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ivan.kusalic@fer.hr

Ivan Kovaček
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Abstract. We present a study on applying Viola-
Jones detection and SVM classification for recogniz-
ing traffic signs in video. Extensive experimentation
has shown that this combination suffers from high in-
cidence of false alarms and low tolerance to local-
ization inaccuracy of the true positive detection re-
sponses. We report on three improvements which ef-
fectively alleviate these problems. Firstly, we confirm
the previous result that raw detection performance of
Viola-Jones detector can be improved by exploiting
color. Additionally, we propose a solution for filter-
ing false positive detection responses, based on a prop-
erly trained artificial neural network classifier in the
last stage of the detection cascade. Finally, we pro-
pose a novel approach for alleviating the degradation
of the classification performance due to localization
inaccuracy. Experiments have been performed on sev-
eral video sequences acquired from a moving vehicle,
containing several hundred triangular warning signs.
The results indicate a dramatic improvement in de-
tection precision, as well as significant improvements
in classification performance. At the system level, the
proposed system correctly classified more than 97% of
triangular warning signs, while producing only a few
false alarms in more than 130000 image frames.

1. Introduction

The ability to detect and classify objects is a key
component of many computer vision applications.
This paper considers a framework based on combin-
ing a boosted Haar cascade detection (the Viola-Jones
algorithm) with support vector machine (SVM) clas-
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sification. Although we address issues of general in-
terest in object detection and recognition, our focus is
on studying the considered framework in the context
of ideogram-based traffic signs.

There are many exciting application fields of traf-
fic sign recognition in video such as driving assistance
systems, automated traffic inventories, and autono-
mus intelligent vehicles. These applications are im-
portant for the society since their main goal is to in-
crease the traffic safety. Consequently, the challenges
towards achieving human-like performance (e.g. illu-
mination and color variance or motion blur) are ac-
tively researched. Recent high-class car models al-
ready come with optional traffic recognition systems,
but only limited technical information about the em-
ployed algorithms and their performance is available.
These recognition systems usually detect only speed
limit signs and assume highway conditions, which sig-
nificantly simplifes the problem.

In early experiments with the proposed framework
we experienced two major problems: i) large num-
ber of false alarms, and ii) poor classification of the
detection responses. This paper reports on several
improvements which effectively alleviate these prob-
lems. We first report that color sensitive detection
can reduce the false positive detection rate while im-
proving the recall for large signs. The false detection
rate is additionally reduced by a novel method con-
sisting of adding an artificial neural network classifier
as an additional level of a boosted Haar cascade. We
present experiments which suggest that the poor clas-
sification performance is caused by the localization er-
ror in the detection responses. To solve this problem
we propose an additional novelty, which is to modify
the classifier training set according to the empirically
determined properties of the localization error. The
presented methods significantly improve the classifi-
cation performance on standalone images, while the
performance in video experiments approaches 100%



correct detection and classification.

2. Related work

Automated traffic sign detection and recognition
has been an active problem for many years, and there
is a vast number of related publications. The detec-
tion procedure solves the problem of locating traffic
signs in input images, while the classification proce-
dure determines the types of the detected traffic signs.

There are different approaches to detection. Some
of the methods [6],[16] use color based segmentation,
and model matching in order to detect the traffic sign.
There are also researchers that rely only on the shape,
using Hough transform [9][7], radial basis transform
[11] etc. The other approach is to use a general pur-
pose object detector. A popular algorithm for gen-
eral object detection has been proposed by Viola and
Jones [20]. The algorithm has been applied for traf-
fic sign detection by several researchers [2, 18, 4]. A
disadvantage of the original algorithm is that it disre-
gards the color information, which might be valuable
for detection. Bahlman et al. [1] use the Viola-Jones
detector with extended feature set in order to use
color information. That paper reports better detec-
tion performance using color, especially in reducing
the false positive rate. This result encouraged us to
use color information in Viola-Jones detector as well.

Munder and Gavrila [12] compared object detec-
tion methods performance on pedestrian classifica-
tion. Their experiments show that the combination of
Support Vector Machines with Local Receptive Field
features performs best, while boosted Haar cascades
can, however, reach quite competitive results, at a
fraction of computational cost. We took advantage
of both the Viola-Jones detector speed and the per-
formance of a slower classifier by building a hetero-
geneous cascade of boosted Haar-like features with
Artificial Neural Network as the final level of cas-
cade. This approach significantly lowered the number
of false detections.

For the classification task, most of the previous
approaches used one of well studied classification
schemes, such as SVM [3], multiple discriminant
analysis [17], neural networks [14] etc. A detailed
report on current research in sign detection can be
found in a recently published review paper by Nguwi
and Kouzani [13].

3. The Dataset

We used two datasets, labeled as dataset A and
dataset B. The dataset A was used for learning and
validation, while dataset B was used to test the per-
formance. Both datasets were extracted from video
sequences recorded with camera mounted on top of
a moving vehicle. Video sequences were recorded at
daytime, at different weather conditions. The dataset

A corresponds to video material containing about 450
physical triangular warning signs, in which 1802 oc-
curences have been manually annotated. The dataset
B contains 265 physical triangular warning signs. Fig-
ure 1 shows examples of annotations.

Figure 1. Examples of extracted images

Traffic sign images were annotated manually in
video sequences, while background images are ex-
tracted randomly from video sequences in dataset A.
Altogether, 25 classes of traffic signs are represented
in the dataset. Figures 2a and 2b show the distribu-
tions of the traffic sign classes present in datasets A
and B.

(a)

(b)

Figure 2. Distribution of samples with respect to the sign
class for dataset A (2a) and dataset B (2b).

4. Detection

Our detection scheme is based on Viola and Jones’
algorithm [20], a very popular method for real-time
object detection.

In the next sections we will show the results of a
standard Viola-Jones detector on our dataset and the
modifications that were made to further improve the
detection rate and the false positive rate.

4.1. Viola and Jones’ algorithm

Viola-Jones detector uses a cascade of boosted
Haar-like features calculated on a gray-scale image.

For a human observer color is of great importance
in traffic sign detection, so that by intuition we expect
that color information should useful in machine detec-
tion as well. Bahlmann et al. [1] suggest computing
the Haar-like features from multiple color channels
(R, G, B, normalized r, g, b and grayscale).
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(a)

(b)

Figure 3. Comparison of the Viola Jones detection with
and without color information. 3a shows the detection
rates with respect to the traffic sign size. The y-axis rep-
resents the detection rate for traffic sign that have an area
larger than the value plotted on the x-axis. The dotted
blue line corresponds to the color-based cascade, while the
solid red line represents the grayscale cascade. 3b shows
the distribution of the test dataset with respect to the
traffic sign size.

We developed our own implementation of the al-
gorithm which enables us to evaluate the impact of
color information to the detection performance. The
implementation employs the channels from the Lab
color space, with which we obtained best results. Fig-
ure 3a compares the detection rates obtained by our
color-enabled implementation and the corresponding
grayscale version. The y-axis represents the detection
rate for traffic signs that have an area larger than the
value plotted on the x-axis1. The results show that
color information has a positive impact when detect-
ing larger traffic signs, but it has a negative impact
when detecting small traffic signs (smaller than 30
pixels in size). The reason is that images of distant
traffic signs are very small and contain very little color
information, while larger images contain enough color
(cf. Fig. 1).

In this work, we focus on the detection rate of
larger traffic signs because our system will be used
with video sequences and we expect that every traffic
sign will become large enough for the system to de-
tect. The problem with the system described so far
is the false positive rate. When using the Lab cas-
cade we get the false positive rate2 of 68.7%, while
with the grayscale cascade we obtain the false posi-
tive rate of 109.24%. Better detection rate for larger

1Detailed results and parameters used are presented in the
results sections.

2False positive rate is defined as the number of false detec-
tions divided by the number of existing traffic signs.

traffic signs and smaller false positive rate was the
reason for choosing the color cascade. We still need
to drastically reduce the false positive rate, because
we use the system on video sequences.

4.2. Decreasing the false positive rate

In order to reduce the false positive rate we have
added an additional stage to the detector cascade.
The new stage is a binary classifier based on an ar-
tificial neural network3. The negative examples for
ANN training have been collected as false positives of
the Viola-Jones detector applied to the images from
the learning dataset A. The positive training images
are exactly the same as for the preceding stages of
the cascade. The feature set for the neural network
is based on the HOG (Histogram of Oriented Gradi-
ents) descriptor [5]. Figure 4 shows the arrangement
of the HOG cells.

Figure 4. Arrangement of HOG cells in the detection win-
dow. The cell size is 6x6 pixels.

The Viola-Jones detector is used because it en-
ables real-time detection, but in order to reduce the
false positive rate it is better to use a heterogeneous
cascade. Munder et al. [12]report that adding more
stages to the VJ cascade further reduces the training
set error, but the validation and test sets were ob-
served to run into saturation. Using a stronger and
less efficient classifier as the last stage of a VJ clas-
sifier does not have a negative impact on detection
speed because only a small fraction of image patches
passes the VJ cascade.

There are two possible ways of integrating ANN
classifier with the Viola-Jones cascade. In the first
arrangement the ANN is applied after the integra-
tion of multiple detections. That scheme drastically
lowers the detection rate because of small errors in
localization introduced by the integration of multiple
detections. The neural network discards almost all
traffic signs which are not aligned perfectly as the an-
notations used in the learning process. In the second
arrangement the ANN is placed before the integra-
tion step, which proved to be much more effective.
Usually there are several detections of a single traf-
fic sign produced by the Viola-Jones detector, and
some of these detections are perfectly aligned. Those
detections are accepted by the ANN.

Figure 5 evaluates the impact of using the de-
scribed combination. It is important to note that the
detection rate is lowered only for traffic signs smaller

3SVM could be used instead of ANN as they yield almost
identical results.
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than 45×45 pixels. The false positive rate on a test
dataset is reduced from 65.74% to 7.04%.

Figure 5. Detection rate with (solid red line) and without
(dotted blue line) the ANN stage with respect to traffic
sign size in pixels. The y-axis represents the detection
rate for traffic signs that have an area larger than the
value plotted on the x-axis.

Additionally, it is interesting to note that localiza-
tion has improved after adding the additional level
of cascade. We define localization as the percentage
of overlap between an annotated traffic sign and the
detection response. Figure 6 evaluates this impact,
showing the distribution of traffic sign detections with
respect to the localization error. We can see that the
ANN stage removes some of the most inaccurately
localized detection responses.

Figure 6. Localization error with (solid red line) and with-
out (dashed blue line) adding the ANN stage. The x-axis
represents the percentage of overlap between an annotated
traffic sign and the detection response (localization qual-
ity).

5. Classification

When a traffic sign is detected, the next step is to
determine the class it belongs to. In this section we
describe the problems which arise due to localization
inaccuracy of the detection responses and propose the
solution.

5.1. Feature set and classifier

The first step in solving the classification prob-
lem is to choose which features to extract from the
resized image patches corresponding to the detec-
tion responses. For that purpose we chose HOG de-
scriptors [5] since they performed better than the
raw pixels in early experiments with an ANN clas-
sifier. Before calculating the HOG descriptor the re-
sized grayscale patches are first resized to 48× pixels,
and then contrast-normalized and smoothed with the

Figure 7. Arrangement of HOG cells over the detection
window. Both sets of histograms are used for classifica-
tion.

Figure 8. Classification performance of ANN (dotted blue
line) and SVM (solid red line) with regard to the per-
centage of overlapping area between calculated area and
annotation, after integration with the detection process.
This graph represents the classification rate for all de-
tections that have percentage of overlapping area with
annotation larger than value plotted on the x-axis. Clas-
sification rate of the SVM classifier is consistently higher
than the classification rate of the ANN. The decrease of
classification rate at 98% overlap is a result of a single
error in classification and therefore falls within the limits
of a statistical error. The distribution of traffic signs (top
image) is a coarsely discretized distribution from Fig. 6
(solid red line).

Gaussian filter. Figure 7 shows arrangement of HOG
cells in a resized patch. Figure 7a shows cells of 6×6
pixels, while figure 7b shows cells of 4×4 pixels.

For each cell, a histogram of gradient orientations
is calculated, and added to the feature vector. For
the cells shown in figure 7a histograms have 4 bins
and cover (0, π) radians, while cells shown in figure
7b have histograms with 7 bins which cover (0, 2π)
radians. Both sets of cells shown in figure 7 are used
in calculation of the feature vector. The dimension of
the resulting feature vector is 174.

Having decided on the features that we will use,
next we needed to choose a classifier, for which ANN
and SVM were considered. After integration of both
classifiers with the detection process, results shown
in figure 8 were obtained. Dataset B was used as a
test set, while the dataset A was used for learning
(cf. Fig. 2). The figure clearly shows that SVM per-
forms better then ANN, so that we chose SVM as our
classifier.

Initial testing results showed that SVM with HOG
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Figure 9. SVM as multi-class classifier. Two DAGSVM
trees are shown, both of which use the same binary classi-
fiers (A vs B, B wins; A vs C, C wins; A vs D, A wins; B
vs C, C wins; B vs D, B wins; C vs D, D wins). To build
DAGSVM tree, all available classes are divided into pairs.
On the left side, pairs are: (A,B), (C,D) and on the right,
pairs are (A,C) and (B,D). In each round, all pairs are
evaluated using binary SVMs, and the winners advance
to the next round (solid lines), which are in turn again
divided into pairs. Losers are simply discarded (dashed
lines). This process continues until only one class re-
mains. Different arrangement of initial pairs can end up
with different decisions, as is the case with the illustrated
DAGSVM trees.

performs good enough without using kernels. There
is no need to use kernels, because the results show
that the classes are linearly separable in the feature
space.

Because SVM is a binary classifier, we needed to
decide on a strategy for using SVM as multi-class clas-
sifier. We decided against standard one-vs-one and
one-vs-all methods, as they can both produce ambigu-
ity errors in voting process if classes significantly vary
in number of training examples. Instead, we used a
method similar to the DAGSVM [15, 8]. Our method
consists of building a directed acyclic graph which
looks like upside-down binary tree with all available
classes as leaves. In each step, all classes that are not
eliminated are divided into pairs which are then used
for one-vs-one binary classification. This way, after
each step the number of classes considered is halved,
until finally only one class remains. The remaining
class is the classifier’s decision. Each side of figure 9
illustrates this process.

Because different binary classifiers vary in reliabil-
ity, this method can produce different results depend-
ing on the way classes are initially divided into pairs,
as shown on figure 9, where two DAGSVMs make
different decisions using the same binary classifiers.
Obviously, one of those decisions is wrong, but it is
not clear which one. That is why we construct this
binary tree a few times (usually 5 times) and employ
a simple voting strategy. Each time different separa-
tion into pairs is used. Different pairing distributions
had little effect, as most of binary SVMs are quite re-
liable. Nevertheless it did improve classification rate
a little, and had no trade offs, as it only consumes
slightly more time, which is not of concern in the
classification process.

5.2. Modelling the localization error

Aside from relative performances of ANN and
SVM, figure 8 shows another interesting phenomena,

namely that both classifiers have lower classification
rates then we first anticipated. This was at first con-
fusing, as both classifiers performed much better in
initial tests that were used to verify validity of im-
plementations, with classification rates around 95%
(ANN) and 98% (SVM). We realised that the problem
was caused by the localization inaccuracy of the de-
tection responses. Many detections have a small off-
set, mostly only a pixel or two in each direction. Fig.
10 shows localization error of the detections, while
Fig. 11 shows relative scale deviation4, both with re-
gard to the groundtruth annotations. The presented
data was obtained by evaluating the previously de-
scribed detector on images from dataset A and com-
paring the detections with annotated locations of traf-
fic signs.

To solve this localization problem, we decided to
expand training set with examples that resemble de-
tector’s errors, with traffic signs annotated slightly
off. Specifically, for each annotated example in train-
ing set, we added another 10 examples which model
detector’s errors. As it can be seen from figures 10
and 11, both types of errors can be modeled with
normal distribution. Localization error (expressed
relative to the vertical or horizontal sizes of traffic
signs) was modeled as normal distribution with pa-
rameters (µ = −0.014, σ = 0.0016) for x-axis and
(µ = −0.026, σ = 0.002) for y-axis. Relative scale
deviation was modeled as normal distribution, with
parameters (µ = 1.065, σ = 0.074). The distributions
shown on figures 10 and 11 were obtained by com-
paring detection responses to the annotations from
the training set. The SVM classifier trained on the
modified training set got the correct classification rate
of 95.42%, as opposed to 91.33% obtained with the
unmodified training set. Figure 12 shows detailed
comparison of results achieved with SVMs trained on
different training sets.

The idea of increasing the training set by adding
translational jitter has been proposed before, but
with different purpose and motivation. For example,
Laptev [10] employs this idea to enlarge the train-
ing dataset for learning an object detector, while our
primary motivation is to improve the recognition per-
formance in presence of localization inaccuracy of the
detector responses.

6. System overview

After detection and classification is conducted on
images, the next step is to identify the traffic sign
through the consecutive images (i.e. video). An out-
put of the Viola-Jones detection is considered a false
positive, and thereby is discarded, if a detection is not
present in at least three consecutive frames. Group-

4Relative scale deviation describes the ratio between de-
tected size and the annotated size.
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Figure 10. Relative translational deviation of the detec-
tion responses with regard to annotation.

Figure 11. Relative scale deviation of the detection re-
sponses with regard to annotation.

Figure 12. Comparison of classification results achieved
with SVMs trained on unmodified (solid red line) and
modified (dotted blue line) training sets. This graph rep-
resents the classification rate for all detections that have
percentage of overlapping area with annotation larger
than value plotted on the x-axis. The decrease of clas-
sification rate at about 97% overlap is a result of a single
error in classification and therefore falls within limits of a
statistical error.

ing of single frame detections to a joint detection
through the video is based on thresholding the over-
lapping area between two consecutive detections. For
each detection a classification phase is conducted and
the final class is determined by voting with equal
weights for all detections.

The final process consists of 5 phases:

1. Traffic sign detection with Viola-Jones detector
2. Filtering false detections with ANN classifier
3. Integration of multiple detections
4. Traffic sign classification (SVM)
5. Identifying traffic signs in video

Example of system behaviour is shown in figure 15.
Final system has a frame rate of 15 frames per

second with an input image size of 480x360 pixels on
Intel 1.8 GHz Dual Core computer. The detection
process is implemented to take advantage of multi-
threading features of a processor.

7. Experimental results

The performed experiments are divided in two cat-
egories: results on standalone images and results on
video. All experiments were conducted on the same
test dataset B corresponding to about 1.5 hours of
video material. Detailed information about the test
dataset is as follows:

• duration: 1 hour, 28 minutes and 16 seconds
• resolution: 480x360 pixels
• frame rate: 25 fps
• number of frames: 132420
• number of physical traffic signs: 265

For each frame from the video sequence, position of
all the traffic signs is given, along with the annotated
classification.

7.1. Results on standalone images

We provide results achieved on standalone images
first, as the employed core algorithms naturally take
an image on input.

Parameters for detection algorithm are as follows:

• Viola-Jones scale factor: 1.2
• Viola-Jones sliding window step size: 5% of cur-

rent window size
• minimal number of detections needed for con-

firming the detection: 3

Figure 13 shows achieved detection rates with re-
gard to size of annotation. Total detection rate is
83.53%, which does not look all that impressive at
first. Main reason for such low detection rate is the
fact that our Viola-Jones implementation uses slid-
ing window with minimal size of 24×24 pixels. If the
images with smaller signs are excluded from the test
dataset the detection rate increases to 89.18%, which
is still too low for practical usage. However, almost
all signs larger than 50×50 pixels were successfully
detected (99.14%), which gives hope that detections
on video would be good enough. The reason for this
optimism lies in the fact that the size of a traffic sign
increases as video progresses and the vehicle advances
closer to the sign.

In experiments in this subsection, the classification
was evaluated only on successful detections. Figure
14 shows comparison of SVMs trained on unmodi-
fied (dotted blue line) and modified (solid red line)
training set (extracted from dataset A). Similarly to
the detection results, the total classification rate of
SVM trained on modified set is 93.59%, as opposed
to 85.14% for SVM trained on unmodified set. It is
important to note the importance of dataset modeling
according to the localization error.

7.2. Results on video sequence

The results presented in the previous section can
be extended to take advantage of multiple occurences
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Figure 13. Detection rates with regard to the annotation
size in the test dataset. The y-axis represents the detec-
tion rate for traffic signs that have an area larger than the
value plotted on the x-axis.

Figure 14. Classification rates with regard to percent-
age of overlap area between detection and annotation are
shown. Solid red line represents classification rate for
SVM trained on a modified set, and the dotted blue line
represents classification rate for SVM trained on an un-
modified set. Graphs represent the classification rate for
all detections for which the percentage of overlapping area
with the corresponding annotation is larger than value
plotted on the x-axis.

Table 1. Final detection results on video sequence.

No. of traffic signs 265
No. of detected signs 260
No. of false detections 2

Detection rate 98.11%
False positive rate 0.75%
False positives per frame 0.0015%

of physical traffic signs in video. The detection re-
sults on the test video sequence are given in Table 15.
The achieved results are very good, since only smaller
traffic signs of poor quality are not detected. This
suggests that the detection rate could be increased if
the video of higher resolution was used.

There are 243 physical traffic signs that are consid-

5False positive rate on video sequence is defined as the num-
ber of false detected traffic signs divided by the total number
of traffic signs.

Table 2. Final classification results on video sequence.

No. of traffic signs 243
No. of correct classifications 241
Classification rate 99.17%

Figure 15. Typical behavior at the system level. In the
beginning, the traffic sign is too small, but as time goes
on, it becomes big enough and gets detected.

Figure 16. A misdetection of a traffic sign. Size of the
traffic sign on the right is 25×25 pixels. Four out of five
misdetections at the system level are very similar to this
one.

ered for classification as opposed to 265 total traffic
signs present in the video sequence. The 22 missing
signs belong to classes for which the classifier has not
been trained because dataset A used for training pur-
poses contains insufficient number of training exam-
ples from those classes (or none at all). Final results
for classification on video sequence are given in table
2. Only two traffic signs were misclassified, both of
which are similar to their respective target classes.
By combining detection and classification processes,
we get overall system performance of 97.3%. Typical
results at the system level are illustrated in Fig. 15.

Fig. 16 is an example of a misdetection. The traffic
sign in question does not get bigger than 25×25 pixels
so that it is detected only in a single frame and is
consequently discarded.

8. Conclusion and future work

This paper presents two novel methods that can
improve performance of detection and classification
either in standalone images or in video. The first
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method is used to decrease the false positive detection
rate by extending the boosted Haar cascade with an
additional stage containing a strong nonlinear binary
classifier. The second method adapts the training set
to the empirically estimated model of the localization
error in the detection responses. Both methods were
applied in the frame of a real-time system working
on video sequences. The obtained results strongly
suggest that automated road inspection is likely to
become feasible in the near future.

Some categories of the triangular warning signs are
represented with less than 10 samples in the employed
training dataset. Thus we believe that it would be
possible to obtain even better classification results by
collecting a more complete training dataset.

The implemented method for combining informa-
tion from consecutive frames is very simple, and could
be improved in several ways. One of the directions we
are currently pursuing is to obtain better detection
for small signs by making the ANN detection filter
less strict and resolve the remaining false positives
with additional approaches. These additional meth-
ods would be based either on spatio-temporal prop-
erties of the recorded trajectories of the traffic signs,
or on enforcing the temporal consistency of the detec-
tion responses corresponding to the common physical
traffic sign.

We are also interested in expanding the scope of
this research to other traffic sign types, such as round
traffic signs (mandatory signs). Traffic signs of type
C (informational signs) could prove to be especially
challenging, as they come in many different shapes
and sizes. Using a Viola and Jones’ detector for each
type of a traffic sign would slow the system consid-
erably. Torralba et al. [19] proposed a method for
multiclass object detection, which could be of use in
dealing with this diversity without adding much over-
head to detection time.

Finally, we are also interested in detecting the state
of deterioration of the detected traffic signs. The is-
sues we would like to deal with are fading colors, de-
formation of the sign pole or the sign itself, inappro-
priate orientation, or partial occlusion.
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