanja i otežavanja gubitaka. Takve tehnike

mogu značajno smanjiti napor koji bi inače bio potreban za prikupljanje, filtriranje i održavanje

negativnog skupa podataka. Nadalje, učenje semantičke segmentacije obično podrazumijeva

ugad̄anje modela predtreniranih na velikim skupovima podataka. Predtreniranje pruža dubokim

modelima kvalitetne diskriminativne značajke koje omogućavaju razlikovanje velikog broja

razreda. Nažalost, sam postupak ugad̄anja i specijalizacije na odred̄enu domenu može dovesti

do katastrofalnog zaboravljanja čime se smanjuje sposobnost razlikovanja izvandistribucijskih

primjera. Efekt se zaboravljanja može umanjiti proširenjem skupa za učenje, primjerice s pod-

skupom izvornih podataka ili u našem slučaju korištenjem općeg negativnog skupa podataka.

Stoga prilikom treniranja prednost dajemo inicijalizaciji značajkama dobivenim predtreniran-

jem na ImageNetu koje su se pokazale bolje za konačnu sposobnost detekcije anomalija od

značajki koje su dobivene nakon ugad̄anja modela za semantičku segmentaciju.

Dodatno, trebamo uzeti u obzir jedinstvene karakteristike pojave anomalija u segmentaciji

slika. Anomalije se mogu manifestirati u obliku negativnih cijelih slika ili malih regija unutar

ulazne slike. Kako bismo to riješili, moramo osmisliti postupak treniranja koji će se nositi s oba

tipa izvandistribucijskih primjera. U osnovi, model može obraditi samo ono što je vidio tijekom

učenja. Stoga u svoj skup za treniranje uključujemo i negativne i miješane slike. Miješane slike

stvaramo skaliranjem i lijepljenjem negativnih isječaka na unutardistribucijske slike. Budući da

se izvandistibucijske regije mogu razlikovati u veličini i položaju, slučajno odabiremo mjerilo i

položaj zalijepljenih uzoraka.
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Eksperimenti

Predložena četiri pristupa za istovremenu segmentaciju i gustu detekciju anomalija validiramo

na nizu eksperimenata. Ekserimente pretežno provodimo učeći na poznatim skupovima po-

dataka koji sadrže slike iz prometa poput Vistasa i Cityscapesa. S obzirom da ograničavamo

svoj pristup na relativno usku domenu, negativne podatke uzorkujemo iz skupova podataka opće

namjene poput ImageNet-a i ADE20k.

Validacijske eksperimente provodimo uglavnom na skupovima koje smo sami stvorili kom-

biniranjem skupova podataka iz različitih domena. Za procjenu detekcije negativnih slika up-

arujemo validacijski skup slika WildDash1 sa skupom slika interijera LSUN. Za procjenu de-

tekcije izvandistribucijskih regija u mješovitim slikama, evaluacijski skup kreiramo lijepljen-

jem objekata iz skupa Pascal u skup WildDash1. Kreirani validacijski skupovi omogućili su

nam da pokažemo sposobnost naših metoda da detektiraju negativne slike i negativne uzorke

u slikama mješovitog sadržaja. Iako naš pristup može unijeti odred̄enu pristranost prema de-

tekciji samog postupka lijepljenja, pokazujemo da možemo uspješno prepoznati i semantičke

izvandistribucijske primjere u pravim primjerima slika mješovitog sadržaja te na primjerima

koji nisu semantički dio negativnog skupa za učenje. Pokazujemo da povezivanje zadatka de-

tekcije izvandistribucijskih primjera sa semantičkom segmentacijom dovodi do bolje detekcije

anomalija. Dodatno smo predložili metode za poboljšanje rada dvoglavog modela na malim

objektima kroz poboljšano obogaćivanje podataka za treniranje i postprocesiranje izlaza. Naši

modeli pokazuju kompetitivne rezultate na testnim skupovima WildDash i Fishyscapes. Usp-

ješno smo primjenili svoj pristup na skupovima podataka StreetHazard, Vistas-NP i UCSD.

Zaključak

Rezultati koji su prikazani u ovom istraživanju podržavaju naše hipoteze da i) korištenje šu-

movitih negativnih primjera može značajno poboljšati detekciju izvandistribucijskih primjera

i raspoznavanje nad otvorenim skupom razreda, i ii) modeli za raspoznavanje nad otvorenim

skupom razreda nemaju značajno lošiju klasifikacijsku performansu od modela za raspozna-

vanje nad zatvorenim skupom razreda. Doprinosi ovoga rada uključuju metodu za učenje mod-

ela za detekciju anomalija uz korištenje dodatnih šumovitih negativnih primjera, poboljšanje

točnosti modela za gustu detekciju anomalija učenjem na slikama s mješovitim sadržajem te

poboljšanje točnosti guste detekcije anomalija dijeljenjem značajki sa standardnim modelom za

gusto predvid̄anje nad zatvorenim skupom razreda.

Segmentacija nad otvorenim skupom razreda je područje s nizom još nerazriješenih izazova,

posebno u otkrivanju malih anomalija ili vrlo velikih anomalija. U budućnosti bi bilo vrijedno

istražiti nove metode za rješavanje ovih izazova. Jedan od smjerova istraživanja svakako bi tre-

balo biti iskorištavanje nedavnog napretka u arhitekturama računalnog vida, poput transformera

x



i kombiniranih modela za vid i jezik. Taj bi se napredak mogao iskoristiti za poboljšanu detek-

ciju izvandistribucijskih primjera i generalizaciju.

Keywords: semantička segmentacija detekcija izvandistribucijskih primjera, prepoznavanje

nad otvorenim skupom podataka
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Chapter 1

Introduction

Semantic segmentation is a highly challenging task that involves the classification of each pixel

in an image into one of several predetermined classes. The difficulty of this task primarily

arises from its computational complexity since we wish to produce high-resolution output and

thus need both fine-grained features as well as high-level features that provide significant con-

text. Consequently, early semantic segmentation benchmarks such as Camvid [1] reduced the

complexity by keeping the number of classes and image resolution low, and having a relatively

uniform image acquisition context. Still, improvements in computer hardware allowed for bet-

ter methodologies, and larger models with more capacity. Consequently, as simpler benchmarks

were being solved, more complex ones replaced them. Today, our models achieve remarkable

results even on complex and varied datasets such as Vistas [2] and ADE20k [3].

The impressive progress in semantic segmentation has opened up possibilities for real-world

applications, such as autonomous driving [4], road-safety inspection [5], photo-editing [6], and

medical diagnostics [7]. However, a crucial limitation of most current benchmarks is that they

evaluate in the closed-set scenario. This means that the models are only evaluated for their

performance on known classes, while their behaviour in anomalous image regions is not con-

sidered. This is a significant drawback for real-world deployment.

Consider for example a very narrowly defined domain such as road driving and one of its

most challenging benchmarks - Vistas. This dataset contains 20000 images and 65 classes taken

in diverse weather and lighting conditions from various locations. Despite its size, Vistas fails

to properly cover all real-life scenarios since it does not include known classes in non-standard

poses such as people kneeling or laying, crashed vehicles or fallen vegetation. It also neglects to

account for hardware malfunctions, lens distortions, dirt, raindrops or other visual degradations

that may affect image quality and model output. Finally, the closed-set evaluation in Vistas

does not answer other potentially important questions, such as: What would happen if a model

with exemplary Vistas performance encounters anomalous samples that do not conform to the

generative process of the training data, such as an elephant or a kangaroo? Likely, the model
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would classify them into one of the known classes, potentially leading to critical failures such

as inappropriate driving manoeuvres.

One way to fix the described drawbacks of the Vistas benchmark is by creating even more

complex datasets. However, this approach is unlikely to bring any solutions in mid-term future

as datasets are inherently limited in their ability to capture every possible scenario, even within

a specific domain such as road driving. Adding more classes, for example including a wider

variety of animals, may seem like a solution, but this can lead to new problems such as long tail

distribution, where some classes may be represented with only a small number of samples for

these newly added, and likely rarely occurring, classes.

A better way to address the challenge of anomalous input is to adopt an approach that in-

volves rejecting a foreign sample instead of attempting to classify it. From another perspective,

we can consider this approach as either classifying the sample either into one of the known

classes or into the "unknown" class. This approach essentially expands our taxonomy with a

new class that represents the remainder of the visual world. By doing so, the model gains the

ability to explicitly indicate that it is unsure about what it is seeing. This inference framework

is known as open-set classification. We note that the first formal definition of open-set clas-

sification [8] requires minimizing open-space risk by finding a function that guarantees a low

prediction confidence in samples distant from the training distribution. In essence, this means

that inliers should be contained in a limited region of a chosen feature space. This requirement

of inlier representation compactness is fairly strict. In practice, the pursuit of this goal is vulner-

able to feature collapse [9, 10] and hence provides no guarantee that the outliers will be distant

from inliers in the latent space. On the other hand, Huang et al. [11] offered a simpler definition

which emphasized the purpose of open-set classifiers: to correctly classify samples from known

classes and accurately identify those from unknown classes. In our work, we adopt the latter

view of the open-set recognition problem.

Open-set classifiers are crucial for systems where safety is a critical concern. They allow

us to design our systems to respond appropriately to unexpected and potentially dangerous

situations. For example, in a road-driving scenario, if the model encounters an exotic animal or

if the lens gets dirty, it can indicate the presence of an anomaly and return driving controls back

to the driver or initiate the emergency braking procedure. Occurrences of anomalies in real-

world settings can be used to discover corner cases, rethink current taxonomies, and further

improve datasets.

The need to provide a more realistic representation of the real world led to multiple efforts to

design benchmarks aimed at evaluating open-set segmentation performance, particularly in the

road-driving domain. The WildDash benchmark [12] includes negative images that are either

completely foreign to the road-driving domain or significantly differ from the inlier images, but

it fails to account for situations where only a small region of the image is unknown while most
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of it is within the inlier distribution. On the other hand, Fishyscapes [13] and SegmentMeIfYou-

Can [14] benchmarks focus on anomaly detection in mixed-content images. While Fishyscapes

tests on artificially created mixed-content images, SMIYC collects real mixed-content images

in varied environments. Although artificially created images offer the advantage of virtually

unlimited type and position of negative patches, they might be easier to detect due to a narrow

inlier domain and pasting artefacts in foreign regions. Currently, the WildDash and Fishyscapes

benchmarks evaluate semantic segmentation performance in inlier images but do not measure

the impact of outlier detection on segmentation performance in mixed-content images. While

these benchmarks have limitations, their development highlights the need for research in open-

set classification. The development of both open-set recognition methods and open-set recog-

nition benchmarks should have a mutually reinforcing effect, as has occurred in the closed-set

setting. With the creation of more comprehensive benchmarks, researchers will be able to better

evaluate the performance of open-set classification models on mixed-content images, leading to

further improvements in the field.

This work explores dense open-set recognition, with a particular emphasis on road-driving

scenarios. Given the potential practical applications of such models, it is essential that any

additional capability for recognizing foreign input comes with minimal overhead in terms of

memory and processing time. With this in mind, we present several designs for an open-set

recognition module that can be seamlessly integrated with existing dense feature extractors.

Our proposed approaches are based on different perspectives of the open-set recognition task.

We can view open-set recognition as classification where we discard outputs that do not fit

predefined criteria. For example, the output of standard classification models may be interpreted

as the probability that the input sample belongs to a particular class. If this probability is

low, that may indicate that the model is looking at a foreign sample and that the prediction

should be discarded. This approach has been shown to work well in image classification and

is straightforward to adapt to semantic segmentation [15]. However, it faces challenges in the

dense prediction context, where there is a lot of inherent uncertainty, especially at semantic

borders where neighbouring pixels may have almost identical features but belong to different

classes [16].

Alternatively, we can view the problem of open-set recognition as the ability of the model to

say that a pixel does not belong to any of the known classes. This, however, is not possible with

standard classifiers that use softmax function on model output as this setup ensures that there

will always be a winning class. Consequently, softmax cannot produce a probability of 0 for

all classes. To address this, the model can be modified by replacing the softmax over C classes

with C sigmoids. Each sigmoid represents a binary classifier responsible for identifying a single

class. Each of the C binary classifiers uses the remaining classes from the training taxonomy as

negative samples. If none of the binary classifiers claim an input sample, we can assume that
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Figure 1.1: A dense open-set recognition model has to correctly identify unknown samples and accu-
rately classify known samples. Such a model should be able to produce: i) a dense outlier map, and ii)
a semantic map classifying pixels into C inlier classes. The final output is the merged open-set semantic
map which denotes objects foreign to the training taxonomy as a separate "anomaly" class. The example
shows open-set segmentation of an image into a Cityscapes taxonomy, where ego-vehicle and the forklift
are identified as outliers.

the sample is foreign. However, this approach has some drawbacks. It reduces the quality of

the primary segmentation task and does not perform well when trained only on inlier images.

Open-set segmentation can further be framed as C+1 classification, where the taxonomy

has been expanded with an extra "unknown" class. Thus, the model can be trained to predict

classes from this augmented taxonomy. However, this approach has a limitation that it requires

negative training samples for the "unknown" class, which may not always be readily available

or easy to collect. Additionally, the sampling of the C+1-st class needs to be carefully balanced

during training since it contains a larger visual diversity than the inlier classes.

Finally, we can view open-set recognition as simultaneous classification and outlier detec-

tion. Outlier detection involves identifying samples that are foreign to the training distribution

and can be applied to datasets without a primary classification task. We consider a simple dis-

criminative approach where we formulate the outlier detector as a binary classifier that works

in parallel to the primary multi-class discriminative head [17]. Both classifiers of the proposed

two-head approach share dense features which makes their integration seamless and introduces

semantically rich features into outlier detection. The downside of the discriminative outlier

detection approach is that it assumes the existence of negative training samples.

Figure 1.1 illustrates a dense open-set recognition model that performs outlier detection and

semantic segmentation simultaneously on an input image. The outputs of these tasks are then

combined to generate a final, dense open-set semantic map.

Note that there are alternative approaches to outlier detection that may be more attractive

since, in principle, they do not require a primary classification task [18] or negative data. Prin-

cipled outlier detectors attempt to model the training distribution p(x) [13, 19]. This is usually

done with generative models, though not all of them [20, 21] are suitable for dense prediction

context. More suitable generative models are either very hard to train [22] or can only deliver a
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lower bound of the likelihood [23] or are outright incapable to infer density [24]. Furthermore,

generative models typically fail to capture image semantics, leading to such errors as grouping

white cats with white dogs, rather than other, differently coloured cats [25]. They also some-

times behave counterintuitively by assigning higher likelihoods to outliers than inliers [26, 27].

Finally, generative features are often difficult to combine with the primary classification task and

ultimately do not perform that well on more complex training domains such as road-driving.

Other approaches to outlier detection rely on image resynthesis with conditional generative

models [28, 29]. Outlier samples should be harder to reconstruct which should result in large

errors during reconstruction. The dissimilarity between the input and the reconstructed image

may then be used for outlier detection. Similarly to generative approaches, resynthesis requires

significant computational resources. They have been combined with a primary segmentation

task for open-set segmentation and improved efficiency [30], though this approach struggles on

complex cluttered scenes.

Among the proposed open-set recognition approaches, the C+1 classifier and the two-head

model require negative training examples. C binary classifiers and classification with rejection

do not necessarily need additional negative data, but may still benefit from their inclusion into

the training process. We thus focus on incorporating negatives into training.

Choosing negative samples and determining how best to include them in the training pro-

cedure is an important consideration for effective open-set recognition. For narrow domains

like road-driving, general-purpose datasets such as ImageNet [31] or ADE20K can be used to

sample negative data. However, these negatives can be noisy and occasionally contain inlier

visual content. This noise can be minimized through proper sampling and weighting strategies.

Development of training strategies that account for noise reduces the effort that would otherwise

be required for the assembly, filtration, and curation of the negative dataset. Moreover, standard

semantic segmentation training procedures typically fine-tune models pre-trained on large-scale

datasets. This means that pre-trained models usually come with the ability to produce features

for distinguishing between a vast number of classes. Keeping the negative samples throughout

the training process prevents potential catastrophic forgetting that may arise due to fine-tuning

and serves as regularization to prevent overfitting. Therefore, we train our models end-to-end

starting from ImageNet-pretrained initialization instead of of pre-trained semantic segmentation

models.

In addition, we need to consider the unique characteristics of outlier occurrence in image

segmentation. Outliers may manifest in the form of entire negative images or only small regions

within an input image. To address this, we need to design the training procedure to handle

both types of outliers. Essentially, the model can only handle what it has seen during training.

Therefore, we include both negative and mixed-content images in our training dataset. We

create mixed-content images by pasting jittered negative samples onto inlier images. Since
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outlier patches may vary in size and position, we randomly select the scale and location of the

pasted patches.

In order to thoroughly evaluate our approach, we not only test our models on the WildDash

and Fishyscapes benchmarks, but also design several validation datasets to address potential

drawbacks. One of the primary concerns is the use of real negative data. As it is impossible to

expect datasets to cover all real-world scenarios, it is also not possible to have negative data that

will cover all possible outliers. However, we show that our approach can successfully detect

even those outliers that do not exist in the negative datasets. Additionally, since we rely on

mixed-content images during training, there is a risk of the model detecting pasting artefacts

instead of proper outliers. Therefore, we explore the ability of our models to detect real outliers

and evaluate their sensitivity to the pasting procedure. By doing so, we provide a more rigorous

evaluation of the performance of our method.

This thesis is structured as follows. First, we examine deep learning models for computer

vision and evaluate their suitability for semantic segmentation. We analyze the fundamental

components of these models and investigate how they are integrated into some of the most

popular computer vision architectures. We then explore recent advances in outlier detection

and open-set recognition, both in the context of images as a whole and in a dense context.

We outline our approach to dense open-set recognition, detailing the design of our open-set

recognition modules and explaining how they can be effectively trained with noisy negatives.

Our experiments on publicly available benchmarks, combined with our validation datasets, offer

valuable insights into the strengths and weaknesses of our approach. We complete the thesis by

discussing implications of our work and proposing suitable directions for future research in this

field.

Our contributions are as follows. We introduce a multi-head open-set recognition model

based on sharing features between outlier detection and semantic segmentation of images. We

present a technique for assembling training batches of mixed-content images that promote learn-

ing of accurate segmentation of out-of-distribution objects. Finally, we propose an optimization

procedure that promotes robustness to semantic noise in negative learning examples.
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Chapter 2

Deep learning for dense prediction

Artificial neural networks are computational systems inspired by the structure and function

of biological neural networks. A single unit within a neural network receives input signals,

processes them, and produces an output signal. There are various types of processing elements

used within a neural network, including fully connected layers, convolutions and pooling layers.

Processing units in a neural network are usually organized into layers, where the output of

one layer serves as the input to the next layer. Due to this organization, a neural network can be

formally be viewed as a composition of simpler functions:

F(x,Θ) = o(fL(fL−1(· · ·(f1(x,Θ1)), · · ·),ΘL−1),ΘL).

Deep neural networks are characterized by a large number of layers, which allows them to

learn hierarchical representations of the input data.

Some popular deep models for image classification include ResNet and DenseNet architec-

tures, which have achieved state-of-the-art performance on a range of benchmarking datasets.

Modifications to these models, such as the introduction of an upsampling path, has been used

to improve performance in dense prediction tasks such as semantic segmentation.

The following sections describe the basic building blocks of neural networks and how they

are combined into ResNet and the DenseNet architectures. The final section briefly describes

how these architectures are incorporated into the Ladder-DenseNet architecture for dense fea-

tures extraction.

2.1 Basic processing elements

2.1.1 Fully-connected layer

A fully connected layer is an artificial neuron. It is a function that maps the input vector x into

f(x) =Φ(w ·x+b), where Φ is a non-linear function called the activation function. One specific

example of an artificial neuron is perceptron [32] which uses the Heaviside step function as its
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Figure 2.1: Figure shows a fully connected layer. The input vector x is transformed into f(x) = Φ(w ·x+
b), where w and b are model parameters, while Φ is a non-linear function called the activation function.

activation function.

Activation functions are necessary since they introduce non-linearity into the model. This

is important since image data is complex and not necessarily linearly separable in the input do-

main. Besides the Heaviside step function, other activation functions include the ReLU function

and the sigmoid function. These are preferable to the step function when the model is trained

using gradient-based training.

2.1.2 2D convolution

2D convolution is a mathematical operation that combines two 2-dimensional matrices to pro-

duce a third 2D matrix that expresses how one of the matrices modifies the other. It can be

visualized as a small 2D matrix (known as the kernel or filter) that is "slid" over the image,

and the dot product of the kernel and the overlapping portion of the image is computed at each

position to produce the output.

The formula for 2D convolution can be expressed as:

(K ∗ I)[i, j] =
kx

∑
m=0

ky

∑
n=0

K[m,n]I[i+m, j+n]

where I is the input image and K is the convolution filter with spatial dimensions of kx ×ky.
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Figure 2.2: Figure shows a convolutional layer. The image is first transformed with a convolution which
we visualize as a kernel that slides over an image. The number of kernels is equal to the number of
desired output channels. A bias is added for each kernel and the output is passed through a non-linear
activation function.

Convolutions are somewhat similar to fully connected layers since both can be expressed

as dot products between input and output. However, convolutions have some properties that

make them more suitable for image processing. First, they are better at capturing localized

features since they operate on small regions of the input image. In contrast, fully connected

layers compute a weighted sum of the entire input volume. This also means that convolutions

preserve the spatial structure of the data while a fully connected layer does not. Convolutions

are equivariant to translation which is especially important in image processing since objects

can be located anywhere in an image. Finally, convolutions promote parameter sharing over

all locations of the input image which makes them more memory efficient and ultimately more

robust to input variations.

2.1.3 Batch normalization

Batch normalization is a technique used in machine learning to improve the performance and

stability of neural networks. It works by normalizing the inputs of each layer in a network

to have zero mean and unit variance. Specifically, batch normalization involves centering and

scaling the activations of each layer using statistics computed over a mini-batch of training

examples. This has the effect of reducing the internal covariate shift, which is the change in

the distribution of activations in the hidden layers of a neural network due to changes in the

parameters of previous layers during training. By reducing this shift, batch normalization can

improve the convergence of the network during training and help prevent overfitting.

We define batch normalization as:
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Figure 2.3: Figure illustrates batch normalization. Mean and standard variance are calculated for a
channel by reducing over the spatial dimensions as well as the batch samples. The calculated values are
used to normalize the input which is then scaled and shifted to produce the final output.

x̂(k) =
x(k)−µB√

σ2
B + ε

, (2.1)

where x̂(k) is the normalized output of the k-th neuron in the batch, x(k) is the original input

of the k-th neuron, µB and σ2
B are the mean and the variance of the inputs in the current mini-

batch, and ε is a small constant added for numerical stability. The normalized outputs are then

scaled and shifted using learnable parameters, which can be denoted as:

y(k) = γ
(k)x̂(k)+β

(k), (2.2)

where y(k) is the final output of the k-th neuron, and γ(k) and β (k) are learnable parameters

that control the scale and shift of the normalized values, respectively.

During inference, we use population statistics µP and σ2
P as the dependence on the batch

statistics is no longer useful.

2.1.4 Pooling layer

Pooling is a common operation in convolutional neural networks (CNNs) used for down-sampling

an image or feature map. Pooling helps to reduce the spatial size of the input, which in turn

reduces the number of parameters and the computation required in the network. It also serves to

increase the receptive field of neurons in the deeper layers neural networks, which is important

for capturing global features and more context.

A special type of pooling is spatial pyramid pooling [33, 34] which divides the input image
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Figure 2.4: We illustrate different types of pooling operations. In standard pooling (top), the output is
calculated over a window of a fixed size, e.g. 2x2. The output may either be a maximum value (top
left) or the average value (top right) inside this window. Spatial pyramid pooling is a type of layer that
performs average pooling over a predefined number of pooling regions. This means that the size of the
output is fixed and thus enables the processing of images of arbitrary size.

into a grid of a predetermined number of subregions, or pooling regions, at multiple scales.

Then, for each pooling region, the CNN extracts features and applies a pooling operation to

produce a fixed-length feature vector that summarizes the content of that region. The feature

vectors from all the pooling regions are then concatenated into a single feature vector, which

represents the input image. The key advantage of SPP is that it allows a CNN to process

input images of arbitrary size, and produce fixed-size feature maps that can be fed into a fully

connected layer for classification or other downstream tasks.

2.2 Convolutional neural networks

2.2.1 ResNet

Introduced in 2015, the ResNet [35] uses residual connections to successfully train significantly

deeper models than previously possible. This is because residual connections successfully han-

dle the problem of vanishing gradients in very deep networks. Vanishing gradients occur when

the gradients become very small as they propagate back through the network during training,

making it difficult to update the weights in earlier layers. This can lead to poor performance or

even convergence failure.

Residual connections solve this problem by allowing the network to learn residual functions

that are easier to optimize. Instead of directly learning the mapping from input to output y =

f (x), the network learns a residual mapping, which is the difference between the input and

output: y = f (x) + x where x is the input to the layer, f (x) is the mapping function that is
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 ResNet configs:
 50 layers cfg=[3,4,6,3]
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Figure 2.5: We illustrate the ResNet architecture which consists of residual blocks. Each block com-
prises several convolution and normalization layers. The layer input and output are connected through
skip connection and merged with addition. The full network is created through the stacking of residual
blocks. The blocks are organized into groups, with spatial resolution halving between two successive
groups.

learned by the layer, and y is the output of the layer. We refer to the addition of x to f (x) is

the residual connection. There are a couple of potential explanations for the success of residual

connections. They introduce paths of varying lengths and behave like ensembles of shallower

neural networks thus reducing the problem of exploding and vanishing gradients.

In ResNets, the residual module f (x) consists of three convolutions. First, a 1x1 convolution

reduces the dimensionality of the input. This is followed by a 3x3 convolution and another 1x1

convolution to return the original dimensions. There are no pooling layers in Resnet. Instead,

certain blocks along the downsampling path perform convolutions with a step of 2.

2.2.2 DenseNet

DenseNet [36] builds on the idea of skip connections introduced in ResNet by taking them

one step further. While ResNet only skips one layer at a time, in DenseNet the output of

each layer is directly connected to every subsequent layer. This dense connectivity pattern

encourages information flow between layers and promotes feature reuse, which helps to mitigate

the vanishing gradient problem that can occur in very deep networks.

DenseNet organizes the convolutional layers into blocks, and each block consists of multiple

layers. To reduce dimensionality, DenseNet uses 1x1 convolutions before each 3x3 convolution.

Additionally, it uses transition layers to reduce the spatial resolution and dimensionality of the

feature maps. These transition layers consist of batch normalization, 1x1 convolution, and

pooling layers.

In contrast to ResNet, DenseNet uses concatenation instead of addition to combine the out-
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Figure 2.6: DenseNet architecture is made up of several dense blocks. Each dense block contains
dense layers that comprise convolution and normalization layers. The input into each dense layer is a
concatenation of feature maps of all previous layers. Dense blocks are connected with transition layers
which reduce the spatial dimensionality between blocks. The figure is reproduced from the original paper
on densely connected models [36].

put of each layer with the input to subsequent layers. This results in a dense connectivity pattern

that gives the network its name. The use of concatenation promotes feature reuse and enables

the network to learn more discriminative features with fewer parameters, making DenseNet a

promising architecture for applications with limited computational resources.

2.3 Semantic segmentation architectures

2.3.1 Ladder-DenseNet

Semantic segmentation requires high-resolution feature maps, which cannot be obtained using

standard convolutional neural networks such as ResNet or DenseNet. To address this limitation,

the ladder DenseNet [37] proposes an addition of a lightweight upsampling path to a pretrained

DenseNet backbone. The upsampling path consists of upsampling blocks that double the spatial

resolution of the input using bilinear interpolation and blend it with the projected features of

the corresponding dense block output. The proposed upsampling path is lightweight compared

to the backbone and memory-efficient, which is crucial for semantic segmentation tasks. To

improve memory efficiency even further, the third dense block is split in half, and an additional

pooling layer is added in between. This configuration increases the receptive field of the model,

allowing it to capture wider context information. Additionally, a spatial pyramid pooling (SPP)

layer is included between the backbone and the upsampling path to further capture context

information. To improve model generalization, the ladder DenseNet includes auxiliary losses

that use soft targets determined as the label distribution in the corresponding N x N window,

where N denotes the downsampling factor.
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Figure 2.7: Ladder DenseNet architecture uses a pretrained backbone such as DenseNet and replaces the
final pooling layer with an SPP block. Spatial resolution is recovered with a lightweight upsampling path
which consists of upsampling blocks. Within an upsampling block,input spatial resolution is first doubled
and then blended with the corresponding dense block output. Some ladder-densenet variants introduce
additional pooling layers in the middle of dense blocks for increased improvement in efficiency. The
figure is reproduced from the original paper on ladder densenets [37].
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Chapter 3

Dense open-set recognition

The task of open-set recognition extends closed-set classification with anomaly detection. There

are methods within the domain of anomaly detection that are based on existing classifiers (such

as those utilizing prediction uncertainty estimation) and could thus be considered a part of open-

set recognition, though this connection is often not explicitly recognized.

In the following sections, we provide an overview of pertinent literature in the fields of

semantic segmentation, anomaly detection, and open-set recognition.

3.1 Outlier detection

Novelty detection is a fundamental problem in machine learning that aims to identify sam-

ples that do not conform to the generative process of the training data [38]. This umbrella

term encompasses a range of different tasks, including anomaly detection, outlier and out-of-

distribution detection, rare-event detection, and one-class classification [25, 39].

A common and principled approach for outlier detection is to model the probability distribu-

tion of the training dataset using generative models [19]. This method assumes that anomalous

samples would yield low probabilities under the learnt distribution. However, achieving this in

practice is challenging, particularly in the field of computer vision [40, 41]. One of the reasons

is that existing models can behave counter-intuitively, assigning high likelihoods to outlier sam-

ples instead of low ones [26, 42, 43]. Furthermore, generative models tend to have difficulty

detecting semantic anomalies without [25]. This might lead to failures such as connecting vi-

sually similar objects, such as white cats and white dogs, rather than semantically connected

classes such as white and black cats. It is therefore necessary to encourage semantics through

alternative methods.

Generative adversarial networks (GANs) [24] are another powerful tool for modelling train-

ing distributions and locating anomalies. However, utilizing existing architectures for anomaly

detection requires modifications to the training process that ensure proper mapping of images
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into latent-space representations [44, 45].

Reconstruction-based anomaly detection is another approach that first encodes and then

decodes images [46]. The basic premise of this approach is that a significant difference between

the original input and its reconstruction may indicate that the sample is an outlier [47]. An

auto-encoder may serve as the generator portion of a GAN architecture, with the discriminator

used to evaluate the difference between the input and reconstruction [48, 49, 50]. However,

the reconstructed samples tend to be imperfect, regardless of the type of input, making it more

effective to use the encoder distribution for anomaly detection [51].

To improve the performance of generative models for novelty detection, it is often neces-

sary to incorporate additional complexity into the training process [52]. For instance, in video

sequences, temporal information can be used to improve anomaly detection [53]. Another ap-

proach is to leverage alternative tasks, such as future frame forecasting, for better outlier detec-

tion [54, 55].

In addition, several studies have demonstrated the benefits of pretraining on a different task

or using knowledge distillation [56, 57, 58]. However, it is important to note that the benefits

of pre-training can gradually diminish during fine-tuning due to catastrophic forgetting [59].

Therefore, it may be necessary to introduce special loss components to retain the knowledge

gathered during pre-training [60].

Taken together, the aforementioned studies suggest that incorporating pretraining and alter-

native tasks can boost the performance of outlier detection models. Additionally, integrating

outlier detection with traditional discriminative models [61] not only improves novelty detec-

tion, but also effectively results in open-set recognition models.

3.2 Open set-recognition

The task of open-set recognition was initially introduced by Scheirer et al. [8] with the goal

of minimizing open-space risk by learning a latent embedding that can effectively separate

unknown samples from known samples by a large distance. The definition of the task is broad

and does not specify the space or method for measuring distance. OpenMax [62] was one of the

first methods used for training in open-set recognition. It calculates posterior probabilities over

C+1 classes based on the distance between the input sample and class representatives in the

feature space. Another approach that fits the definition of the task are distance-based classifiers,

which classify samples as outliers if they are too far from any training data points in the feature

space [63, 64].

The formal definition of open-set recognition can be seen as limiting, as it assumes that

the inlier samples are restricted to a particular space. To better align with the practical goal of

performing the primary recognition task while also identifying unknown inputs and rejecting
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them, it may be more useful to define open-set recognition as a task that combines classification

and outlier detection. By doing so, we can expand the range of applicable outlier detection

methods. Of particular interest are those approaches that can be integrated with discriminative

models, as this will facilitate the creation of open-set recognition models.

A simple way of implementing an open-set classifier is to look at the prediction confidence

of a closed-set classifier, assuming, of course, that models produce more confident predictions

on known than on unknown inputs. In probabilistic discriminative models we interpret the out-

put as the likelihood of each class given an input sample and and we assign the input sample

to the class with the highest likelihood (max-softmax). We can simultaneously treat this likeli-

hood as the model’s confidence in its own prediction [15]. However, deep models tend to output

highly confident results regardless of the input [65]. Different strategies have been proposed to

enhance the informative value of max-softmax. These include recalibration [62, 66], image pre-

processing [67, 68], Monte Carlo (MC) dropout [69, 70] and ensembling k 1-class classifiers

[58, 71, 72]. Note that there are certain drawbacks to these approaches. While recalibration

may improve confidence estimates of the model, it does not necessarily impact the separability

of inlier and outlier samples and may not strictly improve outlier detection performance. On

the other hand, preprocessing, MC-dropout and ensembling, offer only marginal improvement

over the baseline while incurring additional processing cost due to multiple forward passes and

models during inference. This may not be acceptable in real-world use cases, especially on

large input resolutions and more complex tasks such as semantic segmentation.

There are other, alternative methods for estimating prediction uncertainty. These include

examining other properties of the output, such as entropy, or explicitly training networks to

recognize difficult examples while only training on inliers. The latter approach can be achieved

through joint training of a complementary head in a compound model, allowing the two heads

to share the feature representation for increased efficiency and cross-task synergy [16, 61, 73].

However, despite the potential benefits of these methods, they often demonstrate similar be-

haviour to the max-softmax approach. A principled information-theoretic approach expresses

epistemic uncertainty [16] as mutual information between posterior parameter distribution and

particular predictions [74]. However, this assumes that MC-dropout is able to approximate

Bayesian model sampling, which may not be the case in practice.

Ultimately, the methods that rely on detecting outliers through prediction uncertainty es-

timation, conflate model uncertainty, which is uncertainty due to the lack of knowledge or

"unknown knowns", with distributional uncertainty, which is uncertainty due to the difference

between training and testing data or "unknown unknowns". In order to successfully detect out-

liers, it is important to differentiate between these two types of uncertainties [75].

These approaches can be improved for outlier detection by augmenting the standard discrim-

inative loss with an additional term that encourages high output entropy in negative samples,
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such as KL-divergence between predictions and a uniform distribution [76, 77], or a suitable

Dirichlet distribution [75]. Another approach is to train a separate prediction head that directly

predicts the outlier probability using a negative dataset [17]. However, these methods are sensi-

tive to the choice of the negative dataset, which is challenging to design since prior knowledge

of the out-of-distribution space is unknown [78]. To overcome this issue, generative models can

be designed to produce synthetic samples at the border of the training distribution [76, 79, 80].

Nevertheless, generating synthetic outliers is only feasible for small resolutions due to the limi-

tations of generative models and GPU hardware. Experiments on small images have shown that

diverse negative datasets yield better performance than synthetic outliers [76, 77].

3.3 Training with Negative Data

Focusing solely on inlier samples does not generally yield optimal results in dense open-set

recognition. Incorporating negative data during training has been shown to improve outlier

detection [60, 72, 77, 81]. Perera et al. propose a template matching approach that uses a

shared representation trained simultaneously for ImageNet classification and inlier compactness

[60]. However, this method may not be suitable for complex inlier ontologies. Hendrycks et al.

propose training max-softmax for low confidence in negative images, which improves outlier

detection but does not fully resolve the problem of separating negative samples from those near

a semantic border [77]. Chan et al. [81] use COCO images to maximize entropy in negative

samples, though they first filter these images to remove inlier classes. Vyas et al. [72] partition

the training data into K folds and train an ensemble of K leave-one-fold-out classifiers. The

drawback of this approach is that it requires K forward passes.

Including negative data in the training set can have several advantages beyond improved

outlier detection. For example, it has been shown to improve the generalization properties of

deep models [82]. Alternatively, combining multiple datasets allows for the training of general-

purpose closed-set prediction models with extended ontologies [83, 84, 85, 86]. These models

are expected to produce better features and be less sensitive to domain shift. Moreover, the

extended taxonomies can facilitate outlier detection when these models are applied to narrower

subdomains.

Incorporating negative samples into the training set does not necessarily require using real

datasets. Previous studies [48, 76] have employed small synthetic negative samples, which

have proven effective for detecting small negative images. However, adapting these methods

for dense prediction at Cityscapes resolution may not be straightforward [87]. Nevertheless,

small synthetic negatives could still be useful for improving outlier prediction in mixed-content

images [88].

The soundness of training with negative data has been challenged by Shafaei et al. [89],
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who reported underwhelming results for this approach. However, their experiments averaged

results over all negative datasets, including the simple MNIST dataset.

3.4 Multi-task Training

Multi-task models involve training a single model to simultaneously perform two or more dis-

tinct tasks. They are usually created by attaching several prediction heads on top of shared

features [90]. The total loss is usually expressed as a weighted sum of head-specific losses [91]

and optimized in an end-to-end fashion.

Multi-task models offer several advantages over single-task models. Combining training

datasets creates richer and more varied training data [92]. Evaluation should also be faster since

there is no need to run separate models for individual tasks. Feature sharing enables the transfer

of knowledge across tasks, which should lead to more robust features and better generalization.

However, when designing multi-task models, it is important to consider task compatibil-

ity since not all tasks are necessarily mutually reinforcing [93]. Therefore, it is important to

choose tasks that are compatible with each other to maximize the benefits of multi-task learn-

ing. There are many task combinations that have been successfully incorporated into multi-task

training, including depth, surface normals, and semantic segmentation [94], object detection

and semantic segmentation [95], as well as classification, bounding box prediction, and per-

class instance-level segmentation [96].

3.5 Dense open-set recognition

Dense open-set recognition remains a relatively under-researched field despite its potentially

important applications in a variety of fields such as autonomous driving and industrial facilities.

Adapting image-wide outlier detection to the dense context is a non-trivial task due to the added

challenge of pixel-level inference. As a result, straightforward adaptation is usually applied

to constrained problems. For instance, many existing methods based on generative models

[54, 58] are designed for datasets with low image diversity. Similarly, approaches based on

image resynthesis have been used to address the more challenging road-driving domain [28, 29,

30, 97], but mostly for specific image segments, such as roads. Furthermore, their computational

overhead makes them unsuitable for real-time applications.

On the other hand, adapting open-set recognition approaches to dense prediction is relatively

simple and cost-effective [13, 16, 98]. However, as our experiments will also show, most of

these adaptations are unable to achieve competitive dense outlier detection performance. We

speculate that this is due to the higher aleatoric uncertainty associated with dense prediction.

This uncertainty arises from the fact that neighbouring pixels may belong to different classes but
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give rise to similar features due to the nature of convolutional models [17]. Consequently, high

uncertainty may not necessarily indicate an outlier sample, but rather suggest that the sample

is close to a semantic border. Uncertainty estimation may be somewhat improved by moving

from pixel-level to component-level estimation [81].

In recent years, the development of proper benchmarks in the field of dense open-set recog-

nition has been a promising advancement. These benchmarks have the potential to drive progress

in the field, similar to the way increasingly complex semantic segmentation benchmarks [2, 99,

100] have led to significant developments in the field of closed-set road driving dense predic-

tion. The Wilddash benchmark [12] was a valuable effort that first introduced negative images

into dense evaluation but it has some limitations as it does not include mixed-content images.

To address this gap, previous iterations of this work [17, 98, 101] crafted a dataset of artificial

mixed-content road-driving images with anomalous objects by pasting instances from PASCAL

VOC [102]. However, this approach may not be ideal for testing models’ outlier detection capa-

bilities since the pasting artefacts can make outlier patches more identifiable. This problem can

be addressed in two ways. The Fishyscapes benchmark [13] offers a solution by improving the

pasting process with the smoothing of pasted patches. Another approach is to remove one or

more classes from existing semantic segmentation datasets and use the removed classes as out-

liers during testing [17, 88, 103, 104]. However, the drawback of this approach is that the results

heavily depend on the choice of removed classes. For example, the BDD-Anomaly dataset uses

trains and motorcycles as anomalies, but this may not be the most suitable choice since these

removed classes have similarities with some of the kept classes. For instance, trains share many

visual features with buses, while motorcycles resemble bicycles. This similarity can cause mod-

els to incorrectly identify OOD train pixels as buses, especially if there is not enough contextual

information to distinguish between the two. This raises the question of whether this type of

mistake should be penalized equally as the error of recognizing those train pixels as a class like

’person.’ Similarly, Cityscapes-IDD evaluates on cars (inliers) and rickshaws (outliers) from

the Indian driving dataset. However, some parts of some rickshaws can look very similar to bi-

cycles, motorcycles, and cars, which can lead to errors in the detection of anomalies. Vistas-NP

[88] attempts to reduce these concerns by removing the entire category of person. These consid-

erations indicate that crafting dense open-set recognition tasks from existing closed datasets is

an interesting idea which, however, requires careful planning in practice. Yet another approach

is to create a synthetic dataset with anomalous objects [103]. However, real datasets are still

considered as better surrogates for real-life operation than synthetic ones. Therefore, the Seg-

mentMeIfYouCan benchmark [14] collected and labeled real-world road-driving images with

outlier segments and the Fishyscapes benchmark also includes additional test track and offers

dense outlier annotations on a subset of the Lost and Found dataset [105], where the task is to

locate very small obstacles on the road.
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When evaluating the effectiveness of benchmarks, it is important to consider their evalua-

tion policies. For instance, Cityscapes-IDD suggests training models only on the Cityscapes

dataset, which forces models to handle both potential outliers in test images and domain shift

between training and test data. On the other hand, other benchmarks do not restrict the training

data, making it harder to isolate different factors that affect benchmark performance. Avail-

ability of test data is another critical factor to consider. Some of these benchmarks have test

images publicly available, while others, like Fishyscapes, keep all test images confidential and

require source code submission. Additionally, it is interesting to look at the evaluation metrics

used in these benchmarks. Most only measure outlier detection quality using metrics like av-

erage precision (AP), area under the receiver operating characteristic curve (AUROC), or false

positive rate at a true positive rate of 95% (FPR95). Fishyscapes further measures segmen-

tation quality on the clean Cityscapes validation set but does not evaluate the performance of

combined semantic segmentation and outlier detection. It also does not measure semantic seg-

mentation performance on artificial mixed-content images. The Wilddash benchmark measures

segmentation quality on negative images, allowing either the outlier prediction or the best inlier

prediction. Ultimately, these benchmarks would benefit from incorporating better measures that

evaluate proper open-set output [106].
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Chapter 4

Open-set training with noisy negatives

We consider efficient models for open-set segmentation that would be suitable for real-time in-

ference on embedded hardware. We intend to learn our open-set models by taking advantage

of noisy negative data sampled from ImageNet-1k. Our approach consists of two main com-

ponents: a dense feature extractor and an open-set recognition module. The feature extractor

takes an input image with dimensions H×W×3 and transforms it into a shared abstract repre-

sentation of dimensions α H×α W×D, where D is the number of output feature channels and

α W×α H is the output resolution. The dense open-set recognition module incorporates both

recognition and outlier detection, and is trained on labeled inlier images and unlabeled noisy

negative images using mixed batches and different losses. We propose that these two tasks be

based on shared features in order to promote cross-task synergy and fast inference [60, 73, 92].

Our method is based on two hypotheses: i) training with noisy negatives can improve outlier

detection, and ii) discriminative outlier detection and semantic segmentation can share features

without significant deterioration of either task [17, 77]. Figure 4.1 illustrates our approach when

the Ladder-DenseNet architecture is used as a feature extractor.

The subsequent sections delve into the different components of our open-set recognition

approach. Firstly, we provide a detailed description of the design of the feature extractor. Fol-

lowing that, we explain how the training process should incorporate noisy negatives if the goal

is to create models that work effectively on mixed-content as well as negative images. Lastly,

we examine four open-set module architectures that can be trained efficiently with negative

samples.

4.1 Dense feature extraction

Our primary feature extractor is based on the Ladder-DenseNet architecture, which is composed

of two main paths: the downsampling path for semantics and the upsampling path for spatial

detail restoration. The downsampling path begins with a pre-trained recognition backbone [35,
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Open-set training with noisy negatives

Figure 4.1: Proposed open-set recognition architecture. We use a dense feature extractor (such as ladder-
densenet) to acquire dense features. We propagate these features to an open-set recognition module
which performs open-set semantic segmentation.

36] and incorporates a lightweight spatial pyramid pooling module [33, 34, 37] for capturing

extensive context information. The upsampling path consists of three upsampling modules

(U1-U3), which blend low-resolution features from the previous upsampling stage with high-

resolution features from the downsampling path. Unlike other encoder-decoder structures [7,

107], the Ladder-DenseNet architecture is asymmetric, with dozens of convolutional layers

in the downsampling path and only three convolutional layers in the upsampling path [108,

109]. This makes the architecture memory-efficient and relatively fast while still producing

high-quality results. To further reduce memory cost, the features are ouput at 4 times lower

resolution.

To improve the segmentation, we use auxiliary losses at 8, 16 and 32 times lower resolutions.

The auxiliary loss can be calculated in the following manner:

LAUX =−∑
r∈R

∑
i, j∈Gr

x

[[Nr
i j >

r2

2 ]]Eyr
i j
[logP(Y r

i j|x)], (4.1)

yr
i jc =

1
Nr

i j

ir+r−1

∑
l=ir

jr+r−1

∑
k= jr

[[ykl = c∧ ykl ≤ NC]], (4.2)

Nr
i j =

ir+r−1

∑
l=ir

jr+r−1

∑
k= jr

[[ykl ≤ NC]] (4.3)

To obtain the expected output at each resolution, we compute a probability distribution over all

segmentation classes. This is achieved by taking the ground truth labels at full resolution and

calculating the distribution across the corresponding window. We only consider pixels that have

a valid label to avoid including background regions that could skew the results. To incorporate

the soft targets at lower resolutions, we use cross-entropy loss between the expected distribution
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and the output of the network at each resolution.

4.2 Negative training data

We propose to improve outlier detection by exploiting negative data from an extremely diverse

test-agnostic dataset. However, this implies a non-empty intersection between the negative

dataset and the inlier training manifold. For example, our negative datasets, ImageNet-1k and

ADE20k, contain many classes such as Cityscapes [99] and Vistas [2] (e.g. cab, streetcar, tow

truck). Additionally, most stuff classes from Cityscapes (e.g. building, terrain, vegetation) are a

regular occurrence in ImageNet-1k backgrounds. Throughout this paper, we refer to this issue

as label noise. We believe that label noise can be addressed and managed in any outlier detection

approach which trains on negative images.

To mitigate the impact of label noise, we adopt a strategy that involves training on mixed

batches with an approximately equal share of inlier and negative images. Since our negative

training dataset is much larger than our inlier datasets, we perform many inlier epochs during

one negative epoch. This batch formation approach helps prevent occasional inliers in negative

images from significantly affecting the training process, and ensures that batchnorm statistics

are stable. Our experiments show that this conscientious approach to batch formation success-

fully promotes resistance to noise in the negative samples.

In our initial experiments, we trained our models on whole inlier and negative images. Al-

though the resulting models performed well on test images with only inliers or outliers, we

observed poor performance on images with mixed content. We realized that the outlier de-

tection head needs explicit training on mixed inputs to generalize correctly in such cases. To

address this issue, we modified our training procedure by pasting negative images into inlier

images during training. More specifically, we resized a negative image to a small percentage

of the inlier resolution and randomly pasted it into each training inlier image. This change in

training enabled our models to detect outlier objects in inlier contexts. The size of the pasted

patches is critical for successful training, and we obtained the best results by randomly choosing

the size of the pasted patches from a wide interval, as described in the experimental setup. Our

training procedure retains whole negative samples along with mixed content images, enabling

the detection of both outlier patches and negative images. Figure 4.2 illustrates this process.

4.3 Open-set recognition module

We propose a dense open-set recognition framework that combines classification and outlier

detection using shared features. Our approach assumes access to a labelled inlier dataset Din

and a noisy negative dataset Dout. Let x denote an image, y its corresponding label, Y the dense
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(a) (b)

(c) (d)

Figure 4.2: We extend our training data with negative examples from a general-purpose dataset such as
ImageNet (a). For improved open-set recognition in mixed-content images, we form our training samples
by pasting negative samples into inlier images (b, c). We keep some of the negative samples as is, for
class balancing and proper out-of-distribution detection in outlier images (d).

predictions over C inlier classes, and O the dense binary outlier predictions. Our models aim to

simultaneously predict the closed-set posterior over classes P(Yi j|x), as well as the probability

P(Oi j|x) that the sample is an outlier. To achieve this, we use standard cross-entropy losses for

both predictions:

Lcls =− ∑
x,y∈Din

∑
i j

logP(yi j|x) ;

Lod =− ∑
x∈Din

∑
i j

logP(1−Oi j|x)

− ∑
x∈Dout

∑
i j

logP(Oi j|x) . (4.4)

It is worth noting that most of our considerations are applicable to image classification by re-

moving the summation over all pixels (i, j) and considering Yi j and Oi j as image-wide predic-

tions.
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Under these assumptions, there are four distinct approaches to formulate open-set recogni-

tion, as we show next.

4.3.1 C-way multi-class module

The C-way multi-class approach employs a standard classification head, which could be imple-

mented as a 1×1 convolution with C softmax-activated maps. The probability of an outlier is

expressed as one minus max-softmax [15]: P(Oi j|x) = 1−maxc P(Yi j = c|x). When a negative

set is available, this method can be trained to produce a low max-softmax score for outliers

[67, 76, 77]. The resulting loss is a combination of the standard inlier loss and the divergence

with respect to a uniform distribution on outliers.

LC×MC = Lcls +λKL · ∑
x∈Dout

∑
i j

KL
[
U ,P(Yi j|x)

]
. (4.5)

The drawback of this approach is that there is coupling between recognition and outlier detec-

tion. The resulting cross-talk slightly compromises recognition accuracy when the negatives

are noisy. Furthermore, this approach does not address the problem of false-positive outliers at

semantic borders.

Figure 4.3 illustrates the training of the C-way multi-class open-set recognition module

with noisy negatives. Note that both losses need information about the negative samples, the

classification loss component so it can ignore them, and the divergence component so it can

know which pixels should have the uniform output distribution.

4.3.2 C-way multi-label module

The C-way multi-label approach utilizes C independent heads, each with a sigmoidal activation

function. In effect it uses C one-vs-all classifiers [110], where the output of each head is inter-

preted as the probability of the pixel belonging to the corresponding classes. The final prediction

is obtained by selecting the class with the highest probability. The outlier probability is com-

puted as one minus the maximum probability of any class: P(Oi j|x) = 1−maxc P(Yi jc = 1|x).
The resulting loss function is a sum of the binary cross-entropy losses:

LC×ML =− ∑
x,y∈Din

∑
i j

∑
c

logP(yi jc|x) . (4.6)

The biggest drawback of this approach is the inferior performance on the primary segmen-

tation task.

Figure 4.4 visually depicts the training process for the C-way multi-label module with the

26



Open-set training with noisy negatives

Figure 4.3: C-way multi-class recognition module is trained for semantic segmentation with a stan-
dard cross-entropy loss and encouraged to have a uniform distribution in negative samples with KL-
divergence.

addition of noisy negative samples. In this approach, each loss component is associated with a

distinct binary ground truth map, where pixels belonging to the corresponding class are set to 1.

It is worth noting that the remaining classes are used as class 0 in conjunction with the outlier

samples. Our experiments show that this increase in type of negative samples seems to lead to

better outlier detection performance.

4.3.3 C+1-way multi-class module

The C+1-way multi-class approach incorporates outliers as the C+1th class. While generating

the final open-set prediction is relatively straightforward, modelling the outlier probability is

not as simple. Merely taking the probability of the C+1st class would ignore its relation to the

probabilities of inlier classes. For example, consider a scenario where we have two inlier classes

and use the third class as our outlier class. If the output for a given sample is [0.3, 0.3, 0.4], the

model would predict that the sample is an outlier. However, if the probability distribution for

an input is [0.1, 0.47, 0.43], the model would predict that the sample is an inlier. This illustrates

that relying solely on the probability of the C+1st class ignores the contribution of inlier classes

to the outlier probability.

It is therefore better to model the outlier probability as a 2-way softmax between the C+1-th

logit sC+1 and the max-logit over inliers: P(Oi j|x) = exp(sC+1)/(exp(sC+1)+maxC
c=1 exp(sc)).
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Figure 4.4: C-way multi-label recognition module is constructed as C independent binary classifiers.
For each classifier, a ground truth binary mask is created. For each class, both the negative data and the
remaining classes serve as negatives.

We account for class disbalance by modulating the loss due to outliers with hyper-parameter

λC+1:

L(C+1)× = Lcls +λC+1 ·Lod . (4.7)

Similarly to previous modules, this loss affects inlier recognition, which may be harmful

when the negatives are noisy (as in our case).

Figure 4.5 illustrates the training of C+1-way multi-class module with negative data.

4.3.4 Two-head module

Finally, the two-head approach complements the C-way closed-set classification head with a

distinct prediction head that is formulated as a binary classifier and directly emits the outlier

probability P(O|x). The classification head is trained solely on inliers, while the outlier detec-

tion head is trained on both inliers and outliers. The relative importance of these two heads is
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Figure 4.5: C+1-way multi-class recognition module is trained as a standard segmentation module,
where negative examples get classified as the C+1-st class.

modulated by λTH.

LTH = Lcld +λTH ·Lod . (4.8)

During inference, the outlier detection head takes precedence over the classification head

when it predicts that the sample is an outlier. However, it may be possible to modify this

inference procedure by introducing a threshold over the outlier probability predicted by the

outlier detection head. By setting an appropriate threshold value, the model’s sensitivity to

outliers can be adjusted, and false positives and false negatives can be controlled. This threshold

value can be determined through a validation process or tuned based on the application’s specific

needs.

Figure 4.6 illustrates the training process of the two-head module. It is essential to note

that during training, negative samples are only utilized by the outlier detection head, and the

classification head ignores them. This approach ensures that the classification head remains

unaffected by noisy and negative data, which preserves the baseline semantic segmentation

accuracy even when trained on test-agnostic negatives that are likely to be noisy.

4.4 Loss definitions

Table 4.1 presents our formulation of the different losses needed to implement various open-

set detection modules. We use the following notation: x is the input image, y is the ground

truth segmentation into NC classes, and o is the ground truth indicating whether a pixel is an
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Outlier ground truth o

Segmentation prediction Y

C-way multi-class
 open-set recognition module

1x1 conv
C maps

C-way
softmax

Uniform distribution U

Segmentation ground truth y

1x1 conv
C maps

1x1 conv
2 maps

Segmentation prediction Y

Lcls

Lod

+

C-way
softmax

2-way
softmax

Outlier ground truth oOutlier prediction O

Figure 4.6: The two-head recognition module comprises two heads. The first head performs semantic
segmentation while the second performs binary classification into inliers and outliers. The two losses are
added to form the final training loss.

inlier (labelled 1) or an outlier (labelled 0). During training, some pixels may be ignored, such

as those belonging to the ego-vehicle. To indicate that these pixels should be ignored, they are

given a distinct label, for example a number greater than the number of classes NC in the ground

truth segmentation image y or label 2 in o. In the C+1-way multi-class setup, NC equals C+1,

and both inlier and outlier pixels are labelled with 1 in o.
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Table 4.1: Losses used during training, with the following assumptions: x is an input image, y contains
ground truth segmentation into NC classes and o contains ground truth indicating whether a pixel is an
inlier or an outlier. Dimensions of x, y and o are H ×W .

Loss Expression

multi-class classifier
loss

LMC =− ∑
i, j∈Gx

λyi j [[oi j = 1∧ yi j ≤ NC]] logP(Yi j = yi j|x),

P(Yi j = yi j|x) =
expsi j

yi j(x)

∑
c

expsi j
c (x)

multi-label classifier
loss

LML =− ∑
i, j∈Gx

Nc

∑
c=1

[[yi j ≤ NC]]

(
[[yi j ̸= c∨oi j = 0]] log

1

1+ expsi j
yi j(x)

+[[yi j = c∧oi j = 1]] log
expsi j

yi j(x)

1+ expsi j
yi j(x)

)

auxiliary loss

LAUX =−∑
r∈R

∑
i, j∈Gr

x

[[Nr
i j >

r2

2 ]]Eyr
i j
[logP(Y r

i j|x)],

yr
i jc =

1
Nr

i j

ir+r−1

∑
l=ir

jr+r−1

∑
k= jr

[[ykl = c∧ ykl ≤ NC]],

Nr
i j =

ir+r−1

∑
l=ir

jr+r−1

∑
k= jr

[[ykl ≤ NC]]

outlier detection

head loss
LTH =− ∑

i, j∈Gx

[[oi j ≤ 1]] logP(Oi j = oi j|x)

Kullback Leibler

divergence
LKL = ∑

i, j∈Gx

[[oi j = 0]]KL(U ∥ P(Yi j|x))

confidence
loss

LC =− ∑
i, j∈Gx

[[yi j ≤ NC]] log(ci j|x)
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Table 4.2 illustrates how the aforementioned losses are combined to achieve the open-set

models.

Table 4.2: Total training losses

Model Total loss

C× multi-class, C+1× multi-class (1−λAUX)LMC +λAUXLAUX

C× multi-label (1−λAUX)λMLLML +λAUXLAUX

C×multi-class with outliers (1−λAUX)(LMC +λKLLKL)+λAUXLAUX

two heads (1−λAUX)(LMC +λTHLTH)+λAUXLAUX
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Chapter 5

Experiments

In this chapter, we present the results of our validation and ablation experiments and provide

additional insights into our method. We begin by describing the used datasets in greater detail.

We then explain the evaluation metrics we used to measure the quality of semantic segmentation

and outlier detection. We also provide a precise definition of the losses we used to implement

the considered open-set recognition modules. Next, we provide details about the experimental

setup, training, and inference procedures. Finally, we present the results of our validation and

testing experiments.

5.1 Datasets

5.1.1 Cityscapes

The Cityscapes dataset [99] is a widely used benchmark dataset for evaluating vision algo-

rithms. It comprises images captured from the perspective of a driver in various cities across

Germany and neighbouring countries. The dataset offers high-quality instance and semantic

level segmentations for its 2-megapixel images, which are split into train, validation, and test

sets. While the dataset offers 30 classes at the semantic level, only 19 classes are considered

for evaluation. The images were captured during the daytime, in different seasons, and under

predominantly good weather conditions. However, this uniformity in acquisition conditions is

also a limitation of the dataset, often leading to the overfitting of models. To mitigate this issue,

it is common to complement the Cityscapes dataset with other road-driving datasets.

Training and validation subsets consist of 2975 training and 500 finely annotated images,

respectively. The dataset also provides 20 000 coarsely annotated images, which were not used

in our experiments.
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5.1.2 Vistas

The Vistas dataset [2] is another dataset containing images of traffic scenes. Unlike the Cityscapes

dataset, Vistas is larger and more diverse, with images from all over the world taken in differ-

ent weather conditions and from various viewpoints. The dataset provides images with varying

resolutions, with an average of 8.5 megapixels, and includes 65 semantic classes. To enable

simultaneous training on Vistas and Cityscapes, it is common to first map the labels into a com-

mon taxonomy. In our experiments, we remap the labels into the Cityscapes taxonomy, which

is possible since all Vistas classes are either subclasses of Cityscapes classes or completely

unrelated to them. During training, we ignore the unrelated Vistas classes.

There are 18000 training images and 2000 validation images. In addition, there are 5,000

publicly available unlabeled images, which we did not use in our experiments.

Vistas-NP

One way to create a validation dataset with proper outlier samples is by removing a subset

of classes from training. We follow [88] to create Vistas-NP by removing the "person" cate-

gory. This arrangement excludes an entire category and therefore features a very small overlap

between inlier and outlier classes, unlike BDD-Anomaly [103] and Cityscapes-IDD [104].

This results in the training subset of 8833 images collected from Vistas trainval. We use the

remaining 11167 images to create Vistas-NP test.

5.1.3 ImageNet

ImageNet [111] is a vast image database manually annotated using the WordNet schema. The

database includes images of different sizes, with no specific object location and the majority are

in colour. However, they are relatively small, with an average resolution of 0.2 megapixels.

The dataset provided for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

[31] contains a subset of images classified into 1000 classes, with provided bounding boxes

around objects in about half of the images. It is divided into training, validation and test datasets,

with the test dataset being unlabeled. The training set contains over one million images, while

the validation set and test set contain 50,000 and 100,000 images, respectively.

In our experiments, we utilize the ILSVRC dataset to construct two sets of negative samples.

The first collection, which we will denote with ImageNet-1k, includes all the available images

in their entirety. The second collection, denoted as ImageNet-1k-bb, includes only the images

with provided bounding boxes and utilizes only the content of the first bounding box for negative

samples.
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5.1.4 ADE20k

ADE20K [3], also known as the MIT Scene Parsing Benchmark, is a comprehensive dataset

for scene parsing tasks. It provides dense annotations for 150 semantic categories in a variety

of indoor and outdoor settings. The images in this dataset are relatively small, with an average

resolution of around 0.2 megapixels. ADE20K consists of 20,210 training images and 2,000

validation images,

Although the ADE20K dataset is smaller and less diverse than the ILSVRC dataset, it still

offers sufficient variability to collect negatives in the road-driving context. Unlike ILSVRC,

ADE20K is labelled at a pixel level, which allows us to cut and paste non-rectangular negative

patches. Our experiments show that using a variety of pasted shapes increases precision and

improves the performance of our open-set models.

5.1.5 WildDash 1

The WildDash 1 [12] dataset provides a benchmark for semantic segmentation and instance seg-

mentation. It complies with the Cityscapes labelling policy. It focuses on providing performance-

decreasing images. These images are challenging due to conditions and unusual locations in

which they were taken or because they contain various distortions.

The images are divided into a validation set and a test set. There are 70 validation and

156 test images. The test set contains 15 images which are marked as negatives. All pixels

in these images are considered out-of-distribution in the context of semantic segmentation on

road-driving datasets.

WD-Pascal

To evaluate the performance of our models on mixed-content images, we created a new dataset

called WD-Pascal by randomly pasting animal classes from the Pascal dataset [112] into Wild-

Dash validation images. We selected animals that occupy at least 1% of the WildDash image

area to ensure their visibility. Since WD-Pascal is created at test time, its size is virtually un-

limited. To account for the variability in the pasted content, we performed 50 assays across

WildDash val with different types, sizes, and positions of the pasted animals. To ensure repro-

ducibility, we fixed the random seed generator for all assays.

WD-LSUN

In order to assess the performance of our models on negative images, we augmented WildDash

validation images with random subsets of LSUN images [113]. We chose the number of LSUN

images so that the share of inlier and outlier pixels was approximately equal. As the choice of
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LSUN images is random, we fixed the random seed generator in our experiments and conducted

50 assays across WildDash validation.

5.1.6 Fishyscapes

Fishyscapes [13] is a dataset designed for dense anomaly detection in a road driving context.

The dataset consists of three tracks: Fishyscapes Static, L&F, and Fishyscapes Web. The

Fishyscapes Static track contains Cityscapes images with pasted anomalous objects from Pascal

VOC. The pasting is done with smoothing applied, and there are 30 validation images and 1000

hidden images available. The L&F track is a subset of Lost and Found images with true anoma-

lies. The images are filtered to have no overlap between Cityscapes classes and anomalies and

are relabeled by the authors. This track has 100 validation images and 275 test images. The

Fishyscapes Web track includes objects pasted into Cityscapes images that are crawled from the

web. New versions are added iteratively over time.

5.1.7 UCSD

The UCSD dataset is a widely used benchmark for anomaly detection in crowded scenes, which

consists of two separate subsets: Ped-1 and Ped-2. Both of these subsets include sequences of

pedestrians captured with stationary surveillance cameras. Consequently, the images in the

dataset are black and white and relatively uniform.

The test sequences include instances of anomalous movement, such as skaters, cyclists,

and service vehicles. While visual inliers like runners or cyclists may also perform anomalous

movement, we find that most of the anomalous movement is associated with anomalous objects

such as bicycles, skateboards, and other vehicles. Therefore, we employ this dataset to evaluate

our approach to visual outlier detection in contexts other than road driving.

The Ped-1 dataset contains 34 train sequences and 36 test sequences, 10 of which have

densely annotated anomalies. The Ped-2 dataset contains 16 training sequences and 12 test

sequences.

5.1.8 StreetHazard

StreetHazard [114] is a synthetic dataset created using the UnrealEngine and the CARLA simu-

lation environment to insert realistic anomalous objects into road-driving scenes. This approach

offers a distinct advantage over other methods of synthetic mixed-content image creation, as it

avoids issues such as inconsistent lighting or chromatic aberrations that might otherwise enable

anomaly detection.

The authors of StreetHazard have employed three locations in the CARLA simulator to

generate 5125 labelled training images with a 12-class taxonomy. They have used a fourth
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location to create a validation dataset containing 1031 images. Additionally, they have leveraged

the fifth and sixth locations to generate 1500 test images with outlier samples. These anomalies

were created using 250 unique anomaly shapes from the Digimation Model Bank Library and

semantic ShapeNet.

5.1.9 Additional validation datasets

One of the main potential drawbacks of our approach is that we both train and validate on

synthetic mixed content images. This means that it is not not always clear whether the model

has learned to properly detect outliers or if it is merely reacting to pasting artefacts and other

simple cues that may indicate an outlier patch.

We therefore created two mixed-content validation datasets by pasting Pascal animals into

Vistas validation images, with the two differing on the amount of preprocessing on the pasted

patches. Unlike the WD-Pascal dataset, there is no domain shift between the training and vali-

dation inlier samples.

We further created three control datasets to ensure that our models do not simply react to

pasted content.

We next describe these 5 sets.

PascalVistas10

We began by searching for Pascal images that contained segmentation ground-truth for any of

the seven animal classes: bird, cat, cow, dog, horse, and sheep. From there, we selected 369

large Pascal objects from their original images using pixel-level segmentation ground-truth. To

create the mixed-content validation dataset, we chose a random image from the Vistas validation

set and resized the selected object to cover at least 10% of the image’s pixels. We then pasted

the object at a random location within the image. The result was 369 combined images.

PascalVistas1

A potential issue with resizing objects before pasting is that the outlier detection model may

detect the pasted objects by recognizing the resizing artefacts, rather than the novelty. In order

to address this issue, we form another dataset as follows. We iterate over all instances of Pascal

objects and choose a random image from the Vistas validation dataset. We paste the object

without any resizing only if it takes at least 1% image pixels. This results in 31 combined

images. This datasets is more difficult than the previous one since outlier patches are much

smaller.
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Vistas to City

To test whether our approach is capable of detecting real outliers or simply reacting to differ-

ences in pasted textures, we created our first control set. This was done by pasting a random

object instance from Vistas val into a random image from Cityscapes val. The pasted instance

had to occupy at least 0.5% of the Cityscapes image, with no preprocessing performed before

pasting.

Since both Vistas and Cityscapes datasets contain only inlier classes, the performance on

this set is an indicator of whether the model can distinguish real outlier pixels from differences

in camera characteristics. This dataset consists of 1543 images.

CityCity

We create the second control set by randomly pasting an object instance from Cityscapes val-

idation dataset onto a different validation image from the same dataset. The only requirement

is that the object instance should cover at least 0.5% of the image area. No preprocessing is

applied to the patch prior to pasting.

Since both the patch and the image belong to the same dataset and should contain only inlier

classes, the model’s performance on this set reveals whether it can distinguish between inlier

pixels and outlier pixels due to the differences in imaging conditions between the patch and the

image.

This dataset comprises 288 images. The texture differences between the image and the

pasted patch are expected to be smaller than in the case of the Vistas to City control set.

SelfSelf

We created the final control set by randomly selecting an object instance from a Vistas image

and pasting it onto a different location in the same image. The object instance had to cover at

least 0.5% of the Vistas image, and no preprocessing was applied before the pasting.

Since the pasted object is from the same image as the background, there should be no differ-

ence in texture or lighting. Performance on this set tests whether the model can detect objects

in unexpected locations within the same scene.

The set consists of 1873 images.

5.2 Validation measures

We next describe the two measures that were used for estimating segmentation and outlier

detection quality.
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5.2.1 Mean intersection over union

Mean intersection over union (mIoU) is a common evaluation metric used in image segmenta-

tion tasks. It measures the similarity between the predicted segmentation mask and the ground

truth mask by computing the intersection over union (IoU) for each class and then taking the

average over all classes.

The Intersection over Union (IoU) is defined as the ratio between the area of intersection of

the ground-truth mask G and the prediction mask P for a given class, and the area of their union

(cf. Figure 5.1). The intersection of the ground-truth mask and the prediction mask is equal to

the number of true positives (TP), while the union of the tow masks is equal to the sum of true

positives, false positives (FP) and false negatives (FN). Therefore:

IoU =
G∩P
G∪P

=
G∩P

G∩P+G\P+P\G
=

T P
T P+FN +FP

(5.1)

mIoU is a popular metric for evaluating the performance of segmentation models because

it takes into account both false positives and false negatives and provides a single value that

summarizes the overall accuracy of the model. Higher mIoU values indicate better segmentation

performance.

IoU = 

Ground truth 

Prediction 
Area of Ovelap 
Area of Union 

Figure 5.1: Intersection over Union is calculated by dividing the area of overlap between the ground-
truth and the prediction mask by the area of their union
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5.2.2 Average precision

Average precision (AP) is a performance metric for binary classification problems that measures

the area under the precision-recall curve. It takes into account both the precision and recall of

the model predictions over different thresholds of the predicted probabilities.

In binary classification, the precision is the ratio of true positives to the total number of

predicted positives (TP + FP). Recall, on the other hand, is the ratio of true positives to the total

number of actual positives (TP + FN).

The precision-recall curve is a plot of precision against recall at different thresholds of the

predicted probabilities. The average precision is then calculated by computing the area under

this curve. A higher average precision indicates a better-performing model.

We only measure AP for the outlier pixels.

5.3 Training details

Our models are primarily trained on inliers from the Vistas train dataset. However, we augment

our training data for benchmark submissions by including images from the Cityscapes train

dataset and WildDash validation set. Notably, we do not incorporate any validation data into our

training process for submissions. For instance, we do not use Fishyscapes Lost and Found for

submission training. For validation experiments on the CAOS, Vistas-NP, and UCSD datasets,

we use the corresponding training datasets.

In most of our validation experiments, we use the ImageNet-1k-bb dataset as a negative

dataset. To train our models, we use standalone negative images as well as mixed-content

images, which are obtained by pasting a resized negative image into an inlier image. Initially,

we resized each negative image so that its area became 5% of the inlier image. However, we

later improved this procedure by randomly scaling the negative images to sizes between 0.1%

and 10% of the inlier area.

We evaluate the quality of our models’ outlier detection on WD-Pascal and WD-LSUN

[17], as well as on Fishyscapes Lost and Found val, where we measure AP. To evaluate our

segmentation quality, we measure mIoU on WildDash validation images. We also conduct

experiments on our control sets to assess if our models respond to pasting cues. We evaluate

our models on various benchmarks, including WildDash, Fishyscapes, CAOS, Vistas-NP, and a

subset of UCSD anomaly test that has dense annotations available.

Our models are primarily based on the DenseNet-169 backbone [36] with ladder-style up-

sampling [37], as it has demonstrated the best overall validation performance. However, we

make an exception for the discriminative models, where we use DenseNet-121 without upsam-

pling to reduce capacity and discourage overfitting. Regardless of the backbone, we upsample

the predictions to the input resolution using bilinear interpolation.
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To prepare images for training, we first normalize them using the ImageNet mean and vari-

ance. During training, we form batches by randomly cropping the images to a size of 512x512

pixels and applying horizontal flipping for additional data augmentation. We do not use multi-

scale evaluation. However, we have different strategies for rescaling images depending on

whether we incorporate scale jittering into training. For images without scale jittering, we re-

size them so that the smaller side is 512 pixels before taking the crop. We do the same for input

images during validation. When scale jittering is included during training, we randomly resize

70% of the images so that their smaller side falls between 512 and 1536 pixels, while the re-

maining 30% are resized according to the original protocol. During evaluation, we resize input

images so that the smaller side is 768 pixels. These rescaling strategies improve the overall

performance of our models.

We use the standard Adam optimizer and a learning rate which is decreased with a cosine

learning policy from 4 · 10−4 to 1 · 10−7. We reduce the learning rate of pre-trained backbone

parameters by a factor of 4 during training. Our models are trained for 75 Vistas epochs, which

is equivalent to 5 epochs of ImageNet-1k-bb. However, we increased the number of training

epochs to 20 for our benchmark submissions. During inference, we detect outliers by setting

a threshold on the inlier probability, which we set to pIP = 0.5. discussed in Section 4.3. We

set the weights from Table 4.2 to λAUX=0.4, λKL=0.2, λC+1=0.05, and λTH=0.2. These hyper-

parameters were validated in experiments conducted on WD-Pascal and WD-LSUN datasets

[98].

5.4 Baseline dense anomaly detection

Table 5.1 shows the results of image-wide outlier detection approaches adapted for dense outlier

detection.

We train three models: a standard C-way multi-class model, a C-way multi-class model with

MC-dropout and a model with a confidence prediction head.

The first two rows of the table illustrate the performance of the C-way multi-class model

in outlier detection, with max-softmax used as the criterion for outlier detection. The first row

represents the baseline performance of the model, while the second row shows the performance

of the model with ODIN [67]. ODIN is a pre-processing method that increases the winning

softmax score by perturbing the input. The assumption is that in-distribution samples should be

more strongly affected than out-of-distribution samples, thereby making them more separable.

Our experimental results demonstrate that the use of ODIN results in a slight improvement in

performance across all experiments.

The third row shows the multi-class model trained using MC-dropout which we apply to

the output of each dense layer and upsample block. We set the dropout rate to 0.2. For outlier

41



Experiments

detection, we use epistemic uncertainty, which we calculate over 50 forward passes as a differ-

ence between ensemble entropy and the mean value of individual output entropies. This setup

achieves the best outlier detection results, at the expense of slightly deteriorated segmentation

accuracy.

Table 5.1: Validation of anomaly detection approaches adapted for dense prediction. WD denotes Wild-
Dash 1 val, MC denotes models trained and evaluated using MC-dropout with 50 forward passes.

Model AP WD-LSUN AP WD-Pascal mIoU WD

C× multi-class 55.6±0.8 5.0±0.5 50.6

C× multi-class, ODIN 56.0±0.8 6.0±0.5 51.4

C× multi-class, MC 64.1±1.0 9.8±1.2 48.4

confidence head 54.4±0.8 3.4±0.4 46.4

The last row of the table presents an interesting approach to address the challenge of recog-

nizing difficult samples, which involves using a separate confidence head trained with a fully

convolutional variant of the protocol proposed by [73]. This head estimates the confidence of

the model’s predictions, and the original predictions are then adjusted by interpolating between

them and the target probabilities, based on the confidence score: P′(Yi j = yi j|x) = ci jP(Yi j =

yi j|x)+ (1− ci j)yi j. The adjusted probabilities are then used to compute the LMC loss. Addi-

tionally, the model is encouraged to have high confidence in all predictions through a second

loss term LC. Thus, lowering the confidence increases LC but decreases LMC, creating a

game-like situation where the model learns to recognize difficult samples where it benefits from

higher uncertainty. Still, the model with a separate confidence head achieves the lowest overall

score across all tasks.

Overall, all of the adapted approaches can be said to have a low outlier detection accuracy.

Figure 5.2 shows the qualitative results for the baseline model on WD-Pascal. It illustrates

the two main factors that influence the low score. The first is that the model tends to have

highly confident predictions in unknown pixels. The second is that the model tends to have

high uncertainty on semantic borders.

5.5 Discriminative anomaly detection

In this section, we evaluate the performance of discriminative outlier detectors. We formulate

the detector as binary classification over two classes: inlier and outlier.
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Figure 5.2: Dense outlier detection for the baseline model presented in Table 5.1. Row 1 shows WD-
Pascal images. Row 2 shows outlier probabilities obtained with the C-way multi-class model. Red colour
indicates a high probability that a pixel is an outlier. Models that rely on uncertainty estimation tend to
have high confidence on unknown input and high uncertainty on semantic borders.

5.5.1 Road-driving images

We first apply our discriminative detector in road-driving context. We trained two variants of the

detector: one that uses only negative images during training and another that further includes

pasted negative patches. Table 5.2 shows the performance of both models on four datasets:

WD-LSUN, WD-Pascal, PascalVistas10, and PascalVistas1. The results indicate that includ-

ing pasted patches in training significantly improves the performance of the outlier detector,

especially on mixed-content images. We observed that the difference in performance between

WD-Pascal and PascalVistas* datasets may be due to domain shift between Vistas and Wild-

Dash, which affects the quality of inlier detection. Furthermore, the model performs best on

PascalVistas10, indicating that it works better on larger outlier patches.

Table 5.2: Average precision for discriminative OOD detection on the validation datasets. The no-
pasting model was trained on full negative images, while the pasting model was trained on both negative
and mixed-content images.

Model WD-Lsun WD-Pascal PascalVistas10 PascalVistas1

no pasting 98.9±0.0 2.4±0.3 13.1 2.4

pasting 98.5±0.1 7.9±2.5 87.9 78.6

Figure 5.3 shows the qualitative results for the two considered models. The results further

demonstrate the model trained without pasting is virtually unable to detect the pasted patches.

Notice that the discriminative model has no problem identifying pixels at semantic borders as

inliers.

We now turn to the performance of the two models on the three control datasets, and present

the results in Table 5.3. The models achieve the highest AP score on Cityscapes images with

pasted Vistas patches (VistasCity), indicating that the model can react to pasted textures and

imaging conditions. However, the average precision for control datasets is still significantly
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Figure 5.3: OOD detection in Vistas images with pasted Pascal animals. Row 1 shows a validation
image from PascalVistas1, while row 2 presents an image from PascalVistas10. The columns correspond
to: i) original image, ii) discriminative OOD detection trained without pasting and ii) discriminative
OOD detection trained with pasting

lower than for some of the validation datasets, suggesting that the model also reacts to the

semantics of pasted patches. Overall, these results demonstrate that the discriminative outlier

detector can effectively detect outliers in mixed-content images, but its performance may be

affected by the specific domain and content of the images.

Table 5.3: AP for detection of pasted content in the three control datasets for the two variants of the
discriminative model.

Model CityCity VistasCity SelfSelf

no pasting 2.4 9.1 3.6

pasting 7.6 34.1 19.7

We show the qualitative results on control datasets in Figure 5.4. Compared to results on the

validation dataset, the response on pasted patches is generally lower, with most of the images

having low outlier probability.

5.5.2 UCSD anomaly dataset

We demonstrate the effectiveness of our approach for dense novelty detection on the Peds1 and

Peds2 subsets from the UCSD anomaly dataset, which consists of real-world mixed-content

images captured in non-road-driving contexts. To evaluate our approach, we use only the test
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Figure 5.4: Examples of detection of pasted content in three control datasets: Cityscapes with pasted
Vistas content (row 1), Cityscapes with content pasted from other Cityscapes images (row 2) and
Cityscapes with content pasted from the same image (row 3).

sequences with dense ground truth annotations, which include all test sequences from Peds2

and 10 sequences from Peds1 (S3, S4, S14, S18, S19, S21-S24, S32).

It should be noted that this experimental setup involves relatively uniform training data

and a weaker learning signal as there are no semantic segmentation labels. We only train the

discriminative outlier detector and use ImageNet1k-bb as a negative data source. To validate the

backbone capacity and the usefulness of the upsampling path, we begin by using sequence 1 of

UCSD Peds2. The results presented in Table 5.4 support our hypothesis that this dataset is not

suitable for models with excessive capacity. As a result, we conduct the remaining experiments

using a DenseNet-121 backbone without the upsampling path.

Table 5.4: Validation experiments on sequence S1 from the UCSD Peds2 test dataset. The models were
trained on the UCSD dataset (inliers) and ImageNet-1k-bb (outliers).

DenseNet depth Upsampling AP AUROC

169 ✓ 6.8 60.8

169 ✗ 20.9 91.3

121 ✓ 28.7 85.2

121 ✗ 46.7 88.7

Table 5.5 shows our frame-level AUROC (Area Under Receiver Operating Characteristic

curve) results on the UCSD dataset, which is a common metric used in anomaly detection. The
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ROC curve plots the true positive rate (TPR) against the false positive rate (FPR) at different

thresholds. A higher AUROC score indicates better performance and enables us to compare our

model to previous work.

Table 5.5: AUROC per frame on the Ped 1 dataset. Our model is based on DenseNet-121, does not use
ladder upsampling and was trained on the UCSD dataset (inliers) and ImageNet-1k-bb (outliers).

Model AUROC

Sugiyama et al. [115] 67.5

Ionescu et al. [116] 82.2

Pang et al. [117] 83.2

Liu et al. [118] 87.5

Liu et al. [55] 95.4

Nguyen et al. [53] 96.2

Park et al. [54] 97.0

Ionescu et al. [52] 97.8

Discriminative model (ours) 91.2

Our approach does not achieve state-of-the-art results as it does not consider temporal infor-

mation. This information is especially useful in the context of anomalous movement detection

which is the primary focus of the UCSD dataset. Furthermore, our approach is designed to de-

tect visual anomalies, which do not correspond to anomalous movement in all cases. Still, our

performance indicates that a simple discriminative outlier detector achieves good results even

in a highly specialized setup such as UCSD without any modifications to our approach.

To provide a deeper insight into the differences between visual and movement anomalies,

we examine the results on the remaining sequences from Peds2, as well as on some individual

sequences, presented in Table 5.6. The model achieves its best performance on sequence S4,

which includes a small utility vehicle that is also a visual outlier. The model also performs well

on sequence S8, which features bicycles. This sequence has a lower FPR95 score because the

model does not identify the rider as anomalous, but rather the wheels of the bike, which are

visually anomalous. In sequence S7, which contains two bicycles and a skater, one of the bikes

is not labelled as anomalous since it was pushed and not ridden. In sequence 12, which includes

a skater, our model missed the skateboard, which is relatively small.

Table 5.7 shows accuracy on Peds1 test. Peds1 is more challenging than Peds2 due to

the prominent depth of the scene and lower position of the camera. Our model detects carts

in sequences 14 and 19, but is unable to detect the skater in sequence 18, the person in the
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Table 5.6: AP for OOD detection on UCSD Peds2 sequences 2-10 combined and 4, 7, 8 and 12 individ-
ually denoted as S 2-10, S4, S7, S8 and S12 respectively. Our model is based on DenseNet-121, does not
use ladder upsampling and was trained on the UCSD dataset (inliers) and ImageNet-1k-bb (outliers).

S2-S10 S4 S7 S8 S12

AP 54.5 90.2 10.3 50.6 2.1

AUROC 89.6 99.1 85.6 79.5 65.6

wheelchair in sequence 23, and the bicyclist in sequence 32. We believe that the last false

negative occurs because the wheels of the bike are not visible.

Table 5.7: AP for OOD detection on the whole UCSD Peds1 test dataset, as well as on sequences S14,
S19, S18, S32, and S23. Our model is based on DenseNet-121, does not use ladder upsampling and was
trained on the UCSD dataset (inliers) and ImageNet-1k-bb (outliers).

all S14 S19 S18 S32 S23

AP 44.3 64.8 87.6 0.2 2.6 0.7

AUROC 81.8 89.7 99.8 65.3 79.2 56.2

Figure 5.5 shows some qualitative results on both UCSD subsets. The first column repre-

sents the input image the second the ground truth with anomalies marked in white, and the third

the probability that a pixel is an outlier. Our model confidently detects the small utility vehicle

(rows 2 and 5) and bicycle wheels (rows 1, 2 and 4), but it misses cyclists when parts of the

bike are not visible (rows 4 and 5). Our model also detects transmission noise though this noise

is not marked as an anomaly in the ground truth image (row 6).
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Figure 5.5: Dense outlier detection results on UCSD Peds 2 (rows 1-3) and UCSD Peds 1 (rows 4-6).
Column 1 shows the original image, while columns 2 and 3 contain the ground-truth and our predictions,
respectively. Our method identifies visual anomalies such as bike wheels, though it does not identify
bike riders as outliers (rows 1,3 and 4). The method performs better on larger outliers such as the cart
(row 2 and 5). We even detect image quality failures as visual anomalies (row 6).
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5.6 Dense open-set recognition

The following section considers our open-set recognition approaches, as described in Section

4.3.

5.6.1 Validation of open-set recognition modules

Table 5.8 compares the four different open-set recognition modules which were trained using

noisy negatives. The results on WD-LSUN and WD-Pascal, compared to those in Table 5.1,

show that training with noisy and diverse negatives has significantly improved outlier detection.

However, we have observed a reduction in the segmentation score. This reduction is least

pronounced for the C-way multi-class model and the two-head model, which we will analyze

next. In addition, the open-set modules perform better on WD-Pascal than pure discriminative

models (cf. Table 5.2). This indicates that outlier detection improves when combined with

semantic segmentation.

Upon analyzing the individual results, we observed that the two-head model has a slight

disadvantage in discriminating WildDash val from LSUN compared to the single-head C-way

approach, as it is more sensitive to domain shift between Vistas train and WildDash val. How-

ever, the two-head model outperforms the single-head approach in terms of inlier segmentation

by 0.7 percentage points in column 4, and outlier detection on Pascal animals by 5 percent-

age points in column 3. Our qualitative analysis revealed that these advantages stem from the

fact that the single-head C-way approach generates numerous false positive outlier detections

at semantic borders due to a low max-softmax score.

The C+1-way multi-class model performs the worst out of all models trained with noisy

outliers. The multi-label model performs well on outlier detection but significantly worse on

inlier segmentation.

Table 5.8: Validation of dense open-set segmentation approaches. All of the models were trained with
on the Vistas dataset and used ImageNet-1k as noisy negatives. The models saw both negative and mixed
content images during training.

Model AP WD-LSUN AP WD-Pascal mIoU WD

two heads(=LDN_BIN) 99.3±0.0 34.9±6.8 47.9

C× multi-class(=LDN_OE) 99.5±0.0 33.8±5.1 47.8

C+1× multi-class 98.9±0.1 25.6±5.5 46.2

C× multi-label 98.8±0.1 49.1±5.6 43.4

In Figure 5.6, we provide a qualitative analysis of the performance of different open-set

modules. The first row shows images from WD-Pascal, while the subsequent rows show the
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output of different outlier detectors. The C+1-way multi-class model, shown in the second

row, achieves the lowest AP score due to its tendency to make more false outlier predictions.

The third and fourth rows show the C-way multi-label and C-way multi-class models, respec-

tively. These models perform similarly and are better at outlier detection than the baseline

max-softmax approach. However, they also tend to assign a high outlier probability to border

pixels. The two-head model, shown in the last row, successfully detects outliers without falsely

detecting borders as outliers. Moreover, its detections are coarser than those of the other mod-

els. Overall, the two-head model appears to be the most effective at minimizing false detections

at the borders.

All of the trained models seem to struggle with a significant domain shift, as shown in col-

umn 4. This suggests that achieving high AP scores on WD-Pascal would be difficult, as images

with significant domain shifts are perceived as equally anomalous as pasted Pascal objects. In

column 3, models trained with negative data classify the windshield wiper as an outlier. This is

noteworthy when compared to the model that has seen WildDash validation during training, as

shown in row 3 of Figure 5.15. Further discussion of this is provided in later sections.

Figure 5.6: Dense outlier detection with models presented in Table 2. Row 1 shows Wilddash val
images with pasted PASCAL VOC 2007 animals. Subsequent rows correspond to models trained with
noisy negatives: the C+1-way multi-class model (row 2), the C-way multi-label model (row 3), the C-
way multi-class model (row 4) and the two-head model (row 5). Red colour indicates a high probability
that a pixel is an outlier.
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5.6.2 Validation of Dense Feature Extractor Backbones

Table 5.9 explores influence of different backbones to the performance of our two-head model.

We experiment with ResNets and DenseNets of varying depths. The upsampling blocks are

connected with the first three DenseNet blocks. In the ResNet case, the upsampling blocks are

connected with the last addition at the corresponding subsampling level.

Table 5.9: Validation of backbones for the two-head model. WD denotes WildDash val. All of the
models were trained with on the Vistas dataset and used ImageNet-1k as noisy negatives. The models
saw both negative and mixed content images during training.

Backbone AP WD-LSUN AP WD-Pascal mIoU WD

DenseNet-121 99.1±0.0 41.4±7.0 44.8

DenseNet-169 99.3±0.0 35.7±5.9 47.4

DenseNet-201 98.3±0.1 27.2±5.7 47.6

ResNet-34 97.2±0.1 37.1±5.6 45.2

ResNet-50 99.1±0.0 37.8±5.6 41.7

ResNet-101 99.0±0.1 36.9±5.1 43.7

All models achieve very good outlier detection in negative images. There appears to be a

trade-off between outlier detection and semantic segmentation accuracy.

5.6.3 Validation of the Training Datasets

Table 5.10 explores the influence of inlier training data to the model performance.

Table 5.10: Influence of the inlier training dataset to the performance of the two-head model with the
DenseNet-169 backbone. WD denotes WildDash val. All of the models used ImageNet-1k-bb as noisy
negatives. The models saw both negative and mixed content images during training.

Inlier training dataset AP WD-LSUN AP WD-Pascal mIoU WD

Cityscapes 66.6±0.9 12.6±1.8 11.1

Vistas 99.3±0.04 35.7±5.9 47.2

Cityscapes, Vistas 99.3±0.0 39.1±6.3 47.8

The results suggest that there is a very large domain shift between Cityscapes and WildDash

val. Training on inliers from Cityscapes leads to very low AP scores, which indicates that many

WildDash val pixels are predicted as outliers with respect to Cityscapes. This suggests that

Cityscapes is not an appropriate training dataset for real-world applications. Training on inliers

from Vistas leads to much better results which is likely due to the greater variety with respect
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to the camera, time of day, weather, resolution etc. The best results across the board have been

achieved when both inlier datasets are used for training.

Figure 5.7: Outlier detection with two-head models trained on different inlier datasets. All models
have been trained with pasted noisy negatives from ImageNet-1k-bb as presented in Table 4. Column
1 contains Wilddash images with pasted PASCAL VOC 2007 animals. Columns 2-4 show predictions
of models trained on Cityscapes, Vistas, and Cityscapes and Vistas, respectively. Red colour indicates a
high probability that a pixel is an outlier.

Table 5.11: Influence of the outlier training dataset on the performance of our two-head model with the
DenseNet-169 backbone. WD denotes WildDash val. All of the models were trained with on the Vistas
dataset. The models saw both negative and mixed content images during training.

Outlier training dataset AP WD-Pascal mIoU WD

ImageNet-1k-full 35.8±6.9 43.7

ImageNet-1k-bb 35.7±5.9 47.2

ADE20k 15.7±2.2 49.9

Table 5.11 explores the impact of negative training data. The table shows training on

ImageNet-1k-bb and ADE20k significantly boosts inlier segmentation when compared to ImageNet-

1k. We hypothesize that this occurs because ImageNet-1k-bb has a smaller overlap with respect

to the inlier training data. This simplifies outlier detection due to decreased noise in the training

set, and allows more capacity of the shared feature extractor to be used for the segmentation

task. ADE20k dataset seems to be easily distinguished from the Vistas which reduces the reg-

ularization effect of the outlier detection head and leads to better segmentation performance.

On the other hand, this overfitting to the inlier training data leads to a reduced outlier detection
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performance on WD-Pascal. Furthermore, as ImageNet-1k-bb contains a lot of animal classes,

it may also be closer to Pascal outliers. The table omits outlier detection in negative images,

since all models achieve over 99% AP on that task.

Figure 5.8: Outlier detection with two-head models trained on different negative datasets. All models
have been trained by pasting negatives into inliers from Vistas as presented in Table 5. Column 1 shows
the original Wilddash images with pasted PASCAL VOC 2007 animals. Columns 2 and 3 show predic-
tions of models trained with ImageNet-1k-full and ImageNet-1k-bb, respectively. Red colour indicates a
high probability that a pixel is an outlier.

Figure 5.7 illustrates the validation performance of the two-head model depending on the

inlier training dataset. Column 1 shows four validation images. Column 2 presents the cor-

responding results of the two-head model trained on Cityscapes. This model classifies all of

the WildDash pixels as outliers. This indicates that models trained on Cityscapes are very sen-

sitive to domain shift. Column 3 shows that the two-head model trained on Vistas dataset is

significantly better at outlier detection. This improvement indicates that models trained on Vis-

tas show more resilience to domain shift. Column 4 depicts a model trained on both Vistas

and Cityscapes. It performs similarly to the model trained on Vistas. Interestingly, the model

trained on Vistas shows more resilience to unusual conditions (dark image in row 4, unusual ve-

hicle in row 3), while the model trained on combined datasets shows more precision in normal

situations (grass in row 1, road in row 2).
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Figure 5.8 shows the results of the two-head model depending on the negative training

dataset (cf. Table 5). The first column shows the validation images. The second column illus-

trates the model trained using ImageNet-1k-full with pasting. It is capable of detecting outlier

samples. It is however sensitive to domain shift. This is because of the increased overlap be-

tween positive and negative images (in classes such as sky, vegetation or road, which appear

often in the backgrounds of ImageNet images). The last column shows the model trained using

ImageNet-1k-bb with pasting which performs the best both qualitatively and quantitatively.

5.6.4 Validation of training augmentations

We next validate training augmentations, this time on the 100 publicly available Fishyscapes

Lost and Found images. Table 5.12 shows the validation results. All models use Vistas and

Cityscapes train and WildDash validation as inlier images. We use the outlier class activations

for anomaly detection. We evaluate segmentation accuracy on Vistas validation dataset with

Cityscapes classes using mIoU. We investigate the influence of three augmentations. We con-

sider scale jittering (JS) where we vary image resolution before cropping it for training. We

also explore pasting randomly scaled patches (RSP) where we vary the size of the patch before

pasting it. Finally, we again look into training on pasted instances from ADE20k (Instances)

where the pasted patches vary in shape and are not exclusively rectangular.

Table 5.12: Comparison of open-set segmentation approaches on Fishyscapes Lost and Found (AP) and
Vistas (mIoU) validation subsets. We evaluate the contribution of scale jittering (JS), pasting of randomly
sized crops (RSP) and use of object instances from ADE20K negative examples (Instances).

JS RSP Instances AP L&F mIoU Vistas

✗ ✗ ✗ 13.2 75.1

✓ ✗ ✗ 25.4 76.5

✓ ✓ ✗ 36.9 76.3

✓ ✓ ✓ 50.3 76.7

Both anomaly detection and semantic segmentation benefit from scale jittering during train-

ing. We further see that random scaling of negative samples before pasting improves the overall

outlier detection performance. We speculate that this is primarily because of improvement on

small outlier samples. Finally, though training on ADE20k worked poorly on WD-Pascal, it sig-

nificantly improves outlier detection on Fishyscapes Lost and Found. This improvement likely

comes from the fact that pasted patches have irregular shapes, unlike training on ImageNet-1k

where we always paste squared patches. Pasting irregular shapes improves the precision of our

outlier detector. Note also, that the domain gap between training and validation inlier data in
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this experiment (Cityscapes vs. Lost and Found) is significantly smaller when compared to

the experiment from the previous section (Vistas vs WildDash) which might further explain the

difference in the results.

Figure 5.9 shows the performance of our model on Fishyscapes Lost and Found. Column 1

presents the original image. Column 2 contains the ground truth, with inlier, outlier and ignore

pixels denoted in gray, white and black respectively. Finally, column 3 shows the output of our

outlier detector. Our model performs very well on larger and closer objects (images 1-3), while

struggling with distant and small objects. Notice that objects in the last image are so distant

that it would be challenging even for a person to correctly classify them as an anomaly. It can

be seen that our model classifies some of the ignore pixels (e.g. hood of the car and noise on

image borders) as anomalies.

Figure 5.9: Results of the two head model trained with scale jittering and randomly sized patches on
the publicly available Fishyscapes Lost and Found images. The original image can be seen in the first
column, while columns 2 and 3 contain the ground truth and the outlier probability respectively. The
model works better on closer objects than on distant ones (row 1). The confidence in outlier detection
grows as an object draws near (rows 2 and 3). The model does not detect very small outliers (row 4).

5.6.5 Results on StreetHazards

Table 5.13 presents open-set segmentation accuracy on StreetHazard. We evaluate the two-head

model trained with different augmentations and compare them with the max-softmax baseline.

We use the outlier probability (OP) as predicted by the discriminative head for outlier detection.

We ignore outlier pixels when measuring segmentation accuracy.

Unlike [103], we do not use ignore pixels during evaluation (same as [13]). Furthermore,
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we do not report the mean of per-image anomaly detection scores. In our view, such practice

may yield over-optimistic estimate of the overall anomaly detection metrics, since recognition

errors can not propagate across images (e.g. these results will not reflect if the model is able to

correctly identify negative images). We therefore determine global scores on 10 times down-

sampled predictions. We evaluated the performance by measuring the mean of per-image scores

and obtained similar results to the ones we report.

Table 5.13: Performance evaluation on StreetHazard. Our models were trained on StreetHazard (inliers)
and ImageNet-1k-bb (negatives) and use the scale jittering augmentation. The C-was multi-class model
is the baseline model trained without negative data and uses max-softmax (MSM) for outlier detection.
We train two variants of the two-head model: one that uses fixed-size pasted patches (FSP) in mixed-
content images and one with randomly sized patches (RSP). These models use outlier probability (OP)
output of the outlier detection head for out-of-distribution detection.

Model Negative data Criterion AP test mIoU

PSPNet [103] N/A CRF+MSM 6.5 N/A

PSPNet [119] N/A TRADI 7.2 N/A

SPADE [97] N/A SynthCP 9.3 N/A

C-way multi-class ✗ MSM 7.3 65.0

two-head FSP OP 18.6 66.3

two-head RSP OP 19.7 66.9

Overall, our approach achieves better outlier detection performance than previously pro-

posed approaches. The inclusion of negative data into training improves outlier detection. The

best performing model has seen randomly sized negative patches in mixed-content images,

which conforms to previous results.

Figure 5.10 shows the qualitative results. The columns represent: i) the original image, ii)

the ground truth and iii) our output. Our model is able to detect larger outliers. It struggles with

smaller outliers at the periphery of the image (row 3). Note that there is no overlap between

outliers in our negative datasets and the synthetic outliers in the StreetHazards datasets. This

suggests that our approach may generalize to outliers not seen in the negative dataset.

5.6.6 Results on Vistas-NP

We next perform experiments on Vistas-NP and show the results in Table 5.14. Interestingly, our

approach yields worse results than the baseline max-softmax score. This is most likely due to

the fact that the average size of outliers in Vistas-NP is 0.66% while the median size is 0.14%. It

is not a surprise that our convolutional models underachieve on small objects. Our predictions
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Figure 5.10: Open-set segmentation on StreetHazard. The first column is the original image, the second
the ground truth, and the third is the output of the two-head model that was trained with randomly sized
pasted patches. Outliers are white while ignore pixels are black. Our model performs better on large
outliers (rows 1, 2) than on small ones (row 3).

are 4 times subsampled with respect to the input resolution in order to reduce computational

complexity and memory footprint during training. This is a common trade-off [31] which can

be avoided in principle, however at a great computational cost [120].

Table 5.14: Results of our models on Vistas-NP tes. Our models were trained on Vistas-NP train which
does not contain any people (inliers) and ImageNet-1k-bb (negatives) and use the scale jittering aug-
mentation. The C-was multi-class model is the baseline model trained without negative data and uses
max-softmax (MSM) for outlier detection. We train two variants of the two-head model: one that uses
fixed-size pasted patches (FSP) in mixed-content images and one with randomly sized patches (RSP).
These models use outlier probability (OP) output of the outlier detection head for out-of-distribution de-
tection.

Model Negative data Criterion AP test mIoU

C-way multi-class ✗ MSM 12.4 66.4

two-head FSP OP 10.9 66.7

two-head RSP OP 10.8 66.5

Figure 5.11 shows qualitative results for the two-head model that was trained with the ran-

domly sized pasted patches. The columns represent: i) the original image, ii) the ground truth

and iii) our output. The results clearly show that we are able to detect larger outliers closer to

the camera, but struggle with distant and small objects.
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Figure 5.11: Open-set segmentation on Vistas-NP. The first column is the original image, the second
the ground truth, and the third is the output of the two-head model that was trained with randomly sized
pasted patches. Outliers are white while ignore pixels are black.

5.6.7 Improving performance on small anomalies

The previous sections indicate that separate outlier detection head performs slightly worse on

smaller outliers. We, therefore, look into potential improvements. In addition to AP, it is also

useful to look at false positive rate at false negative rate of 95% (FPR 95). This measure calcu-

lates the rate of false positive predictions when we set the threshold so that the outlier detector

identifies 95% of outliers. Lower FPR 95 score indicates better performance. Improvements in

performance on small outliers will be more obvious on the FPR score than on the AP score.

We start by exploring the influence of outlier size on model performance by measuring

correlation between the outlier area and the detection performance as shown in Figure 5.12.

The figure shows AP and FPR 95 with respect to the area of the outlier patch for the baseline

model which uses max-softmax for outlier detection (denoted with LDNJS), and the two-head

model that uses the output of the outlier detection head for outlier detection (denoted with

LDN_BINJS, RSP. We see that the accuracy of both models depend on outlier patch size. Max-

softmax acts as an edge detector and therefore performs better on smaller objects. It however

performs poorly on larger objects because it is unable to detect the interior of an object as an

outlier.

Figure 5.12 implies that we can improve the accuracy of our two head models on small

objects by combining the outlier probability with max-softmax. There are a few ways in which

this can be done.

Firstly, assuming O is the output of the anomaly detection head, and i and j are the coordi-
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LDNJS LDN_BINJS, RSP

Figure 5.12: Influence of the outlier size on the model performance on Fishyscapes Lost and Found
validation. Images 1 and 2 show AP and FPR95 using max-softmax baseline (LDNJS) and images 3
and 4 show AP and FPR95 for our two-head model trained with noisy negatives (LDN_BINJS, RSP). The
orange line indicates an exponential function that was fitted to the data using least-squares. Higher AP
and lower FPR scores indicate that our model prevails on large outliers. Max-softmax on the other hand
achieves better results on small outliers because it detects object edges well.

nates of the pixel, we can use total probability:

P(outlieri j|x) = P(outlieri j|Oi j = 1) ·P(Oi j = 1|x)

+P(outlieri j|Oi j = 0) ·P(Oi j = 0|x)

= P(Oi j = 1|x)

+(1−maxc(P(Yi j = c|x)) · p(Oi j = 0|x). (5.2)

We also assume that P(outlieri j|Oi j = 1) = 1, that is to say that our outlier detection head does

not have false positives. To correct the false negatives, we use max-softmax to get P(outlieri j|Oi j =

0).

We can also treat the two-head model as an ensemble, in which case we calculate the outlier

probability as a mean of outlier probabilities given by each head:

P(outlieri j|x) =
P(Oi j = 1|x)+(1−maxc(P(Yi j = c|x))

2
(5.3)

Finally, we can interpret the outlier predictions given by the outlier detection and the seg-

mentation as independent and calculate the probability that both heads will predict that a pixel

is an outlier as the product of the two probabilities:

P(outlieri j|x) = P(Oi j = 1|x) · (1−maxc(P(Yi j = c|x)) (5.4)

The results of outlier detection using the LDN_BINJS,RSP when combining max-softmax

with the output of outlier detection head can be seen in Table 5.15. The combined probability

defined in Equation 5.4 performs best on all of the datasets. Max-softmax is able to detect small

outliers, while the outlier detection head prevents false positives on semantic borders.
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Table 5.15: Results of LDN_BINJS,RSP on Lost&Found, StreetHazard and Vistas-NP when using only
the output of the outlier detection head as well as when that output is combined with max-softmax using
equations 5.2 (total probability), 5.3 (ensemble) and 5.4 (OP×MSM).

Subset Criterion AP FPR95

FS LF OP 36.9 20.0

total probability 16.3 27.4

ensemble 19.1 27.4

OP×MSM 39.7 16.4

StreetHazard OP 19.7 56.2

total probability 12.5 27.2

ensemble 12.9 27.2

OP×MSM 20.6 46.9

Vistas-NP OP 10.8 33.2

total probability 15.5 17.2

ensemble 18.0 17.2

OP×MSM 24.0 13.7

5.6.8 Experiments on WildDash benchmark

Table 5.16 presents open-set recognition results on the WildDash benchmark. Our models are

listed in the last three rows of the table. The LDN_OE model has a single C-way multi-class

head and uses max-softmax for outlier detection. The LDN_BIN and LDN_BINJS both have

two heads, where JS denotes scale jittering during training. All three models have been trained

on Vistas train, Cityscapes train, and WildDash val (inliers) and ImageNet-1k-bb (noisy nega-

tives).

LDN_BIN and LDN_OE differ only in outlier detection protocol, with the rest of the train-

ing setup being identical. The two-head model performs better in most classic evaluation cate-

gories as well as in the negative category, but has a lower meta-average score. This is caused by

a larger performance drop in most hazard categories.

Qualitative analysis of the two models is shown in Figures 5.13, 5.14 and 5.15

The first four rows in Figure 5.13 show images taken in normal conditions, while the last two

rows show outlier images. The C-way model tends to classify small objects (cf. poles in image

in row 3) as well as distant objects (cf. trucks in the distance in the image in the third row) as

outliers. This model makes more false outlier detections in typical traffic scenes. Furthermore,
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Table 5.16: Open-set segmentation results on the WildDash 1 benchmark. All our submissions are on
Cityscapes train, Vistas train and WildDash 1 val (inliers) and ImageNet-1k-bb (negatives). The pasting
procedure included only fixed-sized patches. LDN_BIN denotes the two-head model, while LDN_OE
denotes the C-way multi-class model. Only our best submission was trained with jitter scaling (JS).

Model Meta Avg
Classic

Negative

mIoU cla mIoU cla iIoU cla mIoU cat iIoU cat mIoU cla

DRN_MPC [121] 28.3 29.1 13.9 49.2 29.2 15.9

DeepLabv3+_CS [122] 30.6 34.2 24.6 49.0 38.6 15.7

MapillaryAI_ROB [123] 38.9 41.3 38.0 60.5 57.6 25.0

AHiSS_ROB [124] 39.0 41.0 32.2 53.9 39.3 43.6

MSeg [83] 43.0 42.2 31.0 59.5 51.9 51.8

MSeg_1080 [83] 48.3 49.8 43.1 63.3 56.0 65.0

LDN_BIN (ours) 41.8 43.8 37.3 58.6 53.3 54.3

LDN_OE (ours) 42.7 43.3 31.9 60.7 50.3 52.8

LDN_BINJS(ours) 46.9 48.8 42.8 63.6 59.3 47.7

the two-head model performs better in negative images. Output of the C-way model on negative

images contains small patches not classified as outliers.

Figure 5.14 illustrates the impact of WildDash hazards on the output of the submitted mod-

els.

The results show that the two-head model is more sensitive to overexposure and distortion

hazards, though it succeeds when the hazard is not severe (rows 1-4).

Row 5 contains an example of occlusion. Both of the models are able to successfully seg-

ment the torso or the person behind the pole but they struggle with the lower part. Row 6

contains an example of the particles hazard (rain on the windshield), while row 7 contains an

example of the variation hazard (with a tank truck being an atypical example of a truck).
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Figure 5.13: Qualitative performance on the WildDash benchmark. Each triplet contains a test image
(left), the output of the two-head model (center), and the output of the C-way multi-class model trained
to predict uniform distribution in outliers (right). The two-head model does not produce false positives
at semantic borders (rows 1-4). Both models correctly recognize outliers in negative images (rows 5-6).
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Figure 5.14: Qualitative performance on WildDash test images with overexposure and distortion haz-
ards. Each triplet contains a test image (left), the output of the two-head model (center), and the output
of the C-way multi-class model trained to predict uniform distribution in outliers (right). The two-head
model rejects images with severe hazards.
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Figure 5.15 shows failure modes. The first two rows show images of animals on roads.

Animals are usually classified as pedestrians. The two-head model classifies most of the pixels

of the image in row 1 as outliers. Both of the models fail to classify the animals as outliers

accurately.

The windshield wiper in row 3 is classified as an inlier. This is because the submitted

models were trained on Wilddash val, which contains examples of images with windshield

wipers. Those pixels are ignored during training but they still influence the features extracted

by the dense feature extractor. This view is supported by Figure 5.6, where images in column 3

demonstrate that a model trained only on Vistas classifies windshield wipers as outliers.

Figure 5.15: Qualitative performance of our two submissions to the WildDash benchmark. Each triplet
contains a test image (left), the output of the two-head model (center), and the output of the model trained
to predict uniform distribution in outliers (right). Rows 1-2 show that our current models are unable to
correctly detect small outlier objects. Row 3 shows that the windshield wiper is recognized as inlier,
which occurs due to its presence in WildDash val (cf. Figure 5.6).

The best overall performance is achieved by the MSeg_1080 submission. We note however

that this model uses more negative supervision than us (densely labeled Ade20k and COCO

vs bounding boxes in ImageNet-1k). Additionally, they train and perform inference on larger

resolutions and use a model with almost 4 times more parameters (65.8M params compared to

our 17.4M params). MSeg_1080 is also somewhat less sensitive to some hazards (most sig-

nificantly underexposure) which may be due to their use of a significantly larger inlier training

dataset: aside from Vistas and Cityscapes, they also use Berkeley DeepDrive [100] and Indian

Driving Dataset [125]. Our model is competitive and actually outperforms MSeg in most of the

categories when inference is done on similar resolution (MSeg vs LDN_BIN).

Figure 5.16 presents a detailed comparison between MSeg and LDN_BINJS as shown on

the WildDash benchmark. The columns show: i) original image, ii) MSeg output and iii)

64



Experiments

LDN_BINJS output. The second and third image show that Mseg performs better on segmen-

tation of small objects in challenging conditions which is likely due to larger resolution. Note,

however, that the MSeg model does not recognize the hood of the car (row 1) and black rectan-

gles (row 3) as outliers. Detailed qualitative results for LDN_BIN and LDN_OE can be found

in [98]. Note that LDN_BINJS behaves similarly to LDN_OE in that it is able to find inlier

objects in outlier context.

Figure 5.16: Qualitative comparison between MSeg (column 2) and LDN_BINJS(column 3) on the
WildDash benchmark (column 1). MSeg performs better on natural negative images (line 4), and small
objects (line 2), but it is unable to locate outlier patches in traffic images (lines 1 and 3).

5.6.9 Results on Fishyscapes benchmark

Table 5.17 shows current results on the Fishyscapes benchmark [13]. The benchmark provides

mIoU score which is measured on Cityscapes validation dataset and AP and FPR95 on two

datasets: Lost and Found and FS Static. Lost and Found comprises 300 images taken from the

Lost and Found dataset, relabelled to distinguish between inlier, outlier and void classes and

filtered to exclude sequences where road hazards are inlier classes (e.g. bicycles). FS static was

created by pasting Pascal objects into Cityscapes images.

Notice that LDN_BINJS is almost exactly the same model that was presented in Table 5.16.

We needed to convert the model to Tensorflow 1 in order to comply with submission require-
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ments. We lose a couple of points on our segmentation in this conversion due to a known issue

with bilinear interpolation in Tensorflow 1.

LDN_BINJS, RSP and LDN_BINJS, RSP, ADE were both trained with randomly scaled pasted

patches. The latter model, however, sampled negative data from ADE20k. The drop in FPR95

score indicates that data augmentations and appropriately chosen negative dataset improve out-

lier detection performance. We outperform other models by a large margin on FS static. We also

achieve the second best outlier detection AP on Lost and Found images without the significant

drop in segmentation performance that occurs in the best submission.

Table 5.17: Open-set segmentation results on the Fishyscapes benchmark. All our submissions are two-
head models that were trained with scale jittering (JS) on Cityscapes train, Vistas train and WildDash 1
val (inliers) and ImageNet-1k-bb or ADE20K (negatives). Two of the models were trained with randomly
sized pasted patches (RSP), and out od the two, one was trained with ADE20K negatives (ADE)

Model Criterion Train OoD City
Lost and Found FS Static

mIoU AP FPR95 AP FPR95

Dirichlet DeepLab [13] prior entropy ✓ ✓ 70.5 34.3 47.4 31.3 84.6

Bayesian DeepLab [13] mutual information ✓ ✗ 73.8 9.8 38.5 48.7 15.5

OoD training [13] maximize entropy ✓ ✓ 79.0 1.7 30.6 27.5 23.6

Softmax [13] entropy ✗ ✗ 80.0 2.9 44.8 15.4 39.8

max-softmax (MSM) ✗ ✗ 1.8 44.9 12.9 39.8

Learned embedding density [13] logistic regression ✗ ✓ 80.0 4.7 24.4 57.2 13.4

minimum nll ✗ ✗ 4.3 47.2 62.1 17.4

single-layer nll ✗ ✗ 3.0 32.9 40.9 21.3

Image resynthesis resynthesis difference ✗ ✗ 81.4 5.7 48.1 29.6 27.1

Discriminative
outlier detection
head (ours)

LDN_BINJS outlier probability (OP) ✓ ✓ 77.7 15.7 76.9 82.9 5.1

LDN_BINJS, RSP outlier probability (OP) ✓ ✓ 77.3 21.2 36.9 86.2 2.4

OP × MSM ✓ ✓ 30.9 22.2 84.0 10.3

LDN_BINJS, RSP, ADE OP × MSM ✓ ✓ 31.3 19.0 96.8 0.3

5.7 Discussion

We have presented a model for open-set semantic segmentation. Our architecture builds an

open-set recognition module on top of a dense feature extractor. We find that the two-head

module which separates semantic segmentation and outlier detection performs the best since it

offers the best combination of semantic segmentation and outlier detection accuracy (cf. Table

5.8). Furthermore, qualitative analysis indicates that it is the only approach that does not yield a
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high outlier probability on semantic borders (cf. Figure 5.6). The outputs of the two heads may

be combined for improved performance on small outliers (cf. 5.15).

We show that outlier detection may be realised as a simple binary classifier that distinguishes

between inlier data and a general-purpose negative dataset such as ImageNet-1k. This approach

works on a variety of datasets without modifications to the choice of negative data (cf. Tables

5.2, 5.6, 5.7, 5.13 and 5.14).

Standalone discriminative outlier detection is prone to overfitting and works best with some

form of regularization, such as reduction in capacity (cf. Table 5.4). It thus benefits from sharing

features with a segmentation task (cf. Table 5.2 vs Table 5.8).

Our experiments indicate that open-set segmentation performance is impacted by the type

of negative data seen during training. Overall, negative data significantly improves outlier de-

tection (cf. Table 5.1 vs. Table 5.8). What is more, for the model to have the ability to detect

outlier patches in mixed-content images, such images must be used during training (cf. Table

5.2). We are able to create mixed content images by pasting negative data into inlier images.

We get the best results when we vary the size of the pasted data since it enables the detection of

smaller outlier patches (cf. Tables 5.12 and 5.13).

We do not curate the negative dataset in any way, and the noise may impact the model

performance. Some of the noise may be reduced by ignoring areas of negative images where

there is the most overlap between the inlier and outlier data (cf. Table 5.11). Still, that is not

always possible. We therefore propose a batch formation that ensures that the training batches

always contain an approximately equal share of inlier and negative pixels. Since the negative

dataset is usually much larger and significantly more diverse than the inlier one, many inlier

epochs are performed during one negative epoch. This means that occasional inlier pixels in

negative images will be comparatively rarely erroneously labeled as outliers. Our results show

that we were able to successfully train models without a significant in segmentation or outlier

detection performance (cf. Table 5.17 and 5.16).
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Conclusion

We propose a novel discriminative approach for dense outlier detection and open-set recogni-

tion. The proposed approach discriminates between an application-specific inlier dataset (e.g.,

Vistas, Cityscapes) and a diverse general-purpose negative dataset (e.g., ImageNet-1k). Our

approach treats pixels from the general-purpose dataset as noisy, test-agnostic negative samples

and trains on mixed batches with an approximately equal share of inliers and noisy negatives.

This promotes robustness to occasional inlier content in negative images and facilitates stable

development of batch normalization statistics. We encourage correct recognition of spatial bor-

ders between outlier and inlier pixels by pasting negative patches at random locations in inlier

images. The resulting models generalize well to test images with anomalies of arbitrary shape.

We have successfully implemented the proposed dense open-set recognition approach as a

multi-task model that performs outlier detection and semantic segmentation on top of shared

features. This implementation allows us to perform dense open-set recognition with a single

forward pass, without deteriorating the performance of either task. The decoupling of the two

tasks increases the robustness of the primary task to the noise in the negative dataset. We have

submitted the results of our best model to FishyScapes and WildDash benchmarks, where it is

still the only method that competes at both benchmarks. Our model is currently at the top of

the Fishyscapes Static leaderboard and is a close runner-up on WildDash 1, even though it is

trained with less supervision than the top-ranking algorithm [83]. We also report successful

dense outlier detection performance on the UCSD anomaly detection dataset, as well as Vistas-

NP and StreetHazard open-set segmentation datasets. Most of our reported experiments feature

the same model, hyperparameters, training procedure, and negative dataset; the only difference

is the inliers being used. The only exception is the UCSD anomaly dataset, where we had to

decrease the model capacity due to fewer training data.

We present several validation and ablation experiments and offer additional insights into

our approach. Specifically, we show how the choice of training data and model capacity affects

model performance. To address the potential drawbacks of our approach, we analyze its gener-
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alization potential by testing on outliers not seen in the negative datasets. We successfully detect

out-of-distribution samples not seen in the training data such as carts in the UCSD dataset. Fur-

thermore, we explore whether training on synthetic mixed content images introduces unwanted

side-effects, such as relying on pasting cues rather than outlier patch semantics for recognition.

Finally, we examine the impact of the size of anomalies to outlier detection performance and

propose additional methods for improving the recognition of small anomalies. Overall, our

experiments provide a comprehensive insight into our method and highlight its strengths and

limitations.

The results reported in this study provide strong evidence for our hypotheses that i) the

use of noisy negatives can significantly improve dense outlier detection and open-set recogni-

tion, and ii) the resulting open-set models perform comparably to their closed-set counterparts

in terms of closed-set mIoU. Based on the experimental results, we developed a multi-head

open-set recognition model based on shared features between outlier detection and semantic

segmentation. Our simple technique for creating mixed-content images through pasting pro-

motes learning of accurate detection of out-of-distribution objects. Finally, our batch creation

procedure decreases the impact of semantic noise in negative learning examples.

We acknowledge that there are still challenges to be addressed, particularly in detecting

small outliers and relaxing the dependence on real negative data. Moving forward, it would be

valuable to explore new methods to address these challenges, as well as investigate the potential

benefits of leveraging recent advances in computer vision architectures such as transformers and

vision-language models for more versatile outlier detection and better generalization potential.
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učenju na više skupova podataka djelomično je inspirirano saznanjima koja su proizašla iz tih

suradnji. Volontira kao recenzent za med̄unarodne konferencije i časopise.
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